Homework 5 (MATH 4300-01) Due date: Friday, Oct. 25, 2013

Name (Print):

- 1. What is the power P (dimension M $L^2 T^{-3}$) that is required to keep a vehicle of length d and mass m moving at a constant speed v?
 - a) Use dimensional analysis to calculate the power P.
 - b) Rewrite your result in terms of the kinetic energy $K = m v^2 / 2$, and the characteristic time scale $\tau = d / v$.
- 2. The hydrostatic pressure of blood in humans is a part of the total blood pressure. The hydrostatic pressure P (dimension M L⁻¹ T⁻²) is considered to depend on the blood density ρ (dimension M L⁻³), the height h of the blood column between the heart and some lower point in the body, and the gravity acceleration g (dimension L T⁻²).
 - a) Use dimensional analysis to calculate the hydrostatic pressure P.
 - b) Pressure is defined as force per area. Rewrite your result for P by taking reference to the gravity force $F_g = m g$ and an area A that you have to define conveniently.
- 3. For laminar flow in a pipe, the volume flow rate q (dimension $L^3 T^{-1}$) is a function of the pipe radius r, the viscosity μ (dimension M $L^{-1}T^{-1}$) of the fluid, and the pressure drop per unit length dp / dz (dimension M $L^{-2} T^{-2}$).
 - a) Use dimensional analysis to calculate the flow rate q.
 - b) How does q change if the radius is increased by a factor of two?