Homework 6 (MATH 4300-01) Due date: Friday, Nov. 1, 2013

- 1. The period of a damped pendulum is given by $T_P = 2\pi c_P (r / g)^{1/2}$, where the factor is given by the function $c_P = c_P(\alpha_0, \mu_*)$. The damping parameter is defined by $\mu_* = \mu (r^3 / g)^{1/2} / m$. Here, r is the length of the pendulum, g is the gravity acceleration, α_0 denotes the initial angle of displacement, μ is the dynamic viscosity, and m is the pendulum mass.
 - a) Describe an experiment for the calculation of c_{P} .
 - b) Derive the design conditions for a model pendulum that is 50% smaller than a real pendulum.
 - c) Specify the design conditions for the case that the same fluid is used.
- 2. Consider this case: A windmill is rotated by air flow to produce power to pump water. You have to find the power output P (dimension M $L^2 T^{-3}$) of the windmill. It can be expected that P depends on the diameter d of the windmill, the wind speed v, the air density ρ , the air viscosity μ , and the rotational speed ω (dimension T^{-1}) of the windmill.
 - a) Use dimensional analysis to calculate P. Use the exponents of P, μ , and ω as independent parameters.
 - b) Provide the design condition for a model that is q times smaller than the real windmill. Use the same fluid in the model system.
- 3. Consider a steady laminar fluid flow through a smooth horizontal pipe. The pressure drop Δp (dimension M L⁻¹ T⁻²) between two points along the pipe depends on the distance d between the two points, the diameter D of the pipe, the fluid density ρ , the fluid viscosity μ , and the fluid velocity v.
 - a) Use dimensional analysis to calculate Δp . Use the exponents of Δp , μ , and d as independent parameters.
 - b) Provide the design condition for a model that is q times smaller than the real system. Use the same fluid in the model system.