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The Kolmogorov constant is fundamental in stochastic models of turbulence. To explain the reasons
for observed variations of this quantity, it is calculated for two flows by various methods and data.
Velocity fluctuations are considered as the sum of contributions due to anisotropy, acceleration
fluctuations and stochastic forcing that is controlled by the Kolmogorov constant. It is shown that
the effects of anisotropy and acceleration fluctuations are responsible for significant variations of the
Kolmogorov constant. It is found near 2 for flows where anisotropy and acceleration fluctuations
contribute to the energy budget, and near 6 if such contributions disappear. © 2002 American
Institute of Physics. �DOI: 10.1063/1.1514217�

Most of the stochastic Lagrangian models for the simu-
lation of turbulent flows involve specific formulations of the
generalized Langevin model for the simulation of velocities
Ui*(i�1,3),1

d

dt
Ui*����1

�p

�xi
�Gi j�U j*��U j����C0	

dWi

dt
. �1�

The first term on the right-hand side determines the dynam-
ics of mean velocities. p and � are the ensemble-averaged
pressure and mass density. The last term models the genera-
tion of fluctuations. dWi /dt is the ith component of a
vectorial Gaussian process with vanishing means,
�dWi /dt��0, and uncorrelated values at different times,
�dWi /dt(t)•dW j /dt�(t�)��
 i j
(t�t�). 
 i j denotes the
Kronecker delta, 
(t�t�) the delta function and �¯� refers
to the ensemble average. The intensity of noise generation is
proportional to the mean dissipation rate 	 of turbulent ki-
netic energy. The second term on the right-hand side of �1�
models the relaxation of velocity fluctuations. Repeated in-
dices imply summation, and �U j� is the jth component of the
mean Eulerian velocity. The closure of �1� requires the speci-
fication of Gi j and the constant C0 . Usually, the coefficients
Gi j are chosen as algebraic functions of velocity gradients
and variances �uiu j� (ui denotes an Eulerian velocity fluc-
tuation�. Such expressions for Gi j may be obtained as solu-
tions of the algebraic equations

C0	
 i j�� ��Ui�
�xk

�Gik� �uku j��� ��U j�
�xk

�G jk� �ukui� , �2�

which are found by neglecting the gradients of variances and
triple correlations in the variance equations given by �1�. By
adopting �2� to provide Gi j , the remaining task is the deter-
mination of C0 .

One may expect that C0 grows with the Reynolds num-
ber and approaches to an asymptotic value C0(�) that is
called the Kolmogorov constant. This was confirmed by
Sawford. He showed that C0(�)�7 for homogeneous iso-

tropic stationary turbulence �HIST�.2 Recently, Sawford and
Yeung derived a revised value C0(�)�6 on the basis of new
direct numerical simulation �DNS� data,2,3 which agrees with
conclusions of Pope.4 C0(�) should be a universal constant
according to Kolmogorov’s theory, i.e., the same for each
flow. However, many investigations did not confirm this as-
sumption. In other flows than HIST �for decaying turbulence,
evolving scalar fields and the atmospheric boundary layer�,
one found smaller values 1�C0(�)�3.5–10 The reasons for
the obtained variation of C0(�) estimates between 1 and 7
were not explained until now.

Obviously, a better knowledge of the reasons for the
variations of C0(�) is relevant to stochastic simulations of
turbulence. To address this question, it is helpful to write �1�
as

Ui*��Ui*��ui
an�ui

ac�ui
st . �3a�

The contributions due to anisotropy, acceleration fluctua-
tions, and stochastic forcing are given by

ui
an��
 i j�G�1Gi j��U j*��U j��,

ui
ac�G�1� dUi*

dt
�� dUi*

dt � � , �3b�

ui
st�G�1�C0	

dWi

dt
.

Equations �3a� and �3b� are obtained by introducing the fluc-
tuation of dUi*/dt and splitting Gi j into its isotropic (G
�Gnn/3) and deviatoric part. This writing of �1� suggests to
relate the appearance of various C0(�) values to the rel-
evance of ui

an and ui
ac : high values of C0(�) are needed as a

compensation for the disappearance of ui
an and ui

ac contribu-
tions to the variance �energy� budget in some flows or their
neglect in flow simulations. Facts to support this view will be
presented here.

C0 will be calculated for an equilibrium turbulent
boundary layer �ETBL� and HIST by adopting various mod-
els as pointed out in Table I. The calculation of C0

(I) is re-
quired to obtain an accurate asymptotic value C0(�) of C0

for a flow that constitutes a cornerstone for the calculation ofa�Electronic mail: heinz@flm.mw.tum.de
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wall-bounded turbulent flows of engineering and environ-
mental interest. This is needed to assess the relevance of
Reynolds number effects on C0 , i.e., to clarify the question
whether previously obtained low C0(�) estimates are the
result of considering the flows at too small Reynolds num-
bers or not. C0

(II) and C0
(III) will be calculated for the same

flow to see the effect of the neglect of ui
an and ui

ac . The
consideration of these simpler models is relevant because
they are used for most of the stochastic simulations of react-
ing flows.1 C0

(IV) will be calculated for HIST for which con-
tributions of ui

an and ui
ac to the variance budget disappear.

Thus, the value of C0 obtained for HIST has to be the same
for the models considered here. Evidence for this will be
provided by the comparison with the results of Sawford’s
acceleration model,2 which is �for HIST� more complete than
Eq. �3a�. The purpose of calculating C0

(IV) is to assess the
flow dependence of C0 . In addition to this, it is of interest to
see if there is any difference between the disappearance of
ui

an and ui
ac contributions to the variance budget in some

flows and the neglect of such contributions in other flows
where they are nonzero.

The calculation of C0
(I) requires the specification of Gi j

in model �1�. Very often, Gi j is taken according to the sim-
plified Langevin model �SLM�, which is used in general to
perform reacting flow calculations. However, this implies the
assumption of relations between �u1u1�, �u2u2� and �u3u3�
that are only satisfied approximately for the ETBL, see be-
low. To overcome this shortcoming of the SLM, we will use
�2� in combination with the known statistics of the ETBL to
derive a more general parametrization of Gi j . For the flow
considered, relation �2� provides four equations for 10 un-
knowns �the nine components of Gi j and C0) and two con-
sistency constraints that assure �u1u3���u2u3��0 �the co-
ordinate system is chosen such that x1 is in the streamwise
direction and x2 is in the direction of the mean shear�. One
may distinguish two types of models in dependence on the
choice of Gi j : models where C0 does not affect the transport
of turbulent kinetic energy �the variance equations �2��, and
models where it controls this transport �e.g., the SLM�. We
are interested in the second model type because it is used in
general for stochastic flow simulations. Such a model is ob-
tained by generalizing the SLM through choosing Gi j to be
diagonal (Gi j�0 for i
 j), i.e., we assume that each veloc-
ity component interacts primarily with its mean, see �1�. This
assumption is in agreement with the two consistency con-
straints mentioned above. It reduces the number of un-
knowns to four, for which four equations are provided
through �2�. By adopting the relations �u1u3���u2u3��0
and �u1u2���	S�1 for the variances and ��Ui�/�xk

�S
i1
k2 for the gradients, the equations for G11 , G22 , G33 ,
and C0 read

�0.5C0	�	�G11�u1u1��G22�u2u2��G33�u3u3�, �4a�

S�u2u2���G11�G22��u1u2�. �4b�

G11 , G22 , and G33 are found according to �4a�, and C0 can
be calculated from �4b� as

C0
�I��2��u1u1��u2u2�/�u1u2�

2�1��1��u1u1�/�u2u2���1.
�5�

The model that follows from �1� in conjunction with �5�,
Gi j�0 for i
 j and �4a� for G11 , G22 , and G33 will be
referred to as Langevin model �LM�. It is worth emphasizing
that the consideration of more general forms of Gi j �e.g.,
off-diagonal components3 or nonlocal expressions11� is no
requirement for the flow considered: the LM is capable of
providing the variances in agreement with DNS and mea-
surements. An essential feature of the approach applied here
is given through the fact that all the model ingredients (G11 ,
G22 , G33 and C0) are determined through the assumption
that Gi j is diagonal. C0 was calculated according to �5� by
adopting the channel flow DNS data of Moser et al.12 and
measurements of Wei and Willmarth13 and Antonia et al.14 at
y��98, see Pope �p. 283�.1 The results are shown in Fig. 1
in dependence on the Reynolds numbers Re �based on the
bulk velocity� and Re0 �based on the centerline velocity�.1

This was done by relating the friction Reynolds number by
Re��0.09 Re0.88 with Re, see Pope, p. 279.1 These results
reveal that the influence of the Reynolds number on these
predictions is negligible �there is no observable trend of
these values with the Reynolds number� and that the
asymptotic value C0(�) is significantly less than 6. In par-
ticular, the DNS data provide a mean of C0�2.1�0.04. This
value agrees well with the results of measurements: both
provide C0�2.3�0.3.

The calculation of C0
(II) and C0

(III) requires the simplifi-
cation of the LM. First, we assume G11�G22�G33�G , i.e.,

FIG. 1. The solid symbols show C0 obtained for the LM in dependence on
the Reynolds number Re according to the DNS data of Moser, Kim, and
Mansour �Ref. 12�. The open symbols represent C0 in dependence on the
Reynolds number Re0 according to the measurements of Wei and Willmarth
�referred to as WW� �Ref. 13� and Antonia et al. �referred to as ATKB� �Ref.
14�.

TABLE I. Calculations of C0 to be performed for the equilibrium turbulent
boundary layer �ETBL� and homogeneous isotropic stationary turbulence
�HIST� by means of various models.

Model ETBL HIST

Eq. �3a� with ui
an
0; ui

ac
0 C0
(I) (�C0

(IV))
Eq. �3a� with ui

an�0; ui
ac
0 C0

(II) (�C0
(IV))

Eq. �3a� with ui
an�ui

ac�0 C0
(III) C0

(IV)
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we neglect ui
an in �3a�. The reduction of the numbers of co-

efficients implies two assumptions on the velocity field. The
first assumption is given by �u2u2���u3u3�, see Eq. �4a�.
Then, Eq. �4a� provides two relations: one finds G
��(3C0�2)/(4�) and C0��k/�u2u2��1.5��1. The sec-
ond assumption on the velocity field is found through Eq.
�4b�, which implies �u1u1���u2u2��2�u1u2�

2/�u2u2�. By
adopting these relations there are different ways to calculate
C0 by means of measured variances. The DNS data given in
Table II reveal that the implied relations between the vari-
ances are only satisfied approximately �the deviations are
13–27%�, which explains the appearance of various C0 val-
ues in models of the ETBL.6,8,10 C0��k/�u2u2��1.5��1 is
used in conjunction with measurements of k/�u2u2� , e.g., for
the construction of second-order closure models for the at-
mospheric boundary layer, which corresponds with the use of
small values of C0 .7 These imbalances can be minimized by
calculating C0 from k combined with the normalization
�u1u2� , i.e., in terms of C���u1u2�

2/k2.6,8 The relations
presented above provide

C0
�II���2/3��1��1�6C���1��1�6C���1. �6�

The model resulting from �1� combined with Gi j�G
 i j and
�6� is the SLM, which is often used for flow simulations.1

C0
(III) is obtained by reducing �3a� to a diffusion model �DM�.

This is done by neglecting the turbulence in the streamwise
direction5 so that dx1*/dt��U1�. By neglecting ui

an and ui
ac

in �3a�, the two-dimensional diffusion (i�2,3) is then de-
scribed by

dxi*/dt � ��/�xi ��2� dWi/dt . �7�

The coefficient G��C0	/(2�2) in ui
st can be obtained by

�2�, where �2�0.5(�u2u2���u3u3�). This implies �
�2�2

2/(C0	) for the diffusion coefficient in �7�. The system-
atic term ��/�xi may be found as consistency condition by
considering the Fokker–Planck equation related to �7�. It is
worth noting that the model �7� is not specifically related to
the LM or SLM: exactly the same model can be obtained by
constructing a stochastic model under the constraint that the
probability density function evolves towards a Gaussian
shape �which differs from the LM through the appearance of
nonlinear terms� and taking the asymptotic limit.5,10 By
adopting a flux-gradient relationship, C0 may be calculated
as explained by Rodean.10 Flux-gradients experiments in the
�high-Reynolds number� horizontally uniform neutral atmo-
spheric surface layer show that ���u1u2�

2/	 , which implies

C0
�III��2��2 /�u1u2��2. �8�

C0 was calculated according to the channel flow DNS data of
Moser et al.12 by means of �6� and �8�. Experimental data

could not be used for a comparison because �u3u3� was not
measured.13,14 The results are given in Fig. 2 in dependence
on the friction Reynolds number Re� , which is convenient
regarding the comparison with results obtained for C0

(IV) , see
the explanations in the next section. In agreement with the
previous claim regarding the reasons of C0(�) variations,
one finds that the use of simpler models �the SLM and DM�
results in growing values of C0 .

C0
(IV) will be calculated by considering �7� with i�1,3

for the case of passive scalar mixing in HIST with imposed
constant mean scalar gradient, which was studied by Over-
holt and Pope by means of DNS.15 For the HIST considered,
� is a constant equal to ��8k2/(9C0	). The definition of �
via the flux-gradient relationship �u���������/�x ����
and � are the mean and fluctuation of a passive scalar, and u
and x refer to one component of ui and xi) implies then

C0
�IV��� �8k2/9	�u��������/�x � . �9�

The temporal average values of C0(��2/�v*�*� in the no-
tation of Overholt and Pope� obtained for the stationary por-
tion of each simulation are plotted in Fig. 2. This is done in
dependence on the Reynolds number Rel based on the turbu-
lence intensity and integral length scale, which is advanta-
geous regarding the comparison with the corresponding data
obtained for the ETBL. The C0 value at Rel�1092 �with a
Taylor-scale Reynolds number Re��185) was not consid-
ered because it is strongly influenced by the forcing energy
input.15 The range 28�Re��84 considered in this way is
larger than the range Re��60 considered by Weinman and
Klimenko9 and corresponds to the range considered by Saw-
ford to calculate C0 for the same flow.2 We see that there is
a very good agreement between the data provided by �7� for
the ETBL and HIST. As pointed out above, the data obtained
for C0

(IV) have to be consistent with the findings of Sawford2

and Sawford and Yeung.3 This is demonstrated in Fig. 3
where the C0

(IV) data are shown against Re� . Sawford’s
parametrization2 for the Reynolds number dependence of
C0 ,

FIG. 2. The solid symbols are used to show the C0 values of the LM, SLM,
and DM according to the DNS data of Moser, Kim, and Mansour in depen-
dence on Re� �Ref. 12�. The open symbols present the temporal average
values of C0 according to �9� in dependence of Rel , where the DNS data of
Overholt and Pope were applied �Ref. 15�.

TABLE II. Normalized DNS data �Ref. 12� needed to assess the
approximations �u1u1���1 and �u2u2���u3u3���2 (�1��u2u2�
�2�u1u2�

2/�u2u2�, and �2�0.5��u2u2���u3u3��).

Re� �u1u1� �u2u2� �u3u3� �u1u2� �1 �2

180 1.59 0.56 0.74 �0.42 1.19 0.65
395 2.73 0.95 1.42 �0.73 2.07 1.19
590 3.13 1.06 1.63 �0.80 2.27 1.35
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C0�C0����1�7.5C0
2���Re�

�1.64��1, �10�

was used to explain the C0
(IV) variations. By adopting differ-

ent values for C0(�), it is found that C0(�)�6 represents
the optimal choice. Consequently, the results obtained here
are found to be fully consistent with the recent results of
Sawford and Yeung3 with reference to both the Reynolds
number dependence of C0 and the revised value C0(�)�6.
This is of relevance regarding the few data that are available
for this flow and the questions related to their accuracy.3

The new findings about C0 reported here may be sum-
marized as follows. �i� Regarding the ETBL described by the
LM there is a good agreement between the results obtained
from DNS and measurements, C0�2.1 and C0�2.3, respec-
tively. These C0 values are found to be unaffected by the
Reynolds number. Thus, previously obtained low C0(�) es-
timates �at least for the ETBL� are not the result of consid-
ering the flows at too small Reynolds numbers. The param-
etrization �10� does not have to be applicable to this case, but
it is worth emphasizing that there is no contradiction be-
tween the Reynolds number independence reported here and
�10�: the second term in the denominator of �10� is for
C0(�)�2.1 about one order of magnitude smaller than for
C0(�)�6. �ii� The neglect of ui

an and ui
ac in �3a� �which

results in the SLM and DM� provides higher values of C0

that vary with the Reynolds number. The reason for this may
be seen by means of �3a�: higher C0 values are needed as a
compensation for the neglect of ui

an and ui
ac . This finding is

relevant to applications because the SLM and DM are used
as standard models in velocity-scalar and scalar probability
density function methods for reacting flow simulations.1 �iii�
The calculation of C0

(IV) is found to be in excellent agree-
ment with recent results of Sawford and Yeung,3 which is of
relevance as pointed out above. It is shown that the disap-
pearance of ui

an and ui
ac contributions to the variance budget

in HIST leads about to the same result as obtained for C0
(III) .

Consequently, the use of the LM �or corresponding models�
to the simulation of flows with a different weight of ui

an and
ui

ac contributions in the variance budget requires different C0

values, i.e., the Kolmogorov constant C0(�) is found to be
nonuniversal. It is of interest to compare this conclusion with
the opinion of Landau and Lifshitz16 regarding to the corre-
sponding question related to the Eulerian velocity correla-
tion. On p. 126 they state that the possibility exists in prin-
ciple to obtain a universal formula for the relation of the
corresponding instantaneous variables, i.e., if averaging is
not involved. ‘‘When we average these expressions, how-
ever, an important part will be played by the law of variation
of 	 over times of the order of the periods of the large eddies,
and this law is different for different flows. The result of
averaging therefore cannot be universal.’’16 Contributions
due to large-scale eddy motions are represented here by ui

an

and ui
ac , which are found to be responsible for the C0(�)

variations. Therefore, the results derived here are fully con-
sistent with the view of Landau and Lifshitz.
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