
PHYSICS OF FLUIDS 17, 099101 �2005�
Comment on “A dynamic nonlinear subgrid-scale stress model” †Phys.
Fluids 17, 035109 „2005…‡

Stefan Heinza�

Department of Mathematics, University of Wyoming, 1000 East University Avenue,
Laramie, Wyoming 82071

�Received 27 February 2005; accepted 4 May 2005; published online 16 September 2005�

�DOI: 10.1063/1.2033107�
In a recent paper Wang and Bergstrom introduce a dy-
namic nonlinear model for the deviatoric part �ij

* of the
subgrid-scale �SGS� stress.1 In terms of their notation this
model may be written as

�ij
* = �ij

*�1� +
2CW

CS�S̄�
Pij

�1� + Dij
�1�. �1�

The first-order approximations of the SGS stress tensor �ij
*�1�,

production Pij
�1� of stress by shear, and production source

term Dij
�1� are given by the expressions

�ij
*�1� = − 2�SGSS̄ij , �2a�

Pij
�1� = − ūi,k�kj

*�1� − ūj,k�ki
*�1� +

2

3
S̄mn�nm

*�1��ij , �2b�

Dij
�1� =

CN + 2CW

CS�S̄�
�S̄ik�kj

*�1� + S̄jk�ki
*�1� −

2

3
S̄mn�nm

*�1��ij� . �2c�

In these expressions, S̄ij = �ūi,j + ūj,i� /2 is the filtered rate-of-

strain tensor, and �S̄�= �2S̄ikS̄ki�1/2 is a characteristic strain

rate. The SGS viscosity �SGS=CS�̄2�S̄�, where �̄ refers to the
length scale associated with the filter size. To simplify the
comparisons presented below the last two terms of �1� are

written here in terms of CS and �S̄�, but the use of �SGS

=CS�̄2�S̄� in �1� and �2a�–�2c� reveals that these two terms

are actually independent of CS and �S̄�. By adopting a meth-
odology suggested by Wong,2 the model parameters CS, CW,
and CN are calculated such that the local error function is
minimized. The latter constraint implies the following linear
equation system for CS, CW, and CN �see the corresponding
definitions of Wang and Bergstrom�:1

�MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij
	�CS

CW

CN
	 = − �Lij

* Mij

Lij
* Wij

Lij
* Nij

	 . �3�

Solutions for the model parameters CS, CW, and CN exist if
and only if the three differential tensorial functions Mij, Wij,
and Nij are linearly independent. The authors suspect that
these three different tensorial functions are, in fact, indepen-

a�Telephone: �307� 766-4203. Fax: �307� 766-6838. Electronic mail:

heinz@uwyo.edu

1070-6631/2005/17�9�/099101/2/$22.50 17, 09910

Downloaded 16 Sep 2005 to 129.72.79.207. Redistribution subject to 
dent. However, a strict analytical proof is not yet available to
support such a conjecture, and it remains an open question
for further analytical explorations.1 Regarding the suitability
of their dynamic nonlinear model �DNM� �19� �which is re-
lation �1� here� as SGS stress tensor model the authors con-
clude lastly, the proposed DNM formula �19� is, at most, an
assumption for modeling the SGS stress. Whether the right-
and left-hand sides of formula �19� are satisfactorily corre-
lated can be examined via possible future a priori ap-
proaches based on DNS and experimental data analysis.1

The latter question will be addressed here. One may dis-
tinguish two approaches to construct SGS stress tensor mod-
els. One way �the approach of Wang and Bergstrom� is to
parametrize this tensor directly by adopting heuristic as-
sumptions. Models obtained in this way are not shown to be
correct; one needs direct numerical simulation �DNS� or ex-
perimental data to demonstrate the suitability of the assump-
tions applied. The conclusions obtained by such comparisons
then depend on the specific flow configuration considered,
and the Reynolds number and grid spacing applied. In addi-
tion to that, the way to construct such models does not prove
the general existence of solutions to such model equations.
An alternative to the construction of heuristic SGS stress
tensor models is to explain the underlying physics. The SGS
stress tensor is the result of the correlations of SGS velocity
fluctuations. One needs, therefore, a physically correct model
for dynamics of SGS velocity fluctuations in order to derive
then the SGS stress tensor as a consequence. The latter ap-
proach has some obvious advantages compared to the appli-
cation of heuristic SGS stress tensor models. First, the gen-
eral existence of solutions to model equations for SGS
velocity fluctuations proves the general existence of solu-
tions to filtered velocity equations. Second, there are first
principles available for the construction of physically consis-
tent models for SGS velocity fluctuations,3 which provides
support for the proof of the suitability of such models. Third,
the consistency between underlying equations for SGS fluc-
tuations and SGS stress tensor models �this means the exis-
tence of a systematic hierarchy of simple and more complex
models� is helpful for the understanding of the range of ap-
plicability of algebraic SGS stress tensor models. It provides
alternative methods �transport equations for the stress tensor
and velocity fluctuations� which may be applied under con-
ditions where the use of algebraic SGS stress tensor models
appears to be questionable, and it enables the development of

consistent hybrid methods for velocity and reacting scalar
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fields.3 SGS velocity models that are required to apply this
approach were developed recently. They were shown to have
a consistent theoretical basis, and their predictions agree well
with the DNS data and experimental results.3–7 By following
a recent publication of the author,7 their implications for the
SGS stress tensor will be shown here in order to address the
suitability of Wang and Bergstrom’s SGS stress model
�1�–�3�.

By adopting the simplified Langevin model for SGS ve-
locity dynamics, one may derive the following equation for
the deviatoric part of the SGS stress tensor in incompressible
flows:7

��ij
*

�t
+ ūk

��ij
*

�xk
+

�Tijk

�xk
= Pij − 4

�r

�L
S̄ij −

2

�L
�ij

* . �4�

Here, Tijk represents contributions due to triple correlations,
and

Pij = − ūi,k�kj
* − ū j,k�ki

* +
2

3
S̄mn�nm

* �ij �5�

represents the production of stress by shear. The residual
viscosity is given by �r=kr�L /3, where kr denotes the re-
sidual turbulent kinetic energy and �L refers to the character-
istic time scale of velocity fluctuations. By assuming a local
equilibrium between production and dissipation �by neglect-
ing the left-hand side of �4�� we obtain

�ij
* = − 2�rS̄ij +

�L

2
Pij . �6�

In the second order of approximation, relation �6� implies the
nonlinear SGS stress tensor model derived by the author,7

�ij
* = �ij

*�1� +
2CW

CS�S̄�
Pij

�1�. �7�

Here, �ij
*�1� and Pij

�1� are given by �2a� and �2b�; this means
�SGS=�r. To simplify the model comparison below, �L is

taken in �7� with reference to �S̄�: we assumed that �L

=4CW / �CS�S̄��. The model parameters in �7� can be obtained
by adopting a dynamic procedure.7 In terms of the notation
used by Wang and Bergstrom the corresponding equations
are given by


MijMij MijAij

AijMij AijAij
�
CS

CW
� = − 
Lij

* Mij

Lij
* Aij

� , �8�

where Aij =Wij −2Nij is introduced. The solutions of �8� al-
ways exist since Mij and Aij are linearly independent: Aij

involves the filtered rate-of-rotation tensor �̄ij whereas Mij is

independent of �̄ij.
The models �1�–�3� of Wang and Bergstrom and �7� and

�8� of Heinz differ by the appearance of Dij
�1� in �1� �which is

nonzero in general: see �3��. What are the advantages and
disadvantages of considering a nonzero Dij

�1�? One may as-
sume that it is an advantage to have the additional adjustable
parameter CN �a more flexible method� available. However,
one has to pay for that a price due to the fact that physically

consistent dynamics of velocity fluctuations with correlations
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as specified by �1� �this means with a nonzero Dij
�1�� do not

exist �see the derivation of �7��. First, the general existence
of solutions to corresponding filtered velocity equations can-
not be shown by demonstrating the general existence of un-
derlying velocity fluctuations: it is then at least unclear
whether such solutions do exist in general. Second, realiz-
ability �the constraint that any moment and correlation trans-
port equations considered should represent realizable equa-
tions for moments and correlations of a stochastic process�
was proved to represent a valuable guiding principle for tur-
bulence modeling.8–11 Correspondingly, the use of realizable
models was found to be of remarkable relevance regarding
the application of probability density function �PDF� and
Reynolds-averaged Navier-Stokes �RANS� methods.12–14 A
corresponding importance of realizable models has to be ex-
pected with regard to the accuracy of models for dynamics of
SGS variables. Third, inconsistencies of SGS stress tensor
models and models for SGS fluctuations are not helpful for
the use of SGS stress tensor models as part of more general
methods �hybrid methods for velocity and reacting scalar
fields�.

The three disadvantages of the model �1�–�3� described
above can be avoided by applying the model �7� and �8�. The
use of �7� and �8� represents, therefore, at least a valid alter-
native to the use of �1�–�3�. Obviously, a more complete
insight into the differences between these two models re-
quires extensive comparisons of their performance with re-
gard to simulations of various flows.
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