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The existence of many different dynamic large eddy simulation (LES) methods
leads to questions about the theoretical foundation of dynamic LES methods. It was
shown recently that the use of stochastic analysis enables a theoretically well based
systematic derivation of a realizable linear dynamic model (LDM) and a realizable
nonlinear dynamic model (NDM). A priori and a posteriori analyses of turbulent
channel flow are used here to study the characteristic properties of these dynamic
models. The LDM and NDM are compared with other dynamic models: the non-
stabilized and stabilized dynamic Smagorinsky model (DSM), which is used in
many applications of LES, and Wang-Bergstrom’s dynamic model (WBDM), which
represents an extension of the DSM. The DSM and WBDM do not represent realizable
models because they are not derived as consequences of a realizable stochastic
process. The comparisons reported here show that the LDM and NDM are based on a
dynamic model formulation that avoids shortcomings of existing concepts. The LDM
and NDM account for backscatter, and they are computationally stable without any
modification. The LDM and NDM represent the instantaneous small scale structure
of turbulence very well. Compared to the DSM and WBDM, respectively, the LDM
and NDM are computationally more efficient. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4767538]

I. INTRODUCTION

Large eddy simulation (LES) represents a very promising method to address many relevant
engineering and environmental problems.1–8 The price for reducing the computational cost of direct
numerical simulation (DNS) by the consideration of LES equations is a closure problem given by the
appearance of the unknown deviatoric subgrid-scale (SGS) stress tensor τ d

i j in LES equations. The
simple Smagorinsky model τ d

i j = −2νt S̃i j is often used as a model for the deviatoric SGS stress,9

where incompressible flow is considered for simplicity. Here, S̃i j refers to the filtered rate-of-strain
tensor and νt = Cs�

2|S̃| is the SGS viscosity. This viscosity involves the Smagorinsky constant Cs,
the filter width �, and the filtered characteristic strain rate |S̃| = (2S̃i j S̃ j i )1/2. The sum convention is
used throughout this paper. The calculation of the SGS stress using the Smagorinsky model requires
the specification of the model parameter Cs. The simplest choice is a constant positive Cs value.
However, there are two main problems associated with the use of a constant Cs. First, a constant Cs

turned out to be inappropriate to accurately calculate, for example, laminar flows, transitional flows
and near-wall regions.5–8 Second, the Smagorinsky model cannot account for backscatter of energy
from the small scales to large scales, which requires negative Cs values.

A solution for this problem was pioneered by Germano who introduced the idea of dynamic SGS
stress models.10–12 The dynamic Smagorinsky model (DSM) is based on Germano’s identity Ld

i j

= T d
i j − τ d

i j . Here, Ld
i j is the known deviatoric Leonard stress, T d

i j is the unknown deviatoric
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subtest-scale (STS) stress, and τ d
i j is the known deviatoric test-filtered SGS stress. In correspon-

dence to the Smagorinsky model, Germano et al.10 assumed the expression T d
i j = −2νT

t S̃ i j for the

deviatoric STS stress. Here, S̃ i j is the test-scale strain tensor and νT
t = Cs(�T )2 |S̃ | refers to the

STS viscosity, where �T and |S̃ | = (2S̃ kl S̃ lk)1/2 are the test filter width and test-scale character-
istic strain rate, respectively. By using this expression for T d

i j in Germano’s identity one obtains
an equation which can be used to compute local Cs values (see Appendix A). However, numerical
simulations performed using the DSM lead to the appearance of large negative values of Cs, which
implies computational instability. A possible explanation for this instability is the following:13, 14

This instability can be traced to the fact that Cs has a large auto-correlation time. Therefore, once it
becomes negative in some region, it may remain negative for excessively long periods of time during
which the exponential growth of the local velocity fields, associated with a negative eddy viscosity,
causes a divergence of the total energy.

One way to overcome the DSM instability problem (a global stabilization) is to stabilize the
model by averaging Cs over directions of statistical homogeneity and using clipping procedures for
negative Cs values. Unfortunately, this stabilized dynamic Smagorinsky model it is not applicable to
complex-geometry inhomogeneous flows. A solution for this problem was suggested by Meneveau
et al.12 The resulting Lagrangian dynamic model is applicable to inhomogeneous flows in complex
geometries. The SGS stress implied by both, the stabilized dynamic Smagorinsky and Lagrangian
dynamic model, has desirable features: it vanishes in laminar flow, and it has the correct asymptotic
behavior near a solid boundary. A second way to overcome the DSM instability problem (a local
stabilization) is to assume a balance equation for Cs. This can be done, for example, by using an
integral equation for Cs, which does not use the assumption that Cs is unaffected by the test filtering
of the SGS stress,14 or by using a nonlinear SGS stress model that contains more than one dynamic
constant:15 see Appendix B. Other ways to address the DSM instability problem are described, for
example, in Refs. 7 and 16–22.

The variety of available dynamic LES models leads to the question of which model should
be preferred. A dynamic method can be considered to represent an optimal method if it has the
following properties:

P1: It is not an ad hoc procedure but implied by proven turbulence properties.14

P2: It provides local model parameters, which is relevant to transitional flow simulations.23

P3: It allows negative model parameters to enable the simulation of backscatter.16

P4: It enables computationally stable simulations without additional ad hoc assumptions.
P5: No other dynamic method applied to the same stress structure performs better in simulations

(is either faster or more accurate).

Most previously developed dynamic models combine Germano’s identity with a SGS and STS

stress that have the same structure (like τ d
i j = −2Cs�

2|S̃|S̃i j and T d
i j = −2Cs(�T )2 |S̃ | S̃ i j , see

above). However, this equal-structure assumption applied to the STS stress is only an assumption: it
is not supported by any theory. Questions about the suitability of this assumption arise by the need
for a global or local stabilization. It is also worth noting that Kim and Menon24 showed that it is
well possible to use another assumption: they applied an equal-structure assumption for the SGS
stress and Leonard stress Ld

i j . However, this assumption, too, was made on the basis of empirical
indications without taking reference to any theory. Thus, existing dynamic SGS stress models cannot
be seen to satisfy the property P1 of optimal models. There are also many models that do not satisfy
the properties P2, P3, P4, and P5. For example, the global stabilization concept is in contradiction
to properties P2, P3, and P4, and there are dynamic methods that imply a significant computational
overload.14

Dynamic SGS stress models that have the properties P1 and P2 were obtained recently by
Heinz25 on the basis of stochastic analysis. He used a stochastic velocity model to determine
stochastic solutions to the LES equation, and an implied upscaled stochastic velocity model to
determine stochastic solutions to the filtered LES equation. The stochastic models can be used to
calculate the SGS stress τ ij and Leonard stress Lij. The relation for the Leonard stress obtained
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represents an equation that can be used for the calculation of dynamic model parameters. There are
two main advantages of addressing this problem in terms of stochastic analysis. First, stochastic
analysis allows the development of realizable SGS models.25–29 Realizability was proven to represent
a valuable guiding principle for turbulence modeling.5, 30–32 The use of realizable turbulence closure
models was found to be relevant to many applications.33–37 Second, the use of stochastic analysis
can be used to systematically derive a hierarchy of transport equations, nonlinear and linear models
for the SGS stress and Leonard stress.

The goal of this paper is to provide evidence that the dynamic SGS stress models proposed by
Heinz25 do also have the properties P3, P4, and P5 of optimal dynamic SGS stress models. This
question was not addressed before: Ref. 25 introduced dynamic SGS stress models as implications
of stochastic models without using the dynamic stress models in simulations or a priori analyses.
The performance of dynamic SGS models obtained via stochastic analysis will be investigated
here in terms of turbulent channel flow simulations.38 Two other dynamic models will be applied
for comparisons, the stabilized DSM, which is used in many applications of LES, and Wang-
Bergstrom’s dynamic model (WBDM),15 which represents an extension of the DSM. The paper is
organized as follows. In Sec. II, the dynamic SGS models applied in this study will be presented.
Section III explains the numerical method used for performing DNS and LES. A priori analyses of
the suitability of formulations of dynamic models and the stability properties of dynamic models will
be presented in Sec. IV. The accuracy and cost of dynamic methods will be investigated in Sec. V
on the basis of a posteriori analysis results. The conclusions of this study will be summarized in
Sec. VI.

II. REALIZABLE DYNAMIC SGS MODELS

A. LES closure

To derive LES equations from the Navier-Stokes equations we define a spatial filtering operation
for any variable f by

f̃ (�x, t) =
∫

G(�r ) f (�x + �r , t)d�r . (1)

Here, G(�r ) is a filter function, which is assumed to be homogeneous. In the current study, a box
filter will be applied. For the incompressible flow considered, the filtered continuity and momentum
equations read

∂Ũi

∂xi
= 0, (2)

D̃Ũi

D̃t
= − 1

ρ

∂ P

∂xi
+ 2ν

∂ S̃ik

∂xk
− ∂τ d

ik

∂xk
. (3)

Here, Ũi refers to the filtered velocity field, D̃/D̃t = ∂/∂t + Ũk∂/∂xk denotes the filtered Lagrangian
time derivative, P = p̃ + 2k/3 is the modified filtered pressure that includes a contribution due to
the SGS kinetic energy k, ρ is the constant fluid mass density, and ν is the constant kinematic
viscosity. The filtered rate-of-strain tensor is defined by S̃i j = (∂Ũi/∂x j + ∂Ũ j/∂xi )/2. The LES
equation (3) is unclosed due to the appearance of the unknown deviatoric SGS stress τ d

i j , which is

defined via τi j = ˜UiU j − Ũi Ũ j .
An attractive approach for closing the LES equation (3) is to use a stochastic turbulence model

that determines stochastic solutions of the LES equations.25–29, 39–43 This means, the stochastic
velocity model implies the incompressibility constraint (2), and it exactly recovers Eq. (3) for the
filtered velocity. The advantage of the stochastic model is that it also provides transport equations
for all the velocity moments. In particular, it can be used to derive the following transport equation
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for the SGS stress τ ij:25–27, 29, 44

D̃τi j

D̃t
+ ∂ Tki j

∂xk
+ τik

∂Ũ j

∂xk
+ τ jk

∂Ũi

∂xk
= − 2

τL

(
τi j − 2

3
c0kδi j

)
. (4)

Here, Tkij refers to the triple correlation tensor of SGS velocity fluctuations. Equation (4) involves
two model parameters: the nondimensional parameter c0, and the Lagrangian time scale τ L. The
parameter c0 is related to the Kolmogorov constant C0 by c0 = C0/[C0 + 2/3]. An analysis reveals
that c0 = 19/27 ≈ 0.7.26, 27, 29 An analysis of the τ L scaling shows that τ L = �*�k−1/2, where �* has
a standard value of �* = 1/3.26

The solution of the SGS stress equation (4) is computationally relatively expensive. A way to
reduce the computational cost is to use the stress equation (4) for the derivation of algebraic stress
models. The quadratic stress model obtained in this way reads26

τi j = 2

3
kδi j − 2νt S̃i j − Cn�

2

[
S̃ik	̃k j + S̃ jk	̃ki − 2S̃ik S̃k j + 2

3
S̃nk S̃nkδi j

]
. (5)

Here, 	̃i j = (∂Ũi/∂x j − ∂Ũ j/∂xi )/2 refers to the rate-of-rotation tensor, and Cn = � 2
∗ /3. The SGS

viscosity is given by the expression ν t = CK�k1/2, where CK = �*/3. This parametrization for ν t was
used in several applications.5, 45 However, this approach requires the solution of the equation for the
SGS kinetic energy k = τ kk/2, which is implied by the stress equation (4). A computationally less
expensive way is given by using this equation for the SGS kinetic energy to determine an equilibrium
value for k. By using this value, the SGS viscosity reads νt = Cs�

2|S̃|, where CS = (�*/2)2.26 This
model corresponds to the Smagorinsky model. The use of �* = 1/3 recovers the standard value
cS = (1/6)2 for the Smagorinsky coefficient.5, 45 Only the equilibrium model νt = Cs�

2|S̃| will be
used here for the SGS viscosity, because it was found that the use of the nonequilibrium model
ν t = CK�k1/2 resulted in negligible differences to the equilibrium model. Hence, the stress model
considered reads

τi j = 2

3
kδi j − 2Cs�

2|S̃|S̃i j − Cn�
2

[
S̃ik	̃k j + S̃ jk	̃ki − 2S̃ik S̃k j + 2

3
S̃nk S̃nkδi j

]
. (6)

The quadratic stress model (6) can be reduced to a linear stress model by setting Cn = 0.

B. Test-filtered LES closure

The development of dynamic LES methods, which provide local values for the model parameters
Cs and Cn in Eq. (6), is based on the consideration of test-filtered LES equations. The test-filtered
value of any variable f is defined by

f (�x, t) =
∫

GT (�r ) f (�x + �r , t)d�r . (7)

Here, GT (�r ) is a test filter function, which is assumed to be homogeneous. The test-filtering of the
filtered continuity and momentum equations results in

∂Ũi

∂xi
= 0, (8)

D̃ Ũi

D̃t
= − 1

ρ

∂(P + 2kT /3)

∂xi
+ 2ν

∂ S̃ik

∂xk
− ∂T d

ik

∂xk
. (9)

We used here D̃/D̃t = ∂/∂t + Ũ k∂/∂xk and S̃i j = (∂Ũ i/∂x j + ∂Ũ j/∂xi )/2. The test-filtered pres-
sure is given by P , and kT = Lnn/2 refers to the STS kinetic energy. The STS stress, which enters

Eq. (9) via its deviatoric component, is defined by Ti j = ˜UiU j − Ũi Ũ j . The difference between Tij

and the test-filtered SGS stress is Li j = Ti j − τ i j . The definitions of Tij and τ ij reveal that the Leonard

stress is defined by Li j = Ũi Ũ j − Ũi Ũ j . By accounting for Germano’s identity Li j = Ti j − τ i j we
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can write Eq. (9) as

D̃ Ũi

D̃t
+ ∂Ld

ik

∂xk
= − 1

ρ

∂ p̃

∂xi
+ 2ν

∂ S̃ik

∂xk
− ∂τ d

ik

∂xk
. (10)

A closure of Eq. (10) can be obtained by following the approach used to close the LES
Equation (3). The up-scaling of the stochastic model used to close the LES equation provides
another stochastic model that implies the incompressibility constraint (8) and Eq. (9). The advantage
of the stochastic model considered is that it also implies a transport equation for the STS stress Lij,
which is given by25

D̃Li j

D̃t
+ ∂ T T

ki j

∂xk
+ Lik

∂Ũ j

∂xk
+ L jk

∂Ũ i

∂xk
= − 2

τ T
L

(
Li j − 2

3
c0kT δi j

)
. (11)

Here, T T
ki j is the STS triple correlation tensor of velocity fluctuations. The Lagrangian time scale at

the test scale is given by τ T
L = � T

∗ �T (kT )−1/2, where �T denotes the test filter width and � T
∗ is a

test-scale model parameter. The parameter c0 is assumed to be unaffected by the scale.27

In correspondence to the derivation of Eq. (6) from Eq. (4), Eq. (11) can be used for the
derivation of an algebraic stress model for Lij.25 This calculation provides

Li j = 2

3
kT δi j − C T

s Mi j − C T
n Ni j . (12)

Here, the matrices Mij and Nij are given by the expressions

Mi j = 2(�T )2 |S̃ | S̃ i j , (13)

Ni j = (
�T

)2
[

S̃ ik	̃k j + S̃ jk	̃ki − 2S̃ ik S̃ k j + 2

3
S̃ nk S̃ knδi j

]
. (14)

The model parameters are given by C T
s = (� T

∗ /2)2 and C T
n = (� T

∗ ) 2/3. In correspondence to the
derivation of the algebraic stress model (6) we did only consider here the equilibrium STS viscosity.
The first-order approximation for Lij is obtained by setting C T

n = 0 in (12).

C. Realizable dynamic SGS models

Equation (12) for Lij can be used to design dynamic SGS models. First, this requires to explain
how the parameters C T

s and C T
n in relation (12) are related to the SGS stress parameters Cs and Cn

in Eq. (6). The analysis of this question shows that the test-scale coefficients C T
s and C T

n represent
very good estimates for Cs and Cn provided that �T < LT,25 where LT is the characteristic length
scale of STS turbulent eddies. The latter condition will be considered to be given in the following.
According to Eq. (12), the deviatoric component of Lij is then given by

Ld
i j = −C N DM

s Mi j − C N DM
n Ni j , (15)

where the superscript NDM refers to coefficients calculated by the nonlinear dynamic model. The
use of any two values for Cs and Cn will result in an error of Eq. (15), which represents five conditions
for Cs and Cn. This error is given by Ei j = Ld

i j + C N DM
s Mi j + C N DM

n Ni j . The quadratic error EijEji

becomes minimal if Cs and Cn are calculated by the relations

C N DM
s = rSN rL N − rL S

1 − rSN rSN

∣∣Ld
∣∣

|M | , C N DM
n = rSN rL S − rL N

1 − rSN rSN

∣∣Ld
∣∣

|N | . (16)

Here, we used for any two symmetric matrices A and B the abbreviations |A| = √
2Ai j A ji and

rAB = Ai j B ji√
Alk Akl Bmn Bnm

. (17)
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The variable rAB has the property −1 ≤ rAB ≤ 1 of a correlation coefficient. The subscripts L, S, N

in relations (16) refer to the use of Ld
i j , S̃i j , and Nij, respectively. The use of the relations (16) for

providing the SGS stress parameters Cs and Cn in Eq. (6) represents the NDM.
A linearized dynamic model can be obtained by neglecting the nonlinear Nij term in

Eq. (15),

Ld
i j = −C L DM

s Mi j , (18)

where the superscript LDM refers to coefficients calculated by the linear dynamic model (LDM).
The value of C L DM

s that minimizes the quadratic error Ei j = Ld
i j + C L DM

s Mi j can be obtained from
the relations (16) by neglecting terms involving a nonzero Nij,

C L DM
s = −rL S

∣∣Ld
∣∣

|M | = − Ld
i j M ji

Mkl Mlk
. (19)

The standardized quadratic error e = |E|2/|Ld|2 for the LDM is given by the simple expression eLDM

= 1 − (rLS)2.25

Relation (19) for the coefficient of the Smagorinsky model differs from the corresponding DSM
expression (A3) given in Appendix A. The DSM expression was obtained by combining Germano’s

identity Ld
i j = T d

i j − τ d
i j with the assumption T d

i j = −C DSM
s Mi j for the deviatoric STS stress, which

leads to Ld
i j = −C DSM

s Hi j instead of Ld
i j = −C L DM

s Mi j applied here (Hij is defined in Appendix A
by Eq. (A2)). The latter two relations for Ld

i j have different support: Ld
i j = −C DSM

s Hi j suggested by
Germano is based on an assumption for T d

i j , whereas Ld
i j = −C L DM

s Mi j was derived by stochastic
analysis.25 It is interesting to note that Fabre and Balarac46 suggested a similar modification of
Germano’s approach regarding the dynamic modeling of the SGS scalar flux based on Taylor series
expansions. In correspondence to the use of the same approach for the modeling of both the SGS
stress τ ij and Leonard stress Lij here, Fabre and Balarac46 found it to be very beneficial to apply the
same approach to model both the SGS scalar flux and the corresponding Leonard-type scalar flux.

III. NUMERICAL METHOD

A sketch of the computational domain is shown in Fig. 1. The domain size (Lx ∗ Ly ∗ Lz) is
taken to be (2π ∗ 2 ∗ π ) according to the DNS of Moser et al.38 All simulations were performed
for a friction Reynolds number Reτ = uτ δ/ν = 395. Here, uτ = √

τw/ρ is the friction velocity, τw

refers to the wall shear stress, and δ is the half channel width. This Reynolds number was chosen to
enable efficient DNS of a flow that is not significantly affected by Reynolds number effects.

DNS and LES were performed by using the OpenFOAM CFD Toolbox.47 The dynamic LES
models have been implemented inside the OpenFOAM CFD Toolbox. The calculations have been
performed by using a finite-volume based method. The convection term in the momentum equation
was discretized using a second-order central difference scheme. The pressure gradient that drives
the flow in the channel has been adjusted dynamically to maintain a constant mass flow rate. The

FIG. 1. The domain considered: (Lx ∗ Ly ∗ Lz) = (2π ∗ 2 ∗ π ) according to the DNS of Moser et al.38
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PISO algorithm was used for the pressure-velocity coupling.48 The resulting algebraic equation
for all the flow variables except pressure has been solved iteratively using a preconditioned bi
conjugate gradient method with a diagonally incomplete LU preconditioning at each time step.
The Poisson equation for the pressure was solved using an algebraic multi-grid solver. When the
scaled residual became less than 10−6, the algebraic equation was considered to be converged. Time
marching was performed using a second-order backward difference scheme. The time step was
modified dynamically to ensure a constant Courant-Friedrichs-Lewy (CFL) number of 0.5. Periodic
boundary conditions have been employed along the streamwise and spanwise direction for all the
flow variables. Along the wall normal direction, a no slip boundary condition was employed for the
velocity and a zero gradient boundary condition has been used for the pressure term.

A uniformly distributed grid was used along the streamwise and spanwise directions while the
grid was refined in the wall normal direction using a hyperbolic tangent function. The DNS were
performed on a grid size of 384 ∗ 256 ∗ 256. A much higher grid resolution was used compared to
the simulations of Moser et al.38 (256 ∗ 193 ∗ 192) because the current study uses a lower-order
finite difference scheme while the simulations of Moser et al. used a spectral code. Based on the
recommendation of Gullbrand and Chow,49 the LES were performed on a grid size of 81 ∗ 64 ∗ 81.
This grid size was suggested by Gullbrand and Chow49 to minimize the effect of numerical errors
arising from second-order schemes. The numerical grid with a filter width � = (�x�y�z)1/3 was
used as LES filter.

To assess the effect of the initial conditions on the stability of the numerical calculations and
results we considered three inflow generation methods: (i) the addition of uncorrelated sinusoidal
velocity fluctuations (which satisfy the incompressibility constraint) to a laminar flow field, (ii)
the addition of uncorrelated sinusoidal velocity fluctuations (which satisfy the incompressibility
constraint) to the flow field obtained from a RANS channel flow simulation using the k − ω model
of Bredberg et al.,50 and (iii) the use of an unsteady flow field obtained from a coarse grid (32
∗ 64 ∗ 32) channel flow simulation using the Smagorinsky model combined with a Van Driest’s
wall damping function.51 We observed that simulations using the dynamic SGS models considered
here (including the linear and nonlinear dynamic models described in Sec. II C combined with a
transport equation for k) remained stable for all the three methods and that the computed statistics
were independent of the initial conditions.

The OpenFOAM DNS results were compared with the DNS data of Moser et al.38 to ensure that
the grid resolution used for the OpenFOAM DNS was appropriate. Figures 2(a) and 2(b) show the
corresponding comparison of the normalized mean streamwise velocity and normalized Reynolds
shear stress. The agreement between the two DNS is excellent, which shows that the OpenFOAM
DNS resolution is sufficient. The same conclusion is obtained regarding the comparison of the
normalized Reynolds normal stress components and turbulent kinetic energy: see Fig. 3.
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FIG. 2. OpenFOAM DNS and DNS data of Moser et al.:38 (a) Normalized mean streamwise velocity U+ = U1/uτ ,
(b) Reynolds shear stress normalized by u 2

τ .
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FIG. 3. OpenFOAM DNS and DNS data of Moser et al.:38 Reynolds streamwise normal stress (a), wall-normal stress (b),
spanwise normal stress (c), and turbulent kinetic energy K (d) normalized by u 2

τ .

A priori analyses were used to compare exact SGS quantities obtained from DNS with SGS
quantities obtained from different dynamic methods. Ten realizations of the DNS simulations were
saved to perform these analyses. To ensure that the flow fields were uncorrelated, the time interval
between each realization was set equal to six eddy turnover times Lx/Ub, where Ub is the bulk

velocity. By using box filtering, filtered values f̃ and test filtered values f̃ of any variable f were
obtained according to

f̃ =
∫ z+�

z−�

∫ x+�

x−�

f (x, y, z)dxdz, (20)

f̃ =
∫ z+r�/2

z−r�/2

∫ x+r�/2

x−r�/2
f̃ (x, y, z)dxdz, (21)

where r = �T/�. The filtering and test filtering are illustrated in Fig. 4. The dots refer to instantaneous
velocity data available at positions separated by � in a homogeneous direction. The solid box in
Fig. 4(a) illustrates the calculation of the filtered variables f̃ (i) at the midpoint i of the solid box by
f̃ (i) = [ f (i − 1) + 2 f (i) + f (i + 1)]/4, where f(i − 1) and f(i + 1) refer to the values at the left and
right corners of the box, respectively. Test filtered variables are calculated correspondingly for the
r = 2 case. The dashed box in Fig. 4(a) illustrates a moving filtering, this means the same procedure
is applied to all (except the first and last) points in the direction considered. Once the filtered (or
r = 2 test filtered) velocities at all points considered are known, velocity gradients are calculated by
the difference of the values at the left and right ends of the box, corresponding to a second-order
central difference scheme. The calculation of test filtered variables for r = 1, which is illustrated in
the right-hand side picture of Fig. 4, is performed correspondingly. The only difference is that the
values at the ends of boxes are calculated by interpolating the data available at ± �/2. All (except
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FIG. 4. Illustration of filtering and test filtering over 2� (left-side) and � (right-side).

instantaneous) data shown below along the wall-normal direction are averaged over homogeneous
directions and the ten realizations of the DNS simulations considered.

IV. A PRIORI ANALYSIS

The suitability of dynamic SGS models will be evaluated in this section by the analysis of DNS
data. Two essential questions will be addressed. First, we consider various correlation coefficients
and model errors to see which dynamic concept provides the more appropriate equation used
for the dynamic calculation of model parameters. Second, the probability density function (PDF)
of dynamic model parameters and the backscatter implied by several dynamic methods will be
considered to derive conclusions about the computational stability properties of dynamic methods. In
particular, there is the question about the differences between the DSM (which leads to computational
instabilities), the extension of the DSM given by the WBDM, and the linear and nonlinear dynamic
models derived from stochastic analysis, this means the LDM and NDM.

A. Dynamic model formulation

First of all, the difference between dynamic LES methods is given by the equation that de-
termines dynamic model parameters. Two concepts were considered in Sec. II: Germano’s ap-
proach, which assumes Ld

i j = −C DSM
s Hi j for the calculation of Cs, and the calculation of Cs via

Ld
i j = −C L DM

s Mi j , which was derived by Heinz25 on the basis of stochastic analysis. The suitability
of these parametrizations of Ld

i j can be assessed by calculating rLH and rLM, which reflect the degree
of correlation between Ld

i j and Hij and Ld
i j and Mij, respectively. The coefficient rLM = rLS, as may

be seen in terms of the definition of Mij. The coefficients rLH and rLS determine the standardized
quadratic errors e = |E|2/|Ld|2 given by eDSM = 1 − (rLH)2 for the DSM and eLDM = 1 − (rLS)2 for
the LDM: see Sec. II and Appendix A. Hence, the suitability of different calculations of dynamic
model parameters can be evaluated by considering eDSM and eLDM. Interestingly, the errors eDSM and
eLDM can be calculated at every instant of time during the numerical simulations, this means these
errors can be used for the uncertainty quantification of simulations.

The corresponding variations of eDSM and eLDM, which are averaged over homogeneous direc-
tions and the ten DNS realizations considered, are shown in Fig. 5(a) along the wall-normal direction.
The cases r = �T/� = 1 and r = 2 are considered. The case r = 2 represents the standard setting for
r. The case r = 1 is used as a reference case to see the effect of r variations on dynamic models. This
case is also of interest regarding the approximation of test-scale coefficients C T

s and C T
n by Cs and

Cn (see Sec. II C): compared to r = 2, it may be expected that this assumption is more appropriate
for r = 1. It is surprising to see that the variation of r does hardly have any influence on the DSM
results. The correlation between Ld

i j and Hij is small (rLH = 0.2 over most of the channel) leading to
a high normalized DSM error eDSM = 0.96. These observations do not provide much support for the
basic assumption of Germano’s approach that Ld

i j and Hij are proportional to each other. On the other
hand, the proportionality between Ld

i j and Mij used in the LDM has a much higher level of support.
We find eLM < eLH over all the channel. Away from the near-wall region rLM approaches rLM = 0.5
corresponding to eLDM = 0.75. This correlation value is 2.5 times higher than the corresponding
value rLH = 0.2 obtained for the DSM. The significant model error reduction obtained for the LDM
clearly indicates potential advantages of the LDM concept compared to the DSM concept.

Figure 5(b) compares the LDM error with the corresponding errors of the nonlinear NDM
and WBDM models for r = 2. It may be seen that the use of both nonlinear models leads to a
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FIG. 5. The standardized error e = [|E|/|Ld|]2 of the DSM and LDM is shown in (a) for r = �T/� = 1 and r = 2. The LDM
error is compared to the errors of the nonlinear NDM and WBDM for r = 2 in (b).

significant model error reduction. The variation of the model error along the wall-normal direction
is very similar. It may be also seen that the NDM performs better than the WBDM. However, the
difference is relatively little, indicating that the accuracy of both models observed in simulations
will be comparable.

Further insight into the suitability of the DSM and LDM dynamic stress concepts can be obtained
by comparing a modeled variable AM

i j (e.g., the SGS stress) with the corresponding exact variable
AE

i j , which is determined by the definition of the variable considered. This will be done next by using
the matrix correlation coefficient

RA =
〈
AM

i j AE
ji

〉
〈
AM

kl AM
lk

〉1/2〈
AE

mn AE
nm

〉1/2 . (22)

The bracket symbol 〈···〉 refers to averaging in time and homogeneous directions in space. By
following the analysis of correlation coefficients one can show that −1 ≤ RA ≤ 1. It is worth noting
that the matrices AM

i j and AE
i j do not have to represent fluctuations. This approach will be used in

the following with regard to:

(1) The deviatoric STS stress Ld
i j , i.e., by considering AE

i j = Ũi Ũ j − Ũi Ũ j − (ŨkŨk

− Ũk Ũk) δi j /3 and AM
i j = −C DSM

s Hi j for the DSM and AM
i j = −C L DM

s Mi j for the LDM.
This correlation coefficient will be denoted by RL.

(2) The deviatoric SGS stress τ d
i j , i.e., by considering AE

i j = ˜UiU j − Ũi Ũ j − ( ˜UkUk

− Ũk Ũk) δi j /3 and AM
i j = −2C DSM

s �2|S̃|S̃i j for the DSM and AM
i j = −2C L DM

s �2|S̃|S̃i j for
the LDM. This correlation coefficient will be denoted by Rτ .

(3) The kinetic energy production −τ d
i j S̃i j . Here, AE

i j and AM
i j reduce to scalars. The exact and

model values of AE
i j and AM

i j are given by using the exact and modeled SGS stress, see Sec. II.
This correlation coefficient will be denoted by RP.

Here, the dynamic constant Cs is calculated by Eq. (A3) for the DSM and Eq. (19) for the LDM.
For the DSM and LDM, the corresponding plots of RL, Rτ , and RP are shown in Figs. 6(a), 6(c),

and 6(e), respectively, for r = 1 and r = 2. There are two relevant conclusions. First, the use of r = 2
improves significantly the correlations considered compared to the r = 1 case. Second, compared to
the DSM the LDM provides consistently significantly higher correlations. The latter fact provides
again support for the view that the stochastic analysis concept used to derive the LDM is a more
appropriate concept than Germano’s dynamic model concept. It is interesting to observe that the
r = 2 values of the correlation coefficient RP are very high, indicating that the LDM represents
the instantaneous production of turbulent kinetic energy, which is the most important consequence
of a SGS stress model, very well.
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FIG. 6. Correlation coefficients defined in Sec. IV A. Results for the DSM and LDM are shown for r = 1 and r = 2 in (a),
(c), and (e). The other plots show results obtained for the NDM and WBDM for r = 2.

This comparison can be extended to the inclusion of the nonlinear NDM and WBDM models by
using the SGS and STS stresses implied by these models: see Sec. II C. The corresponding results
are shown for r = 2 in Figs. 6(b), 6(d), and 6(f). It may be seen that both nonlinear models provide
significantly higher correlations compared to the linear models. This concerns, in particular, the RL

and Rτ values. It may be also seen that the NDM always provides slightly higher correlation values
than the WBDM, which represents an extension of Germano’s dynamic concept. Therefore, these
results, too, provide support for the benefits of dynamic methods based on stochastic analysis.

B. Stability properties of dynamic models

Next, let us have a closer look at the differences of dynamic SGS models regarding the variation
of dynamic constants and their implied PDFs, and at the differences of backscatter implied by the
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FIG. 7. Instantaneous values of the dynamic constant Cs along (π , y, π /2) for the DSM and LDM obtained from a priori
analysis, where r = �T/� = 2.

various models. These discussions are helpful to obtain a better insight into the stability properties
of dynamic SGS models.

Instantaneous local values of Cs obtained by the DSM and LDM are shown for r = 2 in Fig. 7
along the wall-normal direction at a streamwise and spanwise location of x = π and z = π /2. The
C DSM

s value represents the original DSM value calculated by expression (A3). This figure shows
that there are significant fluctuations of C DSM

s . On the other hand, the C L DM
s curve is much smoother

and shows a much smaller range of variations. The C DSM
s and C L DM

s values represent constants of
proportionality in their constant-determining relations Ld

i j = −C DSM
s Hi j and Ld

i j = −C L DM
s Mi j ,

respectively. Figure 7 indicates, therefore, that the consideration of Ld
i j = −C L DM

s Mi j , which was
obtained by stochastic analysis, is a more appropriate concept. This figure also provides support for
the explanation of the reason for the DSM instability by Lund et al.:13 The C DSM

s values are found
to be negative in an extended channel flow region (for about 0.56 < y < 0.96), which can cause a
divergence of the total energy due to the exponential growth of the local velocity fields implied by a
negative eddy viscosity.

A much more complete view of the behavior of dynamic constants is obtained by looking at the
PDF of Cs or the logarithm of this PDF. These plots are shown in Fig. 8 at y+ = 40 (corresponding to
y = 0.1) for r = 2. Here, y+ = uτ dy/ν is the dimensionless wall distance, where dy refers to the wall
distance. The PDFs were calculated by using 20(Nx − 2)(Nz − 2) samples, where Nx = 384 and Nz

= 256. This number of almost 2 × 106 samples is sufficient for the calculation of PDFs which are
basically unaffected by the number of samples applied.44 A filter size of 0.1 was used for the PDF
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The PDFs were calculated for the horizontal slice at y+ = 40.
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FIG. 9. Realizations of the dynamic constants along (π , y, π /2) obtained from a priori analysis for r = 2: (a) NDM,
(b) WBDM.

calculation. It is interesting to observe that the C L DM
s PDF shape is relatively close to a uniform

PDF shape, which appears to be reasonable. A relevant conclusion is that the stochastic modeling
concept provides (without the use of any empirical clipping procedure) a natural clipping of dynamic
constant values. The significantly different behavior of the C DSM

s PDF can be seen by looking at the
logarithm of this PDF. It can be observed that the probability of very high positive or negative C DSM

s
values can be by two orders of magnitude higher than the corresponding probability for finding
corresponding C L DM

s values. The nonzero probability for very high negative C DSM
s values explains

the DSM trend to become computationally unstable.
Realizations of the dynamic model parameters of the NDM (C N DM

s and C N DM
n ) and WBDM

(CW B DM
s , CW B DM

w , and CW B DM
n ) are shown for r = 2 along the wall-normal direction in Fig. 9.

Corresponding PDF plots are shown at y+ = 40 in Fig. 10. It may be seen that the variations of
dynamic model parameters are much higher than the variations of linear dynamic model parameters.
For nonlinear models, the signs of model parameters cannot be used to derive conclusions regarding
the computational stability of models, which is the result of the complex interaction of different
linear and nonlinear terms in the stress relations applied. Regarding the NDM we see an interaction
of positive and negative coefficients of the linear stress contribution with positive and relatively
large coefficients of the nonlinear stress contribution. It is very interesting to see that the WBDM
is characterized by similar features. The CW B DM

s and CW B DM
w PDFs compare well with the C N DM

s
PDF, and the CW B DM

n PDF compares well with the C N DM
n PDF. CW B DM

n has the opposite sign of
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FIG. 10. PDFs of the dynamic constants of nonlinear models for r = 2: (a) NDM, (b) WBDM. The PDFs were calculated
for the horizontal slice at y+ = 40.
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C N DM
n because the corresponding terms in the NDM and WBDM are formulated with different

signs. There are two essential differences between the NDM and WBDM. First, the WBDM does
not combine the first two contributions in Eq. (14) with the squared strain-rate terms, but these terms
are considered separately, which corresponds to the introduction of CW B DM

w . Second, the WBDM
follows Germano’s approach for setting up the dynamic procedure. The second difference may be
expected to be less relevant regarding the fact that both the NDM and WBDM are capable of ensuring
the stability of simulations due to their inclusion of several dynamic model parameters. Figure 10
supports the view that the first two contributions in Eq. (14) have a relatively minor influence on
the dynamic method because the C N DM

n and CW B DM
n PDFs are very similar. A consequence of this

view is that dynamic CW B DM
w variations will have little influence on the stabilization mechanism

of nonlinear dynamic models, which is consistent with the fact that the simpler NDM can ensure
computational stability: see Sec. V. Thus, the introduction of the dynamic CW B DM

w (which is found
to be hardly correlated to CW B DM

s : the correlation coefficient between CW B DM
w and CW B DM

s is equal
to 0.08 at y+ = 40) corresponds to the consideration of an additional noise source in dynamic
calculations. Support for this view is provided by Fig. 9(b), which shows that the variability of
the dynamic WBDM parameters along the wall-normal direction is considerably higher than the
variability of the dynamic NDM parameters.

The consideration of backscatter features of dynamic models can also contribute to the ex-
planation of computational stability features of models. The mean backscatter is defined by
PB = 〈P − |P|〉/2, where the kinetic energy production is given by P = −τ d

i j S̃i j . By definition,
backscatter measures the amount of negative energy production, this means the transfer of energy
from the smaller scales to the larger scales.52

The backscatter properties of the linear DSM and LDM models are compared with DNS data in
Fig. 11(a) for r = 1 and r = 2. The DSM significantly overpredicts the DNS backscatter for r = 1.
For r = 2, the DSM backscatter does also overpredict the DNS backscatter in the near-wall region.
This observation is in consistency with the high DSM model error and the significant fluctuations
of C DSM

s : see Figs. 5(a) and 8(a), respectively. A dynamic stress model will promote computational
instabilities if the amount of modeled backscatter is higher than the DNS backscatter. These facts
provide an explanation for the numerical instability of the DSM seen in simulations. The backscatter
provided by the LDM is rather small for r = 1 and significantly improved for r = 2. The relevant
fact is that the LDM backscatter underpredicts the DNS backscatter which avoids the development
of computational instabilities. Hence, this backscatter analysis does also show that the LDM has
advantages compared to the DSM.

A comparison of the backscatter properties of the nonlinear NDM and WBDM models with
DNS data and the LDM results is shown in Fig. 11(b) for r = 2. It may be seen that both nonlinear
models provide a significant improvement compared to the LDM, but such that the backscatter is
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FIG. 11. The DNS backscatter is compared in (a) with the backscatter of the DSM and LDM for r = 1 and r = 2. In (b), the
DNS backscatter is compared with the backscatter of the LDM, NDM and WBDM for r = 2.
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below the DNS backscatter. Correspondingly, the NDM and WBDM are found to be computationally
stable in simulations: see Sec. V. The peak value of the NDM backscatter is slightly below the peak
value of the WBDM. On the other hand, the NDM backscatter approaches the DNS backscatter
away from the wall in difference to the behavior of the WBDM.

V. A POSTERIORI ANALYSIS

Next, we will discuss the application of linear and nonlinear dynamic methods in simulations.
To enable stable simulations with the DSM, the coefficient C DSM

s was locally averaged along the
cell faces and numerically clipped, this means C DSM

s was set to zero when it became negative to
avoid numerical instabilities. The LDM, NDM, and WBDM were used without any modification of
dynamic coefficients. The results of the non-equilibrium LDM and NDM versions, which provide
the SGS kinetic energy via a transport equation,25 are not included because these results were found
to be in an excellent agreement with the LDM and NDM, respectively. It is worth noting that
the application of the non-equilibrium LDM and NDM versions did not cause any computational
stability problems.

A. Accuracy

The accuracy of a posteriori results obtained with the dynamic models considered is compared
with DNS data in Figs. 12 and 13. The comparison of profiles of the mean streamwise velocity
and resolved Reynolds shear stress shows that the DSM, LDM, WBDM, and NDM results agree
very well with the DNS data. Compared to the DNS results, all the models slightly underpredicted
the coefficient of skin-friction C f = τw/(0.5ρU 2

b ) by about 5%. The comparison of the resolved
Reynolds normal stresses and resolved turbulent kinetic energy in Fig. 13 shows a very good agree-
ment between the predictions of the various dynamic models. For all the cases, the streamwise
resolved Reynolds normal stress is slightly overpredicted compared to the DNS data. This causes
an underprediction of the wall normal and spanwise components of the Reynolds normal stresses.
Corresponding results were also obtained in previous studies using second-order central difference
schemes.49 This slightly inaccurate representation of the energy distribution causes a slight overpre-
diction of the resolved turbulent kinetic energy. However, the error of the peak value prediction of
the resolved turbulent kinetic energy obtained by the different dynamic methods is found to be less
than 10%.

Compared to the non-stabilized and stabilized DSM, the advantage of the LDM is that this
model enables stable simulations without clipping or averaging of the dynamic constant. The dynamic
constant C L DM

s in the LDM can take on positive and negative values, which is relevant to the inclusion
of backscatter. An illustration of typical variations of C L DM

s is given in Fig. 14. To understand the
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FIG. 12. A posteriori DSM, LDM, NDM, and WBDM results for r = 2 in comparison with DNS: (a) mean streamwise
velocity, (b) resolved Reynolds shear stress.
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FIG. 13. A posteriori DSM, LDM, NDM, and WBDM results for r = 2 in comparison with DNS: (a) resolved Reynolds
streamwise normal stress, (b) resolved Reynolds wall-normal stress, (c) resolved Reynolds spanwise normal stress, and
(d) resolved turbulent kinetic energy.

effect of the stabilization procedure used for the DSM, contour plots of the instantaneous normalized
streamwise velocity U+ = U1/uτ obtained for the stabilized DSM and LDM will be compared with
DNS data at y+ = 5 and y+ = 50, respectively. The comparison at y+ = 5 is helpful for the evaluation
of the performance of dynamic models in the near-wall region, where all the turbulence is generated.
The value y+ = 50 corresponds to the location of the first grid point above the wall for the case
that high Reynolds number LES combined with wall-functions is performed on coarse grids (such
simulations are used for LES studies of the atmospheric boundary layer). Instantaneous streamwise
velocity plots obtained by using the nonlinear NDM and WBDM are not shown because these plots
are very similar to the LDM plots.

The DNS results at y+ = 5 presented in Fig. 15(a) show long elongated structures. These streaks
agree with the structures observed in previous DNS simulations of turbulent channel flow.53 At
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FIG. 14. A realization of the dynamic LDM constant C L DM
s for r = 2 at the location (π , y, π /2).
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FIG. 15. Instantaneous streamwise velocity contours at y+ = 5 (left-hand side pictures) and y+ = 50 (right-hand side
pictures) obtained for DNS (upper row) and DNS on the 81 ∗ 64 ∗ 81 grid used for performing LES (lower row).

y+ = 50 the length of the streaks is reduced and the organized streaky pattern seen for y+ = 5
disappeared. Instead, Fig. 15(b) indicates the existence of three-dimensional turbulence structures
covering a range of scales.54 To see the relevance of SGS stress modeling, the DNS results are
compared in Figs. 15(c) and 15(d) with results of simulations that do not apply a SGS stress model,
which means DNS on the 81 ∗ 64 ∗ 81 grid used for performing LES. It may be seen that the neglect
of the SGS stress model implies a significant overprediction of instantaneous streamwise velocities.
The comparison of Figs. 15(b) and 15(d) shows that turbulence structures are merged to larger-scale
structures if no SGS stress model is applied. Therefore, the neglect of a SGS stress model results
in significant shortcomings regarding the representation of small-scale turbulence dynamics. The
LDM results shown in Figs. 16(a) and 16(b) agree very well with the DNS results for both y+ = 5
and y+ = 50. For y+ = 5 we observe elongated streaks, and the same three-dimensional turbulence
structures as seen in DNS are visible for y+ = 50. Compared to the DNS, the LDM results reveal a
minor overprediction of the streamwise velocity. The DSM results shown in Figs. 16(c) and 16(d) for
y+ = 5 and y+ = 50 differ from the DNS results. For y+ = 5, Fig. 16(c) does not show clearly visible
streaky structures, and the streamwise velocity is underpredicted. For y+ = 50, Fig. 15(d) reveals
a significant overprediction of instantaneous streamwise velocities. The turbulence structures are
smeared out and merged to large-scale structures, this means the small-scale structure of turbulence
is not well represented. The reason for these shortcomings of the DSM is given by the stabilization
procedure applied: the averaging and clipping involved does not enable the simulation of backscatter.
Therefore, the use of the LDM is definitely a better choice than the application of the DSM. The
LDM involves backscatter which enables an accurate representation of small-scale turbulence, and
it is capable of correctly representing the typical streaky structures seen in the near-wall region of
wall-bounded flows.
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FIG. 16. Instantaneous streamwise velocity contours at y+ = 5 (left-hand side pictures) and y+ = 50 (right-hand side
pictures) obtained for the LDM (upper row) and DSM (lower row).

B. Cost

Finally, the computational efficiency of the different dynamic models will be quantified. This
study was done by using the four dynamic models considered on six grids for Reτ = 395: see Table I.
The simulations were performed on a single-core of an AMD 2.3 GHz Opteron Processor 6134 as a
dedicated process using the torque queuing system. The time step, which was chosen on the basis of
the finest grid resolution, was kept constant during all simulations. The central processing unit (CPU)
time t (in s) for a single time step was calculated by dividing the computational time required to
perform 500 time steps by 500. The values of t for the different grid resolutions are shown in Table I.
It can be seen that the LDM requires the minimum amount of CPU time per time step followed by
the DSM, NDM, and WBDM, respectively. The computational cost of the DSM are higher than the

TABLE I. CPU time (in s) for performing a numerical simulation over a single time step with the dynamic models considered
for the specified grid resolutions.

N tDSM tLDM tNDM tW B DM

64 ∗ 64 ∗ 64 6.48 6.26 6.76 7.23
81 ∗ 64 ∗ 81 11.60 11.23 12.04 12.85
122 ∗ 64 ∗ 122 26.88 25.63 27.21 27.83
148 ∗ 96 ∗ 148 62.83 60.65 64.28 65.51
223 ∗ 96 ∗ 223 148.35 142.50 151.70 154.08
334 ∗ 96 ∗ 334 333.64 329.18 364.99 371.33
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FIG. 17. CPU time (in s) for performing a single time step of numerical simulation using the dynamic models considered
for various grid resolutions. The data points are represented by circles and the fits are represented by solid lines. The DSM,
NDM, and WBDM curves are shifted upwards by (0.5, 1.0, 1.5), respectively, to improve the visibility of the comparison
between measured and modeled cost data.

LDM cost due to the need for performing averaging, clipping and also filtering of an additional term
(the second term in Hij: see Eq. (A2)) during the calculation of the dynamic constant. The increase of
the computational time for the nonlinear models arises from the need to involve the nonlinear terms
and to calculate additional dynamic constants. The NDM calculations are faster than the WBDM
calculations because only a 2 ∗ 2 matrix needs to be inverted to calculate C N DM

s and C N DM
n , whereas

a 3 ∗ 3 matrix inversion is needed for the calculation of the dynamic constants of the WBDM.
The following approach is used to quantify the computational time required for the use of the

different models. An analysis of the Table I data provides support for the use of the relation

t

t0
= a

(
N

N0

)b

, (23)

which relates the computational time t for performing a numerical simulation over a single time
step to the number N of grid points applied. The introduction of the reference values N0 = 105

and t0 = 2.45 s here is helpful to simplify the model comparison (t0 = 2.45 s implies a = 1 for the
LDM). It turns out that the cost of all dynamic models considered are characterized by the same
value b = 1.05. For each data point, the a values for the different dynamic models can be obtained by
using Eq. (23). For each dynamic model, constant values of a can be calculated by taking the average
over the a data obtained for each data point, where the first and last data points are not included.
This leads to a = (1.000, 1.043, 1.068, 1.101) for the LDM, DSM, NDM, and WBDM, respectively.
The validity of using Eq. (23) in conjunction with these a values and b = 1.05 is confirmed in terms
of Fig. 17, which shows a very good agreement between the measured cost data and the model (23).
Note that the DSM, NDM, and WBDM curves are shifted upwards by (0.5, 1.0, 1.5), respectively,
to improve the visibility of the comparison between measured and modeled cost data. The values
a = (1.000, 1.043, 1.068, 1.101) obtained for the LDM, DSM, NDM, and WBDM quantify the
computational cost advantage of the LDM compared to the DSM, and the NDM compared to the
WBDM. By using standard scalings for the number of grid points N required to compute a flow at a
certain Reynolds number Re,5 Eq. (23) can be used for representing t in dependence on Re.

VI. CONCLUSIONS

Many different dynamic LES methods were presented over the last two decades. Thus, there
is the question of which dynamic method should be preferred. To have a basis for addressing this
question, it was suggested here to characterize an optimal dynamic LES method by the properties
P1-P5 given in Sec. I. A theoretical analysis showed recently that dynamic methods derived on
the basis of stochastic analysis have the properties P1 and P2.25 The goal of this paper was to use
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a priori and a posteriori applications of these dynamic methods to provide evidence that the dynamic
SGS stress models implied by stochastic analysis do also have the properties P3, P4, and P5 of an
optimal dynamic SGS stress model. This goal was accomplished regarding the properties P3 and P4:
the LDM and NDM allow negative model parameter values, and they enable computationally stable
simulations without additional ad hoc assumptions. The latter conclusion was proven by simulations
at different Reynolds numbers, Reτ = (180, 395, 590, 950), on a variety of grids (see the grids
involved in the cost analysis). The question of whether the LDM and NDM are also characterized
by the property P5 (no other comparable dynamic method is either faster or more accurate) was
addressed by comparisons with the non-stabilized and stabilized DSM, which is used in many
applications of LES, and the WBDM, which represents an extension of the DSM. In difference to
the realizable LDM and NDM, the DSM and WBDM do not represent realizable models because
they are not derived as consequences of a realizable stochastic process.

A priori analyses of the non-stabilized DSM, WBDM, LDM, and NDM were used to study the
suitability of formulations of dynamic models. An analysis of model errors showed very limited
support for the basic assumption of the DSM approach that Ld

i j and Hij are proportional to each other.
On the other hand, the proportionality between Ld

i j and Mij used in the LDM has a much higher level
of support: the correlation value rLM = 0.5 obtained away from the near-wall region is 2.5 times
higher than the corresponding value rLH = 0.2 obtained for the DSM. An analysis of the correlation
coefficients RL, Rτ , and RP also showed that the LDM provides consistently significantly higher
correlations than the DSM. Regarding the corresponding comparison of nonlinear dynamic models
it was shown that the NDM always provides slightly higher correlation values than the WBDM,
which represents an extension of Germano’s dynamic concept.

A priori analyses of the non-stabilized DSM, WBDM, LDM, and NDM were also used to study
the stability properties of dynamic models. Regarding the LDM it was shown that the stochastic
modeling concept provides (without the use of any empirical clipping procedure) a natural clipping
of dynamic constant values. The corresponding DSM feature is very different: the probability of
very high positive or negative dynamic constant values can be by two orders of magnitude higher
than the corresponding LDM probability for finding such dynamic constant values. The relatively
high probability for very high negative dynamic constant values explains the DSM trend to become
computationally unstable. The comparison of the NDM and WBDM shows that the structure of the
PDFs of dynamic constants involved is very similar. Hence, the WBDM, which uses a dynamic
model formulation in correspondence to the DSM, is computationally stable. Nevertheless, several
observations support the view that there is no need for the introduction of the third dynamic
constant involved in the WBDM. It appears that this third dynamic constant corresponds to the
consideration of an additional noise source in dynamic calculations. Backscatter studies show that
the DSM overpredicts the DNS backscatter in the near-wall region, which promotes the development
of computational instabilities, whereas the LDM backscatter is below the DNS backscatter. The
nonlinear NDM and WBDM models provide a significant improvement compared to the LDM, but
such that their backscatter is below the DNS backscatter. Thus, the NDM and WBDM are found to
be computationally stable.

A posteriori analyses of the stabilized DSM, WBDM, LDM, and NDM were used to study the
accuracy of these dynamic methods. All the four dynamic models considered imply almost the same
mean velocities and resolved Reynolds stresses. Differences are found with regard to instantaneous
streamwise velocities. Due to the averaging and clipping involved, the DSM simulates turbulence
structures that are smeared out and merged to large-scale structures, this means the small-scale
structure of turbulence is not well represented. The LDM was shown to represent a better choice
than the DSM. The LDM involves backscatter which enables an accurate representation of small-
scale turbulence, and it is capable of correctly representing the typical streaky structures seen in
the near-wall region of wall-bounded flows. Both the NDM and WBDM were found to provide
predictions of instantaneous streamwise velocities that correspond to the LDM predictions.

A posteriori analyses of the stabilized DSM, WBDM, LDM, and NDM were also used to study
the cost of these dynamic methods. The computational cost of all the dynamic models considered
scale with the number of grid points N in the same way. The relative cost ratio of dynamic models,
which is independent of N, is given by a = (1.000, 1.043, 1.068, 1.101) for the LDM, DSM, NDM,
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and WBDM, respectively. This result was obtained for N ranging from 0.3 to 10.7 × 106 grid
points.

In summary, the comparisons reported here support the view that the LDM and NDM are based
on a concept that is more appropriate than the concept used for obtaining the DSM and WBDM.
The LDM and NDM account for backscatter, and they are computationally stable without any
modification. The LDM and NDM represent the instantaneous small scale structure of turbulence
very well. Compared to the DSM and WBDM, respectively, the LDM and NDM are computationally
more efficient.
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APPENDIX A: DYNAMIC SMAGORINSKY MODEL

The DSM applies τ d
i j = −2C DSM

s �2|S̃|S̃i j and T d
i j = −2C DSM

s (�T )2 |S̃ | S̃ i j for the deviatoric
SGS and STS stresses, respectively. By using the latter expressions in Germano’s identity Ld

i j

= T d
i j − τ d

i j we obtain

Ld
i j = −C DSM

s Hi j , (A1)

where the expression Hij is given by

Hi j = 2
(
�T

)2 |S̃ |S̃i j − 2�2|S̃ |S̃i j . (A2)

Expression (A1) provides five conditions for C DSM
s . The value of C DSM

s is chosen such that it
minimizes the squared error E DSM

i j E DSM
ji , where E DSM

i j = Ld
i j + C DSM

s Hi j . The optimal expression
for C DSM

s is given by

C DSM
s = − Ld

i j Hi j

Hmn Hmn
. (A3)

The corresponding standardized quadratic error e = |E|2/|Ld|2 is given by eDSM = 1 − (rLH)2.

APPENDIX B: WANG-BERGSTROM DYNAMIC MODEL

The calculation of the dynamic constants in the WBDM follows Germano’s approach, but it
applies for the SGS and STS stresses nonlinear expressions,15

τ d
i j = −CW B DM

s βi j − CW B DM
w γi j − CW B DM

n ηi j , (B1)

T d
i j = −CW B DM

s αi j − CW B DM
w λi j − CW B DM

n ζi j . (B2)

These models involve the expressions

βi j = 2�2|S̃|S̃i j , γi j = 4�2(S̃ik	̃k j − 	̃ik S̃k j ), ηi j = 4�2(S̃ik S̃k j − 1

3
S̃nk S̃nkδi j ), (B3)

αi j = 2
(
�T

)2 |S̃| S̃i j , λi j = 4(�T )2(S̃ik	̃k j − 	̃ik S̃k j ),

ζi j = 4(�T )2(S̃ik S̃k j − 1

3
S̃nk S̃nkδi j ). (B4)
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By using the latter expressions in Germano’s identity we obtain

Ld
i j = −CW B DM

s Hi j − CW B DM
w Wi j − CW B DM

n Ni j , (B5)

where Hi j = αi j − β i j , Wi j = λi j − γ i j and Ni j = ζi j − ηi j . The error related to specifications of
model parameters is given by

E W B DM
i j = Ld

i j + CW B DM
s Hi j + CW B DM

w Wi j + CW B DM
n Ni j . (B6)

The values of the dynamic constants are chosen such that they minimize the squared error
E W B DM

i j E W B DM
ji . The optimal expression for the dynamic constants are the following ones:15

⎡
⎢⎢⎣

Hi j Hi j Hi j Wi j Hi j Ni j

Wi j H i j Wi j Wi j Wi j Ni j

Ni j Hi j Ni j Wi j Ni j Ni j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

CW B DM
s

CW B DM
w

CW B DM
n

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

Ld
i j Hi j

Ld
i j Wi j

Ld
i j Ni j

⎤
⎥⎥⎦ . (B7)
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