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The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynam-
ically adjust to changing flow conditions, which is known to be highly beneficial. For example,
this avoids the use of empirical, case dependent approximations (like damping functions). Ideally,
dynamic LES should be local in physical space (without involving artificial clipping parameters),
and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical
schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades.
We address these questions by performing dynamic LES of periodic hill flow including separation
at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is
that it is possible to design LES that has the desired properties. It requires physical consistency: a
PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic
energy in the LES calculation. LES models that do not honor such physical consistency can become
unstable. We do not find support for the previous assumption that long-term correlations of negative
dynamic model parameters are responsible for instability. Instead, we concluded that instability is
caused by the stable spatial organization of significant unphysical states, which are represented by
wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applica-
bility of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky
model) is discussed. Published by AIP Publishing. https://doi.org/10.1063/1.4986890

I. INTRODUCTION

Large eddy simulation (LES)1–8 can provide major con-
tributions to analyses of engineering and environmental prob-
lems because of its ability to resolve turbulent motions at
computational cost much below the cost of direct numeri-
cal simulation (DNS). A very attractive feature of LES is the
possibility to calculate LES model parameters dynamically
during the simulation.9–11 Such dynamic LES has signifi-
cant advantages compared to non-dynamic LES: they allow,
e.g., to account for backscatter of energy and to apply appro-
priate LES model parameter variations in flow regions that are
less turbulent or even laminar.7,12–26

In particular, one of the most relevant advantages of
dynamic LES is the following. In many applications, it needs
to account for walls, which imply a damping effect that has to
be considered (its neglect leads to significant simulation per-
formance deficiencies). This problem is known to be rather
difficult, and there is no generally accepted solution.27 This
problem is even much more challenging if LES equations
have to be combined with Reynolds-averaged Navier-Stokes
(RANS) equations, which is often a requirement to efficiently
deal with simulations of high Reynolds number flows.28 A
problem of such hybrid RANS-LES simulations is that mod-
eled variables entering wall damping function models can
become small in regions that are well resolved. An example
for a modeled variable that can become small is the turbulence
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Reynolds number, which scales the damping function in the
turbulent viscosity model suggested by Bredberg et al.29,30 The
wall damping model, which is designed to consider relatively
small values of modeled variables as being caused by the pres-
ence of a wall, can then predict wall damping in regions that
are not affected by a wall. The use of dynamic LES appears to
be the only reliable choice to deal with such problems.

However, a dynamic model parameter calculation can
cause computational instabilities [as given for the original
dynamic Smagorinsky model (DSM) used without stabiliza-
tion9] due to the reasons that are currently not fully under-
stood.12 There are several empirical stabilization techniques
in use, e.g., a clipping of dynamic LES parameters,31 aver-
aging over homogeneous directions,9,32 or time averaging.33

Such stabilization techniques are often difficult or even impos-
sible to apply. With respect to many applications, there are no
homogeneous directions in space. It is also difficult and time-
consuming to find appropriate clipping values for dynamic
LES parameters, which need to be chosen in dependence on
the Reynolds number considered, the simulation time scale
applied in simulations, and the numerical scheme. From a theo-
retical view point, standard empirical stabilizations of dynamic
LES model parameters may be considered to be physically
inconsistent. For example, averaging over cell faces corre-
sponds to involving artificial correlations in an LES cal-
culation.26 Or, clipping of dynamic LES model parameters
introduces a dependence of LES results on an arbitrary,
artificial parameter (the clipping value).

Conceptually, it turned out that the application of the
realizability principle is extremely useful for the design of
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consistent dynamic LES models.24 Realizability was proven
to represent a valuable guiding principle for turbulence model-
ing,5,34–37 and the use of realizable turbulence closure models
was found to be relevant to many applications.38–42 The basic
way to make use of the realizability principle is to ensure that
the subgrid-scale (SGS) stress, which represents the variance
of a stochastic process, is derived from an existing stochas-
tic process (a stochastic model for SGS velocities).24,43–46 On
this basis, the stochastic modeling approach also determines
how the dynamic LES can be set up consistently. The lat-
ter approach results in a hierarchy of dynamic SGS models
that can be used in non-equilibrium (with turbulent kinetic
energy equation) or equilibrium versions (which apply an
algebraic approximation to the turbulent kinetic energy). It is
found that such dynamic models are similar to corresponding
standard models like the DSM, but they are different:25 see
Sec. VII B. Application to turbulent channel flows,25 the tur-
bulent Ekman layer,26 and periodic hill flows involving flow
separation28 demonstrates the excellent performance of these
novel dynamic LES methods.

With respect to the stability of dynamic LES derived from
an underlying stochastic SGS velocity model, it was found that
the dynamic models considered were computationally stable
(without any need for applying additional stabilization tech-
niques) for turbulent channel25 and turbulent Ekman layer26

simulations, but only almost stable with respect to periodic
hill flow simulations (the latter simulations were performed
with a very soft clipping which was almost never applied).28

The latter fact is not surprising because the numerical stabil-
ity of dynamic LES represents a complex matter:47,48 it can
be expected that the use of physically consistent SGS stress
models is one requirement for stable dynamic LES, but there
are additional factors like the numerical scheme and simu-
lation time step applied. With respect to using a physically
consistent SGS stress model, it is of interest to note the fol-
lowing. The approach applied for the development of almost
stable dynamic LES ensures realizability in the sense that
the dynamic LES method is consistent with an underlying
stochastic process, but this does not necessarily imply that the
realizability of the SGS stress tensor as defined by Schumann34

is ensured. In particular, similar to the observation made with
respect to the numerical stability, it was found that the realiz-
ability of the SGS stress tensor is not always ensured. Thus,
the question of what difference it makes to strictly enforce the
SGS stress realizability was not addressed so far.

In extension of our previous work,28 the latter question
will be addressed here. First, we focus on the relationship
between realizability and stability, i.e., we ask whether a
dynamic LES model that is fully realizable (realizable not
only by being based on an underlying stochastic process but
also stress-realizable) is computationally always stable. The
consideration of stress-realizability in the context of dynamic
LES may be seen as a stabilization of dynamic LES. In this
regard, it is relevant to see that the approach applied here is free
of the shortcomings of usual stabilization methods described
above: artificial information (correlations or clipping parame-
ter values) is not involved. Second, to accomplish a deeper
understanding of results, we address the question of what
actually causes non-realizable models to being potentially

unstable. Third, we compare the stability and performance fea-
tures of the fully realizable model obtained with corresponding
features of other dynamic models which apply clippings or
algebraic approximations to the subgrid kinetic energy. The
term performance is used here to refer to the functionality
of the dynamic parameter calculation (the simulation perfor-
mance of the dynamic LES model considered was discussed
in-depth in a recent publication).28

The paper is organized in the following way. In Secs. II
and III, we present the modeling and simulation methods
applied, respectively. The features of our new dynamic LES
(which enforces stress-realizability), the relationship between
realizability and stability, and reasons for the instability of
dynamic LES are described in Secs. IV–VI. The transfer of our
dynamic bound concept to other dynamic LES models and the
performance of corresponding dynamic models are addressed
in Sec. VII. Our conclusions obtained are summarized in
Sec. VIII.

II. MODELING APPROACH

The equations considered will be introduced next. After
presenting dynamic LES equations implied by a realizable
stochastic velocity model, we present realizability bounds for
dynamic model parameter variations, which follow from a
realizable SGS stress constraint.

A. Realizable dynamic LES equations

The notion of realizability reflects the idea that an accept-
able turbulence model must describe a velocity field that is
physically achievable or realizable.37 There are several ways
to actually apply this constraint. One way is described in this
section, and another way of working with the realizability
constraint is described in Sec. II B.

By definition, the SGS stress is the variance of a stochastic
process (the variance of SGS velocity fluctuations). In order
to have a realizable dynamic SGS stress model, we may then
require that the dynamic SGS stress is mathematically implied
by an existing stochastic process that describes SGS veloc-
ity fluctuations in line with physics constraints. Accordingly,
the most convenient way is to derive LES equations from an
appropriate stochastic velocity model. This approach24,30,43–46

implies the exact but unclosed filtered Navier-Stokes equa-
tions: the incompressible continuity and momentum equations
are given by

∂Ũi

∂xi
= 0, (1)

D̃Ũi

D̃t
= −

1
ρ

∂p̃
∂xi

+
∂(2νS̃ij)

∂xj
−
∂τij

∂xj
. (2)

Here, the tilde refers to space-averaged (LES) variables,
and D̃/D̃t = ∂/∂t + Ũj ∂/∂xj is the filtered Lagrangian
time derivative. In the above equations, Ũi denotes compo-
nents of the velocity vector, p̃ is the pressure, ρ is the con-
stant fluid density, ν is the constant kinematic viscosity, and
S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2 is the rate-of-strain tensor. The
SGS stress tensor τij appears as an unknown on the right-hand
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side (RHS) of the momentum equation. The sum conven-
tion is used throughout this paper. Although the equations
are introduced here for incompressible flow, their extension
to compressible flow is straightforward.46

The advantage of the underlying stochastic velocity model
is that it implies in addition to the continuity equation (1) and
conservation of momentum equation (2) also an equation for
the SGS stress τij. This equation reads

D̃τij

D̃t
+
∂Tkij

∂xk
= −τik

∂Ũj

∂xk
− τjk

∂Ũi

∂xk
−

2
τL

(
τij −

2
3

c0kδij

)
. (3)

Here, T ijk is the triple correlation tensor of velocity fluctua-
tions, τL is the Lagrangian relaxation time scale of turbulent
velocity fluctuations, and c0 is a model constant that will be
specified later (τL and c0 are characteristic parameters of the
underlying stochastic velocity model). For the following, it
is helpful to rewrite Eq. (3) in terms of equations for the sub-
grid kinetic energy k = τnn/2 and normalized anisotropy tensor
dij = (τij � 2kδij/3)/(2k). These equations are given by46

D̃k

D̃t
+

1
2
∂Tknn

∂xk
+ 2kdkn

∂Ũn

∂xk
= −

2(1 − c0)k
τL

, (4)

D̃dij

D̃t
+

1
2k

∂(Tkij − Tknnδij/3)

∂xk
+

dij

k
D̃k

D̃t
+ dik

∂Ũj

∂xk

−
2
3

dkn
∂Ũn

∂xk
δij = −

2
τL

dij −
2
3

S̃ij. (5)

The latter equation can be used to derive a hierarchy of
algebraic stress models.46 The simplest model of this hierarchy
is given by a linear stress model, which is obtained by assuming
a balance of the RHS terms of Eq. (5), dij = −S̃ijτL/3. This
expression implies for the SGS stress τij the model

τij =
2
3

kδij − 2νt S̃ij, (6)

where the subgrid viscosity is given by νt = kτL/3. By using
the stress model equation (6), the velocity equation (2) reads
now

D̃Ũi

D̃t
= −

∂P
∂xi

+ 2
∂(ν + νt )̃Sij

∂xj
, (7)

where P = ( p̃/ρ + 2k/3) is the modified pressure, and the k
Eq. (4) reads

D̃k

D̃t
= −

1
2
∂Tknn

∂xk
+ 2νt S̃nk S̃nk −

2(1 − c0)k
τL

, (8)

where the definition of S̃nk is used. To close this equation,
we use Tknn = −2(ν + νt)∂k/∂xk for triple correlations. The
structure of this expression can be derived as a consequence
of a transport equation for triple correlations, which is implied
by the probability density function (PDF) transport equation
considered.44 By using Tknn = −2(ν + νt)∂k/∂xk , the subgrid
kinetic energy equation can be written as

D̃k

D̃t
=

∂

∂xj

[
(ν + νt)

∂k
∂xj

]
+ νt |S̃ |

2 −
2(1 − c0)k

τL
, (9)

where |S̃ | = (2S̃ijS̃ji)1/2 refers to the characteristic strain rate.
To be consistent with the usual LES dissipation rate [the nega-
tive last term on the RHS of Eq. (9)], we define the time scale
τL by τL = 2(1 � c0)∆k�1/2. Hence, the subgrid kinetic energy
equation reads

D̃k

D̃t
=

∂

∂xj

[
(ν + νt)

∂k
∂xj

]
+ νt |S̃ |

2 −
k3/2

∆
. (10)

The closure of Eq. (10) still requires the definition of
the SGS viscosity νt . The combination of νt = kτL/3 with
τL = 2(1 � c0)∆k�1/2 implies the deterministic SGS model

νt = Csk
1/2
∆, (11)

where Cs = 2(1 � c0)/3. It is possible to simplify this model by
using an algebraic expression for k (see Sec. VII B). How-
ever, we do not focus on this option because k is needed
for the application of the dynamic bounds presented below.
The use of a dynamic calculation of Cs offers many advan-
tages: see the discussion in the Introduction. Such a dynamic
LES method can be designed in complete consistency with
the LES equations presented above by using an upscaled ver-
sion of the underlying stochastic velocity model. The conse-
quences of this approach can be illustrated in the following
way. We consider the deviatoric component of the Leonard

stress Lij = ŨiŨj − Ũi Ũj (equivalent to τij on the test filter
level), where the overbar refers to the test filter operation. The

stochastic analysis approach provides Ld
ij = −2Cs∆

T
√

kT S̃ij

for the deviatoric component Ld
ij of the Leonard stress. This

expression is the test filter level version of the deviatoric
SGS stress τd

ij = −2Cs∆k1/2S̃ij implied by Eq. (11). Here,

we involve the test-filter subgrid kinetic energy kT = Lnn/2 and
filter width on the test-filter level ∆T = 2∆. By introducing the

abbreviation Mij = 2∆T
√

kT S̃ij, the Leonard stress relation can
also be written Ld

ij = −CsMij. Here, both Ld
ij and M ij are known

such that Ld
ij = −CsMij can be used for the calculation of Cs.

The setting

Cs = −
Ld

ijMji

MklMlk
(12)

can be shown to minimize the least squares error related to
Cs settings. Formally, Eq. (12) is equivalent to multiplying
Ld

ij = −CsMij with M ij. The model equation (12) will be
referred to as linear dynamic model combined with kinetic
energy equation (LDMK). The corresponding k equation is
given by Eq. (10).

The LDMK clearly differs from the DSM. First, the
LDMK involves the subgrid kinetic energy k, which is approx-
imated by an algebraic expression if the DSM is used. The
LDMK can also be reduced to a model that involves an
algebraic expression for k: see Sec. VII B. This expression
[Eq. (33)] still differs from the DSM [Eq. (36)] because the
equation used for dynamically calculating the dynamic param-
eter differs from the corresponding equation used in the DSM
context.25 The LDMK in its equilibrium mode (by using an
algebraic expression for k) was applied very successfully as
is (without using bounds) to turbulent channel25 and turbu-
lent Ekman layer26 simulations. No significant difference was
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found in comparison to using the model with k equation as
described here.

B. Realizable SGS stress

In contrast to the consideration of realizability presented
in Sec. II A, it is possible to relate realizability constraints
to the property of the SGS stress tensor to be a positive semi-
definite matrix.36 With respect to the analysis presented here in
Sec. II B, we would like to refer to two facts. First, in line
with the consideration of incompressible flow in this paper,
we will present this analysis for incompressible flow. How-
ever, the extension to compressible flow is simple: it just
needs to replace S̃ij by its deviatoric component S̃d

ij , and, corre-

spondingly, |S̃ | by |S̃d |. Second, the analysis presented here in
Sec. II B does not make any other assumption than the struc-
ture of τij given by Eq. (6) for the SGS stress. In particular, we
do not assume any specific structure of the subgrid viscosity
νt , this means our analysis results are applicable to all SGS
stress models that use Eq. (6).

The SGS stress tensor τij is a positive semi-definite matrix
if it satisfies34,36

τij ≥ 0 for i = j, (13)

τ2
ij ≤ τiiτjj for i , j, (14)

det(τij) ≥ 0. (15)

We can use the first two conditions to obtain three realizability
requirements for the SGS stress tensor,

τ11 + τ22 + τ33 = 2k ≥ 0, (16)

τ2
12 + τ2

13 + τ2
23 ≤ τ11τ22 + τ11τ33 + τ22τ33, (17)

det(τij) ≥ 0. (18)

The SGS stress tensor is assumed to have an eddy vis-
cosity structure given by Eq. (6). Correspondingly, the three
realizability conditions Eqs. (16)–(18) can be written as

k ≥ 0, (19)(
νt |S̃ |

k

)2

≤
4
3

, (20)

(
νt |S̃ |

k

)2 


1 + 12
νt |S̃ |

k

det( S̃ij)

|S̃ |3



≤

4
9

. (21)

To simplify the presentation, we introduce two nondi-
mensional variables related to the SGS viscosity νt and
det( S̃d

ij)/|S̃ |
3,

ν∗t =

√
3

2
νt |S̃ |

k
, s =

31.5 det( S̃ij)

(̃SmnS̃mn)1.5
. (22)

Therefore, the three realizability conditions finally read

k ≥ 0, (23)

|ν∗t | ≤ 1, (24)

ν∗2t




1 +
2
√

2
3

sν∗t


≤

1
3

. (25)

FIG. 1. Solutions to ν∗2t (1 + 2
√

2sν∗t /3) = 1/3, see Eq. (25).

A relevant property of s follows from linear algebra. For
any n × n matrix A, Hadamard’s inequality implies

�� det(Aij)�� ≤ n−n/2 ‖A‖n , (26)

where ‖A‖ = (AijAji)1/2 refers to the Hilbert Schmidt norm
of A. The equality sign in this relation applies to the case of
equal diagonal entries and zero non-diagonal entries. Using
this theorem, we conclude that |s| ≤ 1.

The realizable domain for ν∗t , this means the values
of ν∗t that satisfy the inequality equation (25), is shown in
Fig. 1. The use of a realizability criterion that is indepen-
dent of s significantly simplifies the use of this criterion.
This can be accomplished by the constraint that ν∗t varies
between the allowed values at s = �1 and s = 1, this means
|ν∗t | ≤ 0.479 17 = 23/48. To summarize, given that k ≥ 0,
the condition to ensure that the SGS stress tensor τij is a posi-
tive semi-definite matrix is to ensure that |ν∗t | ≤ 23/48, which
satisfies both Eqs. (24) and (25).

According to the realizability condition |ν∗t | ≤ 23/48
and νt = Csk1/2∆ derived above, we find the following Cs

realizability condition for the LDMK,

|Cs | ≤
23

24
√

3

k1/2

∆|S̃ |
. (27)

To differentiate between the realizability concepts presented
in Secs. II A and II B, we will refer below to the realizability
concept leading to Eq. (27) as stress-realizability, whereas the
realizability concept described in Sec. II A will be referred
to as PDF-realizability. If there is no further indication, the
notation LDMK used below refers to the LDMK combined
with the use of the realizability bounds, Eq. (27).

III. PERIODIC HILL FLOW SIMULATIONS

Next, we introduce the flow considered in simulations, the
discretization of equations, and the simulation setup. It is worth
noting that the same flow was considered in our recent analysis
of hybrid dynamic LES methods,28 where stress-realizability
was not addressed.

A. Periodic hill flows

We consider separated flow over two-dimensional hills as
illustrated in Fig. 2. This flow configuration creates a variety
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FIG. 2. The geometry of two-dimensional periodic hill flows.54

of relevant flow features such as separation, recirculation, and
natural reattachment. The configuration follows the numerical
work of Mellen et al.49 who adjusted Almeida et al.’s50 exper-
imental geometry to meet numerical needs. Periodicity was
assumed in streamwise directions and statistical homogene-
ity was assumed in spanwise directions to facilitate numerical
studies with lower computational cost and to apply simple
periodic boundary conditions in streamwise and spanwise
directions. After Mellen et al.,49 this geometry has been used
for various numerical studies and served as a benchmark to
test models. Experimental results were presented by Rapp
and Manhart.51–54 Temmerman and Leschziner,55,56 Jakirlic
et al.,57,58 Jang et al.,59 Fröhlich et al.,60 Breuer et al.,61 and
Balakumar et al.62 used this configuration to test turbulence
models and numerical methods.

Numerical simulations of this flow at Re = 37 000 have
been performed by Chaouat and Schiestel.63 They applied
their PITM hybrid model64 on grids ranging from 240 × 103

to 960 × 103 points. PITM simulation results were compared
with RANS Reynolds stress model (RSM) results. The authors
observed that in contrast to the PITM simulations, the RSM
computations showed important weaknesses regarding the pre-
diction of this flow caused by the lack of large unsteady
eddies.

Recently, a numerical study of this flow at Re = 37 000
has been published by us.28 The dynamic LES model (using a
clipping which was almost never applied) was compared with
dynamic RANS-LES and RANS. Different grid resolutions
ranging from 60 × 103 to 20 × 106 cells were used, and also
different Reynolds numbers were considered. It was found that
the dynamic RANS-LES performs better than RANS and pure
LES that is not fully resolved.

B. Discretization of equations

All dynamic SGS models that are discussed in this study
have been implemented in the OpenFOAM CFD Toolbox.65

The calculations have been performed using a finite-volume
based method with the numerical grid being used as the LES
filter. The convection term was discretized using a second-
order central difference scheme in the momentum equation
and a bounded second-order central difference (BCD) scheme
[which is implemented based on a normalized variable dia-
gram (NVD) limiter66] is used in the turbulence transport
equations to ensure a stable solution. All other terms were dis-
cretized using a second-order central difference scheme. The
pressure gradient that drives the flow in the channel has been
adjusted dynamically to maintain a constant mass flow rate.
PISO algorithm was used for the pressure-velocity coupling.67

FIG. 3. Computational domain of two-dimensional hill flow simulations: the
reference curvilinear grid is shown.

The resulting algebraic equations for all the flow variables
except the pressure have been solved iteratively using a pre-
conditioned bi-conjugate gradient method with a diagonally
incomplete LU preconditioning at each time step. The Poisson
equation for pressure was solved using an algebraic multi-grid
solver. Time marching was performed using a second-order
backward difference scheme.

C. Simulation setup

Figure 3 shows the computational domain applied in our
simulations. The size of the computational domain is Lx = 9h,
Ly = 3.035h, and Lz = 4.5h in streamwise (x), wall normal
(y), and spanwise (z) directions, respectively, where h is the
height of the hill. The hill crest is located at (x,y)/h = (0,1).
The Reynolds number Re = Ubh/ν is Re = 37 000 based on the
hill height and bulk velocity above the hill crest at x = 0. At
the bottom and top, the channel is constrained by solid walls.
No-slip and impermeability boundary conditions are used at
these walls. Periodic boundary conditions are employed in
streamwise and spanwise directions. Throughout of the paper,
h and Ub are used as reference quantities for a length and
velocity. All data presented are made dimensionless with these
quantities.

In a recently published paper,28 we investigated the same
flow using pure LES and hybrid RANS-LES models. We also
studied grid effects for both methods for grids ranging from
60K to 20M cells. Here, our aim is to analyze the stability of
dynamic models. Therefore, we will use a reference grid for
all our results presented here. From our previous studies, we
found that the grid of Nx ×Ny ×Nz = 128 × 80 × 48 with 500K
cells is a well appropriate mesh for the present study.

Our computations are initialized by a uniform bulk veloc-
ity Ub (except for correlation functions: for them we restarted
our calculations with stationary solutions). After 20 flow-
through times (FTT), mean quantities were obtained by aver-
aging over 140 FTT and averaging in the spanwise direction.
Usually (see the ∆t variations below), the time step ∆t (all ∆t
are given in seconds) was chosen to imply a maximum CFL
number of 0.5 and an averaged CFL number of about 0.1 (for
stability analysis, we used CFL numbers ranging between 0.1
and 0.8).

IV. REALIZABILITY AND STABILITY

The numerical stability of dynamic LES can be expected
to depend on a variety of factors: for example, the physical
consistency of the SGS stress model, the numerical scheme,
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and the simulation time step applied.47,48 In particular, the
physical consistency of the SGS stress model (which is
reflected by realizability constraints) can be expected to have
a major impact on the stability of simulations: it appears
to be plausible that a flow that cannot be realized in real-
ity also cannot be realized numerically. However, there are
questions related to this general notion. (i) For example, is
stress-realizability indeed related to stability? (ii) Is stress-
realizability a required or a sufficient condition for stability?
(iii) What actually causes instability, and why is it related to
realizability? These questions will be addressed in the fol-
lowing as an extension of our recent analysis of the perfor-
mance of the LDMK (combined with a very soft clipping
which was almost never applied).28 An detailed analysis of
mean velocities, Reynolds stresses, and other flow features
for several grids can be found elsewhere,28 this means we
focus here immediately on features relevant to the stability
issue.

It is a broadly accepted view that the stability of dynamic
LES is, basically, related to the setup of the dynamic LES
model parameter calculation. Our previous results clearly
show the advantage of using a PDF-realizable model.24,25

In particular, we found that our dynamic model was com-
putationally stable (without any need for applying additional
stabilization techniques) for turbulent channel25 and turbulent
Ekman layer26 simulations. However, with respect to periodic
hill flow simulations,28 it turned out that these simulations
were almost always but not always stable.

The latter fact is illustrated in Fig. 4, which shows the
time history of Cs calculated by the LDMK and the upper
and lower realizability bounds for two probe points for 30
FTT. The locations of probe points P1 and P2 are shown
in Fig. 5(a). The red and blue circles in Fig. 4 indicate the
times at which Cs values hit the upper and lower realiz-
ability bounds, respectively. At P1, we found that over 30
FTT (corresponding to 150 000 iterations) on average 2%
of Cs values hit the upper (positive) realizability bound, and
about the same number of Cs values hits the lower (nega-
tive) realizability bound. With respect to the probe point P2,

we observed corresponding hittings in about 0.4% of cases
(again, the lower and upper bounds had about the same hitting
rates).

To assess the realizability of the model in the entire flow
field, we defined a local (at each cell) hitting probability (HP)
by the expressions

HP+ =
N+

N
, HP− =

N−

N
. (28)

Here, N+ and N� refer to the numbers of positive and negative
bound hittings, respectively, and N refers to the total number
of iterations. Figure 5 [left-hand side, (LHS)] shows the con-
tour plots of HP+ and HP− for ∆t = 0.002. Here and in the
following, contour plots show the spatial distribution of aver-
aged variables given in profile plots. It can be seen that HP+

and HP− are smaller than 0.005 in 95% of the flow field. Only
in the shear layer immediately after the top of the leeward hill,
these probabilities increase up to 0.02. First, this shows that
the original LDMK model, which is only PDF-realizable, i.e.,
it is not combined with the realizability bounds, Eq. (27), is
almost always realizable, but it is not always realizable, which
may promote instability. Second, these results do also indi-
cate that the stress-realizable LDMK [the LDMK combined
with the use of the realizability bounds Eq. (27)] is stable.
We call a model stable when it does not become unstable for
100 FTT.

The relative low number of LDMK bound hittings
reported here (the view that the LDMK is almost always
realizable) could be implied by relatively weak variations
of Cs. This view can be addressed in terms of Fig. 15 (see
Sec. VII D) which shows instantaneous variations of νt /ν as
a measure for the significance of Cs variations. This figure
shows strong variations of the subgrid viscosity ratio νt /ν in
between ±10, i.e., the variations of Cs are not small.

In extension of the findings reported above, let us consider
the effect of the simulation time step ∆t on the realizability of
the model. Figure 5 compares LDMK hitting probabilities for
two time steps ∆t. We see that an increasing simulation time
step increases the fluctuations of Cs values such that the bound

FIG. 4. LDMK time histories of Cs and its realizability bounds for the last 30 FTT at two probe points P1 and P2 [see Fig. 5(a)]. The red and blue circles
indicate times at which Cs values hit the upper and lower realizability bounds, respectively. The time step is ∆t = 0.002.
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FIG. 5. LDMK positive (HP+) and negative (HP−) bound hitting probabilities for ∆t = 0.002 (left) and ∆t = 0.008 (right). (a) HP+ for ∆t = 0:002, (b) HP+ for
∆t = 0:008, (c) HP� for ∆t = 0:002, and (d) HP� for ∆t = 0:008.

hitting probabilities increase as well. A possible explanation
for the fact that Cs fluctuations are increased by an increased∆t
is the following. Cs is calculated by the constraint to minimize
the quadratic error of Ld

ij = −CsMij. Compared to a relatively
large ∆t, the fluctuations of Cs will be smaller if there is more
often the opportunity to respond to changing flow conditions
(to minimize the imbalance of Ld

ij = −CsMij caused by any Cs

settings).
The use of stress bounds ensures stability, but it could

be that the stress bounds are more restrictive than needed
for stability. Or, in other words, can a model that is slightly
unrealizable still be stable? To address this question, we used
LDMK versions which apply bounds that are (1.2, 1.5, 2) times
larger than the regular bounds given by Eq. (27). We refer
to these models as LDMK-1.2B, LDMK-1.5B, LDMK-2B,
respectively. Table I summarizes the stability analysis results
for the LDMK and its extended bound versions. We see that
the LDMK is strongly stable for a wide range of time steps
10−3 ≤ ∆t ≤ 10−2, which correspond to CFL numbers rang-
ing between 0.1 and 0.8. On the other hand, LDMK-1.2B is
only stable for time steps ∆t = 0.001 and 0.002, and LDMK-
1.5B and LDMK-2B are even unstable for the smallest ∆t
considered here.

TABLE I. Stability of the LDMK and its extended bound versions for various
time steps ∆t.

Simulation ∆t = 0.001 ∆t = 0.002 ∆t = 0.004 ∆t = 0.008 ∆t = 0.01

LDMK Stable Stable Stable Stable Stable
LDMK-1.2B Stable Stable Unstable Unstable Unstable
LDMK-1.5B Unstable Unstable Unstable Unstable Unstable
LDMK-2B Unstable Unstable Unstable Unstable Unstable

The findings reported in this Sec. IV can be summarized
in the following way. First, the original LDMK model, which
is only PDF-realizable, produces significant subgrid viscosity
variations. It is almost always realizable, but it is not always
realizable. There are a relatively low number of cases where Cs

is outside of bounds, but these rare events can cause instability.
Second, an increased simulation time step increases Cs fluctu-
ations and, therefore, the instability risk. Third, the LDMK is
stable for wide variations of the simulation time step. A model
that is not stress-realizable can become unstable. Therefore,
our results indicate that realizability (PDF-realizability and
stress-realizability) is a required and sufficient condition for
stability.

It is obvious that a better understanding of the mecha-
nism of how computational instabilities are generated would be
highly beneficial. So far there is no generally accepted expla-
nation of how such instabilities occur, which turned out to be a
very difficult question.12,47,48 We will address this question in
Secs. V and VI in order to accomplish a more comprehensive
understanding of our results presented above. There is, in par-
ticular, the question what can cause a model that is not fully
realizable to become computationally unstable.

V. INSTABILITY ANALYSIS I: TIME
AND SPACE CORRELATIONS

According to our knowledge, the only hypothesis of the
instability mechanism of dynamic LES presented so far is Lund
et al.’s conclusion that a large temporal Cs auto-correlation,
which causes negative eddy viscosity to persist for a long time,
can cause a divergence of the total energy.12 Let us reconsider
this view by asking whether significant correlations of negative
Cs values in space or time can be a reason for instabilities.
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FIG. 6. Contour plots of the probability of negative Cs values (PNCs) for the stable LDMK (left) and unstable LDMK-2B (right). The time step is ∆t = 0.002.

A. Approach applied

Regarding this question, we need a model that becomes
unstable, but we also need a sufficient number of samples
for the correlation function calculation. Thus, we use the
unstable LDMK-2B model (with ∆t = 0.002), which becomes
unstable after 56 FTT. The LDMK-2B simulation was ini-
tialized by using a converged solution obtained from the
LDMK.

We need to decide about the points at which correlation
functions are calculated. A reasonable view is to calculate

correlation functions in a region where the occurrence of
negative Cs is high. To quantify the relative amount of neg-
ative Cs values, we consider at each cell the probability of
the occurrence of negative Cs (PNCs), which is defined by
PNCs = Nneg/N. Here, Nneg refers to the number of itera-
tions in which Cs is negative, and N is again the total number
of iterations. Figure 6 shows the contours of PNCs obtained
from the LDMK and LDMK-2B. In particular, red shows
the region where PNCs ≥ 0.4. It is worth noting that there
is no significant time step effect on the PNCs distribution
(not shown here). It can be seen that there is actually no

FIG. 7. LDMK temporal correlation functions: the effect of the simulation time step at P3 and P4. (a) P3 and (b) P4.

FIG. 8. LDMK and LDMK-2B temporal correlation functions at P3 and P4. The time step is ∆t = 0.002. (a) P3 and (b) P4.
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difference between the PNCs distributions of the stable LDMK
and unstable LDMK-2B. The time correlation functions pre-
sented below are calculated at two points: at P3, which is
located in the center of the bubble where we have the highest
occurrence of negative Cs values [see Fig. 6(a)] and at another
point P4, which is located in the shear layer where we have
large gradients of flow field quantities.

B. Correlations in time

The temporal auto-correlation function R(τ) of Cs at a
specific time t0 is calculated by

R(τ) =
〈C

′

s(t0)C
′

s(t0 + τ)〉

〈C
′

s(t0)C
′

s(t0)〉
. (29)

FIG. 9. LDMK and LDMK-2B space correlation functions at P3 and P4. The time step is ∆t = 0.002. [(a), (c), and (e)] P3 and [(b), (d), and (f)] P4.
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Here C
′

s = Cs − 〈Cs〉 is the fluctuation of Cs at a specific
time (〈Cs〉 is the ensemble-averaged mean of Cs). Temporal
correlation functions were calculated for the stable LDMK and
unstable LDMK-2B. The LDMK-2B model becomes unstable
after 56 FTT, which corresponds to 560 s. Independent samples
were taken successively every 1.4 s because the characteristic
correlation times at P3 and P4 are 0.6 s and 1.4 s, respectively
(see Fig. 7). At one point, we obtain in this way a relatively low
number 560/1.4 = 400 samples. The number of samples was
increased by using 40 samples in the homogeneous z direction:
at P3 and P4, we considered samples having the same x and
y but different z coordinates. This increased the total number
of samples used in the time correlation calculations to 400 ×
40 = 16 000 samples. With respect to the LDMK, we could
have used many more samples, but we preferred to use the
same amount of samples for the correlation functions of both
models.

First, we consider the simulation time step effect on cor-
relation functions. Figure 7 shows the LDMK temporal corre-
lation function using two time steps ∆t = (0.002,0.008). It can
be seen that these correlation functions are actually unaffected
by different time steps. Next, let us compare the temporal
correlation functions of stable and unstable models. Figure 8
compares the LDMK and LDMK-2B correlation functions at
P3 and P4. It can be seen that there is, basically, no difference
between the LDMK and LDMK-2B correlation functions.

The results reported here seem to lead to the conclusion
that there is a difference to the conclusions presented by Lund
et al.12 However, a closer look shows that this is not the case.
Lund et al. considered simulations of homogeneous isotropic
turbulence using a pseudo-dynamic model where the model
coefficient was taken from a Gaussian distribution of random
numbers with specified mean, standard deviation, and correla-
tion time. First, the flow considered is very different from our
flow. Second, the correlation time considered is not equivalent
to the characteristic temporal correlation of Cs: Lund et al.’s12

correlation time is a technical (non-physical) parameter given
by (1 � η)∆t, where η is the fraction of Cs values that are ran-
domly regenerated at each time step ∆t. Third, Lund et al.’s12

dynamic coefficient calculation is not part of the simulation,
it represents an external input to the simulations. Due to these
facts, the conclusions obtained by us and Lund et al.12 are very
different: we considered the physical temporal correlation of
Cs, whereas Lund et al.12 considered the response of simula-
tions to external disturbances scaled in terms of (1 � η)∆t and
the standard deviation of artificial Cs values imposed by their
algorithm.

C. Correlations in space

In addition to considering the temporal correlation of Cs

values, we also studied three-dimensional Cs correlations in
space (which were not considered by Lund et al.12), to see
whether there is a significant difference to the results obtained
for the temporal correlations.

The spatial auto-correlation Rx of Cs in the x direction is
calculated by

Rx =
〈C

′

s(x0)C
′

s(x)〉

〈C
′

s(x0)C
′

s(x0)〉
. (30)

Here, x0 is the x-coordinate of the point where the correlation
function is calculated. Spatial correlations in the y and z direc-
tions are calculated correspondingly. Independent samples
were taken in time and in homogeneous directions. Regard-
ing Rx and Ry, we used an averaging time Lx/(3Ub) = 3 s,
corresponding approximately to the time needed for the
fluid to pass one third of the computational domain. The
LDMK-2B is stable for 560 s, so we generated only about
560/3 = 186.7 samples in this way. The sample number was
increased by sampling in the homogeneous z-direction. The
total sample number obtained was then 186.7 × 40 ≈ 7500.
Regarding Rz, there is no homogeneous direction that is useful
to increase the sample number. For the stable LDMK model,
we collected 6000 samples in time by using the averaging time
window mentioned above. An analysis showed that it is well
possible to decrease the averaging time window for calculating
Rz down to 0.5 s. Hence, we were able to calculate Rz for the
LDMK-2B by using 560/0.5 = 1120 samples.

Figure 9 compares the LDMK and LDMK-2B spatial cor-
relation functions of Cs at P3 and P4. It can be seen that
there are no significant differences between stable and unsta-
ble dynamic models. The structure of correlation functions
reflects the well-known features of correlation functions in
wall bounded flows.25,26

First, it turns out, therefore, that the results reported about
the Cs correlations in space are fully consistent with the results
obtained for Cs correlations in time. Second, we can exclude
Cs correlations as being the main reason for computational
instabilities.

VI. INSTABILITY ANALYSIS II: TIME
AND SPACE IMBALANCES

After excluding Cs correlation functions as a reason for the
generation of computational instabilities in Sec. V, let us con-
tinue our analysis of instability reasons by considering other
plausible possibilities.

A. Approach applied

The next obvious possibility to explain instability rea-
sons is to consider significant imbalances in time or space.
In this case, we are interested in clearly seeing the difference
between stable and unstable LES models, which means we
are interested in very unstable LES models. For addressing
this question, we will consider the LDMK without the realiz-
ability bounds Eq. (27) but combined with a constant clipping
instead of the bounds. We will use the notation LDMK-CC to
refer to this LDMK combined with a constant clipping, and
we will use LDMK-CC-xx, where xx refers to the negative
clipping applied.

The unstable model considered for comparisons is the
LDMK-CC-0.2, which refers to the LDMK combined with
a negative clipping Cclip = �0.2. This model is very unstable,
instability occurs in less than 5 FTT. The use of Cclip = �0.2
in conjunction with considering a very unstable model may
be surprising regarding our recent analysis of hybrid RANS-
LES and dynamic LES for the same flow.28 The latter results
led to the conclusion that the dynamic hybrid RANS-LES
model was stable even for larger negative values, we used this
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model combined with Cclip = �0.5. This can be explained by
the fact that in our dynamic hybrid RANS-LES model, most
cells in the wall region (up to 20 cells above the wall) are in
the RANS layer such that the dynamics LES model param-
eter calculation was only used above this layer. Then, pure
dynamic LES simulations were initialized by using converged
dynamic hybrid RANS-LES results. This approach resulted
in the conclusion that Cclip = �0.5 was sufficient to ensure
stability. On the other hand, LDMK-CC simulations were ini-
tialized here with the bulk velocity, which is the usual way to
initialize flow simulations in the absence of converged results
obtained by other appropriate models. For ensuring stability in
this case, we concluded that Cclip = �0.05 was needed. Due to
reasons explained below, we consider two stable models (the
LDMK-CC-0.02 and LDMK-CC-0.05) for comparisons with
the unstable LDMK-CC-0.2.

What can be the reason for instabilities? One obvious
possibility is given by the frequent occurrence of unphysi-
cal states, which can be measured in terms of the probability
of dynamic bound hittings. To address this possibility, we
compared the unstable LDMK-CC-0.2 with the stable LDMK-
CC-0.05, where ∆t = 0.002. As expected, the LDMK-CC-0.2
hitting probabilities are much higher than the LDMK-CC-
0.05 hitting probabilities. However, the LDMK-CC-0.2 hitting
probabilities are similar but below the hitting probabilities
obtained from the dynamically bounded LDMK for ∆t = 0.08,
which is stable [see Figs. 5(b) and 5(d)]. Therefore, it appears
to be very unlikely that the frequent occurrence of unphysical
states causes instability.

Another potential reason for the generation of instabilities
can be given by large (negative) Cs fluctuations. The notion of
large fluctuations can have several meanings. A first approach
to this question is to look at the appearance of negative val-
ues of the total viscosity (which is the sum of the molecular
and subgrid viscosity) in the diffusion terms of the momentum
or subgrid kinetic energy equations. Due to reasons described
in Sec. VII A, the enforcement of positive total viscosity val-
ues is sufficient for the stabilization of dynamic LES models.
However, the latter does not mean that negative total viscos-
ity values cause instability. Figure 10 shows snapshots of the
total viscosity ratio (νt + ν)/ν for the stable LDMK and a very
unstable LDMKCC-02 model (see Sec. VI B) at the time of
divergence. It can be seen that the stable model implies a signif-
icant amount of negative total viscosity in about 10% of cells.
We can also see that there is no significant difference between
the stable and very unstable models regarding the amount of
negative total viscosity. Thus, the observations made here do

not support the view that negative values of the total viscosity
are the basic reason for instability.

A second approach to address the relevance of large
Cs fluctuations is to look at Cs standard deviations. This
possibility is considered in detail in Secs. VI B and VI C.

B. Cs standard deviation: Imbalances in time

First, we consider Cs standard deviations in time to study
the influence of large Cs fluctuations on stability. This stan-
dard deviation can be calculated in several ways. Here, we
are interested in a flow characterization, in particular, shortly
before instability occurs. Therefore, the Cs standard deviation
is calculated by a moving time average by applying a moving
time window of 0.4 FTT (corresponding to 2000 iterations). In
other words, the standard deviation at time t is calculated based
on the last 2000 iterations. Figure 11 shows the time histories
and Cs standard deviations at the probe point P3 (see Fig. 6)
on the LHS from the simulation start to 3 FTT (corresponding
to 15 000 iterations), and on the RHS, for the period between
2.1 and 2.7 FTT. The upper row shows both Cs fluctuations
and standard deviations. For clarity purposes, the lower row
shows only the standard deviations.

First, we compare the two stable LDMK-CC-0.02 and
LDMK-CC-0.05. Their standard deviations become approx-
imately stationary after 2.0 FTT (10 000 iterations). At 2.6
FTT, the LDMK-CC-0.02 and LDMK-CC-0.05 standard devi-
ations are about 0.017 and 0.023, respectively. So there is
a 35% standard deviation difference between the two mod-
els. This standard deviation difference can be explained as
follows. In the period 2.2–2.6 FTT (2000 iterations), the
LDMK-CC-0.05 produces about 800 fluctuations (40%) with
|Cs | ≥ 0.02: 450 negative and 350 positive fluctuations. On
the other hand, the LDMK-CC-0.02 has about 220 fluctua-
tions (11%) with |Cs | ≥ 0.02 (only positive fluctuations). This
difference of relatively large fluctuations then implies the 35%
standard deviation differences of the LDMK-CC-0.02 and
LDMK-CC-0.05. This comparison makes it also evident that
the constant clipping of negative Cs values does not only affect
negative Cs fluctuations but also positive Cs fluctuations are
affected.

Next, we compare the stable LDMK-CC-0.05 and the
unstable LDMK-CC-0.2, which becomes unstable after 2.6
FTT. For 0–2.2 FTT (11 000 iterations), the LDMK-CC-0.2 Cs

standard deviation is about the same as the LDMK-CC-0.05
standard deviation: there were only about 400 LDMK-CC-
0.2 Cs fluctuations with |Cs | ≥ 0.05 compared to about 240

FIG. 10. Snapshots of (νt + ν)/ν for the stable LDMK (left) and unstable LDMK-CC-02 models (right). The time step is ∆t = 0.002.
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FIG. 11. LDMK-CC Cs time histories and standard deviations (dashed lines, same color) for three clipping constants at P3. The time step is ∆t = 0.002.
The last row only shows the standard deviations.

corresponding LDMK-CC-0.05 Cs fluctuations. After 2.2
FTT, the LDMK-CC-0.2 produces a series of big fluctu-
ations with maximum amplitudes of 0.25 and 0.22. For
2.2– 2.6 FTT (2000 iterations), the LDMK-CC-0.2 exhibits
300 Cs fluctuations with |Cs | ≥ 0.05 and 160 Cs fluctuations
with |Cs | ≥ 0.08. It should be noted that there is no fluctuation
with |Cs | ≥ 0.08 before 2.2 FTT. The value of the LDMK-CC-
0.2 standard deviation reaches 0.039 before the crash, which
corresponds to a 70% Cs standard deviation increase in the
2.2–2.6 FTT period.

By comparing the observations made in the preceding two
paragraphs, we see significant differences between stable and
unstable models. Stable models are characterized by “noise-
type” random Cs variations which imply Cs standard deviation
variations that do not vary much in time. On the other hand,
on top of “noise-type” random Cs variations, unstable mod-
els are characterized by intermittent “outburst”, i.e., very large
Cs fluctuations that imply sudden jumps of Cs standard devi-
ations to new plateau values. It is of interest to ask why we
see, actually, sudden jumps of Cs standard deviations to new
plateau values (this observation is not obvious: it could be,

for example, that a higher value of Cclip leads to a grad-
ually increasing, slightly higher Cs standard deviation, as
seen by comparing the LDMK-CC-0.02 and LDMK-CC-0.05
models).

The latter question is addressed in terms of Fig. 12, which
shows the time history and standard deviation of Cs at the probe
point P3 for the small period 2.2–2.3 FTT. It can be seen that
in this period of time, Cs experiences a big fluctuation that
has a maximum value of about 0.25. This big fluctuation takes
place over about 100 time steps (0.02 FTT, equivalent to 0.2 s),
which is consistent with the correlation in time at the point P3:
see Fig. 8(a) in Sec. V. After this big fluctuation, the standard
deviation increases to a new plateau value. The reason why the
standard deviation rapidly increases to the new plateau value
is the relative long correlation of Cs values. For example, if
we assume that this big fluctuation would happen two times
faster such that it would last 0.1 s (50 time steps), then the new
plateau would have a lower value. Or, if we assume a random,
uncorrelated distribution of Cs involved in the large fluctua-
tion at about 2.28 FTT over the preceding 2000 time steps, we
would not observe a new standard deviation plateau value at
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FIG. 12. LDMK-CC-0.2 Cs time history (black symbols) and standard
deviation (dashed line) at P3.

2.285 FTT (we would have a smooth transition to new standard
deviation values). However, it is relevant to note that the long
correlation of Cs is only a factor that contributes to the devel-
opment of instabilities. In other words, it is not the case that
a long correlation of negative Cs values causes instabilities.12

This view is further supported by considering the correlation
of negative Cs values for 2.22–2.25 FTT in Fig. 12, which

takes place over about 150 time steps (0.3 s). This fluctuation
does not lead to an abrupt change of the Cs standard deviation,
and there is no indication that this fluctuation contributes to
the development of instabilities.

C. Cs standard deviation: Imbalances in space

To obtain a more comprehensive view of observations
made in Sec. VI B, let us consider the LHS of Fig. 13,
which shows for the three models considered contour plots
of the Cs standard deviation in the entire flow field aver-
aged over the 2.2–2.6 FTT period. We see again that a
higher Cclip leads to a higher Cs standard deviation. We
also see remarkable differences between stable and unsta-
ble models. The stable (LDMK-CC-0.02 and LDMK-CC-
0.05) models show relatively smooth Cs standard deviation
variations in space. The unstable LDMK-CC-0.2 model pro-
duces a very different picture: the relatively smooth red
area in the channel center generated by the LDMK-CC-
0.05 is enlarged in the LDMK-CC-0.2 case, broken apart
into many fine scale structures, and distributed over all the
domains. It is interesting to see that spatial correlations are
preserved: we still see streak-type, elongated, coherent struc-
tures. These features are consistent with the corresponding
evolution of the Cs standard deviation in time seen in Fig. 11.
In particular, the appearance of intermittent, large Cs fluctu-
ations seen in the unstable model prediction simply reflects a

FIG. 13. Contour plots of the Cs standard deviation (left) and its y-gradients ∂〈C
′

sC
′

s〉
1/2/∂y (right) for the stable LDMK-CC-0.02 (first row), the stable

LDMK-CC-0.05 (second row), and the unstable LDMK-CC-0.2 (third row). The time step is ∆t = 0.002.
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correlated, high standard deviation structure that passes the
point considered.

An even clearer picture of these differences is given on the
RHS of Fig. 13, which compares the gradients of Cs standard
deviations in the y-direction for the three models considered.
The two stable models show relatively smooth distributions
of gradients. Large positive and negative gradients are found
close to the walls, where Cs changes significantly due to the
damping effect of the wall. The positive and negative values
of gradients close to the lower and upper walls are related
to the direction of the y-axis (for increasing y, we find a Cs

standard deviation increase and decrease close to the lower
and upper wall, respectively). The unstable model considered
shows a different picture. We see streaks of positive and neg-
ative gradients distributed over all the domains. The streak
organization follows the well-known boundary layer features:
positive streaks are followed by negative streaks and vice
versa. One interesting aspect of this distribution is that corre-
lations are clearly preserved, we do have elongated, coherent
streaks and not a purely random distribution of areas of low
and high gradients. Another interesting aspect of this distribu-
tion is the significant strength of gradients, which is indicated
by red and blue. It turns out that the gradients of streaks are
comparable to the very strong gradients seen in the near-wall
regions. We will talk about wall-type gradient streaks below
if we refer to the strength of Cs standard deviation gradients
below. The steady presence of such correlated wall-type gradi-
ent streaks (flow imbalances) makes it then impossible for the
flow solver to balance these gradients, which finally leads to
instability.

The comparison of findings presented in the preceding
paragraph with the results obtained regarding the LDMK
features enables an alternative explanation of reasons for
instability. The LDMK discussion led to the conclusion that
instability is caused by non-realizable states. This conclu-
sion can be made more explicit now by stating that instabil-
ity is caused by the stable spatial organization of significant
unphysical states, which are represented by wall-type gradient
streaks.

VII. LDMK VERSUS OTHER DYNAMIC MODELS

After discussing the LDMK features and reasons for insta-
bility in preceding sections, we will compare the LDMK
features with the corresponding features of other dynamic
models. Two groups of other models will be considered.
First, the LDMK-CC is considered, which represents one of
the most common ways to deal with the instability prob-
lem. Nevertheless, the LDMK-CC approach is known to
be rather problematic because of the unknown knowledge
of an appropriate LDMK-CC clipping value. As a sim-
ple alternative to the LDMK-CC, we also consider another
stabilization approach given by requiring the total viscos-
ity to be positive, i.e., ν + νt ≥ 0. We will refer to this
model as LDMK-PTV (LDMK with positive total viscos-
ity). The second group of models considered for compar-
isons focuses on often applied models: equilibrium models
that do not involve a subgrid kinetic energy equation. In par-
ticular, the equilibrium version LDME of the LDMK and a

stabilized dynamic Smagorinsky model (DSMS) are consid-
ered. A major motivation for involving equilibrium models
is to consider the possibility of using our dynamic bound
approach in conjunction with other, usually applied dynamic
models.

The LDMK-PTV, LDME, and DSMS models involved
here will be presented in Secs. VII A and VII B. Then, compar-
isons with respect to the stability and performance of models
will be presented in Secs. VII C and VII D.

A. LDMK-PTV

A simple approach to avoid the known issues of dealing
with LDMK-CC problems is the enforcement of a positive
total viscosity, ν + νt ≥ 0, which is known to be an effective
mean to stabilize dynamic models. Characteristic features of
this LDMK-PTV approach will be described here.

The LHS of Fig. 14 compares the Cs time history for
the LDMK-CC-0.02 and LDMK-PTV at the P1 probe point
located in the shear layer. At this point, it can be seen that
the LDMK-PTV behaves like an LDMK-CC model with a
very small effective negative clipping constant approximately
given by Cclip = �0.015. Unlike the LDMK-CC, which applies
a constant clipping with respect to the entire flow field, the
LDMK-PTV applies a local clipping Cclip = �ν/(kτ) according
to ν+Cclipkτ ≥ 0. So it could be that the LDMK-PTV behaves
very differently from the LDMK-CC-0.02 in other points as
considered on the LHS of Fig. 14. This question is addressed
in terms of the RHS of Fig. 14, which shows Cs snapshots
for the entire flow field. The similarity of Cs distributions of
the LDMK-CC-0.02 and LDMK-PTV also supports the view
that the LDMK-PTV model behaves like an LDMK-CC with
a rather small negative clipping constant.

Compared to the LDMK-CC, an advantage of the LDMK-
PTV is that the LDMK-PTV does not need a tuning of Cclip. A
disadvantage of the LDMK-PTV is the following. The term
ν/(kτ) in Cclip = �ν/(kτ) represents an inverse turbulence
Reynolds number, i.e., the RHS in Cclip = �ν/(kτ) approaches
zero for very high Reynolds number flows. Thus, only a very
small (or almost zero) amount of negative Cs values is allowed
in the LDMK-PTV model concept for high Reynolds num-
bers, i.e., this model is hardly able to account for the relevant
backscatter.68,69 As a consequence of the similarity between
the LDMK-PTV and LDMK-CC and the lack of alternative
provided by the LDMK-PTV, we will not further consider the
LDMK-PTV.

B. LDME and DSMS

An equilibrium version of the LDMK, which does not
require the solution of a transport equation for k, can be
obtained in the following way. According to Eq. (10), we
equate the last two terms, this means we assume that the
production is balanced by the dissipation. This implies

k = C∗∆
2 |S̃ |2, (31)

where C∗ = 2(1 � c0)/3. By using this expression in
νt = 2(1 � c0)/3k1/2∆, we obtain an equilibrium deterministic
SGS stress model given by

νt = Ce∆
2 |S̃ |, (32)
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FIG. 14. LDMK-CC-0.02 and LDMK-PTV time histories of Cs at P1 (left) and Cs snapshots (right). The time step is ∆t = 0.002. (a) LDMK-CC-0.02,
(b) LDMK-CC-0.02, (c) LDMK-PTV, and (d) LDMK-PTV.

where Ce = [2(1 � c0)/3]3/2. The use of c0 = 0.86 implies
νt = 0.172∆2 |S |, which is equivalent to the standard Smagorin-
sky model.

However, as given with respect to the LDMK, it is highly
beneficial to dynamically calculate Ce. The approach to obtain
such a dynamic model follows the approach to derive the corre-
sponding LDMK expression. The stochastic analysis approach

provides Ld
ij = −2Ce(∆T )2 |S̃ |S̃ij for the deviatoric component

Ld
ij of the Leonard stress, corresponding to the deviatoric SGS

stress τd
ij = −2Ce∆

2 |S̃ |S̃ij implied by Eq. (32). By introduc-

ing the abbreviation mij = 2(∆T )2 |S̃ |S̃ij, the Leonard stress
expression can also be written Ld

ij = −Cemij. Then, the setting

Ce = −
Ld

ijmji

mklmlk
(33)

can be shown to the minimize the least squares error related
to Ce settings. Formally, Eq. (33) is equivalent to multiplying
Ld

ij = −Cemij with mij. The model equation (33) will be referred
to as LDME referring to the equilibrium LDMK.

The problem related to using the dynamic bounds
approach presented in Sec. II for the case here is that k is

unavailable because no k equation is involved. The way to

overcome this problem is to consider kT = C∗(∆T )2 |S̃ |2, cor-
responding on the test filter level to k = C∗∆2 |S̃ |2. The ratio
k/kT reads then

k

kT
=
∆2 |S̃ |2

(∆T )2 |S̃ |2
. (34)

Expression (34) generalizes the usual assumption that k and
kT are proportional to each other, where the proportionality
coefficient is considered to be constant.7,70,71 It is worth noting
that k defined in this way is nonnegative by definition. The
latter represents a serious problem if the Germano dynamic
concept72 is applied.36 According to the realizability condition
|ν∗t | ≤ 23/48 derived in Sec. II combined with νt = Ce∆

2 |S̃ |,
the stress realizability condition for the LDMKE is given by

|Ce | ≤
23

24
√

3

k

∆2 |S̃ |2
=

23

24
√

3

kT

(∆T )2 |S̃ |2
, (35)

where Eq. (34) was applied.
Next, we consider the original dynamic Smagorinsky

model, which will be stabilized by using our dynamic bound
approach. This model applies an equilibrium expression for k
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in the SGS viscosity νt leading to νt = Ce∆
2 |S̃ |, where Ce is

obtained via

Ce = −
Ld

ijHij

HmnHmn
. (36)

Here, the expression H ij is given by

Hij = 2
(
∆

T
)2
|S̃ |S̃ij − 2∆2 |S̃ |S̃ij . (37)

According to the results given above, see Eq. (35), Ce is
dynamically bounded by

|Ce | ≤
23

24
√

3

kT

(∆T )2 |S̃ |2
. (38)

Let us comment on this approach. First, it was shown that the
original DSM is not supported by a theory based derivation
of dynamic models.24,25 The theory based approach implies
Eq. (33) for Ce, which differs from the original DSM. The
difference given by Eq. (33), basically, avoids the develop-
ments of numerical instabilities. Second, the main motivation
of involving the DSM in this model comparison was to con-
sider the possibility to transfer the dynamic bound concept
presented here to other dynamic eddy-viscosity type models,
in particular models that apply an equilibrium expression for
the subgrid kinetic energy k. The popular DSM is used as an
example for such a model.

C. LDMK-CC, LDME, and DSMS comparison: Stability

After introducing the LDME and DSMS in Sec. VII B
and excluding the LDMK-PTV from further comparisons in
Sec. VII A, we focus now on the comparison of the LDMK-CC,
LDME, and DSMS with respect to their stability, this means
we consider the conditions under which it is possible to finish
simulations. The stability of the LDMK was already discussed
in Sec. IV.

First, we consider the LDMK-CC. It needs the specifica-
tion of a non-zero Cclip: the setting Cclip = 0 cannot be seen

TABLE II. LDMK-CC (using different Cclip), LDME, and DSMS stability
analysis for different ∆t.

Simulation ∆t = 0.001 ∆t = 0.002 ∆t = 0.004 ∆t = 0.008 ∆t = 0.01

LDMK-CC-0.02 Stable Stable Stable Stable Stable
LDMK-CC-0.05 Stable Stable Stable Stable Stable
LDMK-CC-0.075 Stable Unstable Unstable Unstable Unstable
LDMK-CC-0.2 Unstable Unstable Unstable Unstable Unstable
DSMS-1B Unstable Unstable Unstable Unstable Unstable
DSMS-0.5B Stable Stable Stable Stable Stable
LDME-1B Unstable Unstable Unstable Unstable Unstable
LDME-0.5B Stable Stable Stable Stable Stable

to be an attractive alternative because it excludes the relevant
backscatter. Unfortunately, it turns out that the specification
of an appropriate, not too small Cclip is a rather difficult prob-
lem: the choice of appropriate Cclip values depends on the
type of flow, Reynolds number, the simulation time step, and
grid resolution. An illustration of these problems is given in
Table II, which summarizes the stability analysis of differ-
ent LDMK-CC models. For Cclip = �(0.02,0.05), we see that
the LDMK-CC model is stable for a wide range of time steps
ranging from 10�3 to 10�2, which corresponds to CFL numbers
ranging from 0.1 to 0.8. For Cclip = �0.075, the LDMK-CC is
only stable for the smallest time step, and the LDMK-CC is
unstable for all time steps for Cclip = �0.2.

Table II also presents the DSMS and LDME stability anal-
ysis results. It was surprising that both the DSMS-1B and
LDME-1B turned out to be unstable. In particular, the LDME-
1B and DSMS-1B became unstable after 7.5 and 2.5 FTT,
respectively. Stability of both these models for a wide range of
time steps was accomplished if these models were used with
half bounds, this means as LDME-0.5B and DSMS-0.5B. In
this regard, it has to be noted that the realizability bounds for
both the LDME and DSMS do not exactly represent realizabil-
ity bounds, but they have to be considered as approximations
to the real bounds (which are unknown because of the missing
knowledge of the subgrid kinetic energy).

FIG. 15. LDMK time histories of the eddy viscosity ratio (black lines) at P1 (left) and P2 (right). Red lines show the realizability bounds and black circles show
the time at which νt hits the realizability bounds. The time step is ∆t = 0.001.
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D. LDMK-CC, LDME, and DSMS comparison:
Performance

The next step is to obtain insight into the performance
of LDMK-CC, LDME, and DSMS models in simulations. It
turned out that there were no significant differences between
different dynamic models with respect to the calculation of

mean velocities and Reynolds stresses. One option to obtain
further insight into model features would be the comparison
of backscatter. We did this and saw that the DSMS produces
(in contrast to the other models) significant backscatter peaks
close to the wall. However, the evaluation of these features
suffers from missing data for comparisons. Thus, to illustrate
model performance differences, we decided to focus on the

FIG. 16. Unstable LDMK-CC-0.2 (black lines) and stable LDMK-CC-0.05 (blue lines) eddy viscosity ratios at P1 (left) and P2 (right). Circles in corresponding
colors (blue and black, respectively) show the times at which νt /ν hits the bounds. Red lines show the bounds. The time step is ∆t = 0.001.
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real difference of models in simulations: the instantaneous sub-
grid viscosity, which we consider normalized to the constant
kinematic viscosity.

We considered a time period of 2.5 FTT because
the DSMS-1B model becomes unstable after this time.

Corresponding plots of the stable LDMK, the unstable LDMK-
CC-0.2 and stable LDMK-CC-0.05, the unstable LDME-1B
and stable LDME-0.5B, the unstable DSMS-1B and stable
DSMS-0.5B are shown in Figs. 15–18, respectively, at probe
points P1 and P2. Table III provides the hitting probabilities

FIG. 17. Unstable DSMS-1B (black lines) and stable DSMS-0.5B (blue lines) eddy viscosity ratios at P1 (left) and P2 (right). Circles in corresponding colors
(blue and black, respectively) show the times at which νt /ν hits the bounds. Red lines show the bounds. The time step is ∆t = 0.001.
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FIG. 18. Unstable LDME-1B (black lines) and stable LDME-0.5B (blue lines) eddy viscosity ratios at P1 (left) and P2 (right). Circles in corresponding colors
(blue and black, respectively) show the times at which νt /ν hits the bounds. Red lines show the bounds. The time step is ∆t = 0.001.

of realizability bounds of these models at P1 and P2. The hit-
ting probabilities are calculated for 2.5 FTT corresponding to
25 000 iterations.

The comparison of the LDMK with the LDMK-CC shows
that νt /ν and its bounds behave very similar: the range of
variations is approximately the same. Overall, these curves

correspond to expectations for a clipping, the clipping should
not imply significant changes of variations considered but
only provide relatively minor limitations. For the time period
considered, there is no obvious difference between unsta-
ble LDMK-CC-0.2 and stable LDMK-CC-0.05 variations. A
closer look shows that the LDMK-CC concept gives room for
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TABLE III. LDMK, LDME, and DSMS hitting probabilities at P1 and P2:
HP− (HP+) refer to negative (positive) bound hittings.

Simulation HP−P1 HP+
P1 HP−P2 HP+

P2

LDMK-1B 0.03 0.02 0 0
DSMS-1B 0.03 0.25 0.03 0.16
DSMS-0.5B 0.15 0.52 0.12 0.47
LDME-1B 0.01 0.17 0 0.02
LDME-0.5B 0.08 0.38 0.09 0.36

the existence of very strong non-equilibrium states represented
by significant peaks in the bound curves (see in particular, the
P1 curves), which are not seen in the corresponding LDMK
model curves. It is plausible that such strong non-equilibrium
states may be the reason for instabilities: depending on the
impact of these νt /ν bound peaks, this fact may explain the
sensitivity of the LDMK-CC stability to choosing the clipping
parameter.

The comparison of the LDMK with the unstable DSMS-
1B reveals the significant reduction of the range of dynamic
νt /ν variations given by the much more restrictive DSMS
bounds. The use of the stable DSMS-0.5B further restricts the
range of νt /ν variations significantly. It turns out that the need
to stabilize the model via the use of half bounds has significant
consequences for the dynamic νt /ν variation. The DSMS-0.5B
curves show that there are extended periods of time where the
νt /ν variation is equal to the corresponding bound variation.
This means that the dynamic model parameter calculation via
minimizing the local error does not work anymore. Hence,
νt /ν is calculated on an unphysical basis. The direct com-
parison of DSMS-1B and DSMS-0.5B curves also does not
support this approach. As argued above regarding the LDMK-
CC discussion, the use of a clipping (as given by using half
bounds) should not imply drastic changes of νt /ν variations.
However, the latter is the case, as may be seen in the last row of
Fig. 17. Table III quantifies these observations. This table
shows, for example, that at both P1 and P2, the stable DSMS-
0.5B implies a probability of upper bound hittings of about
50%. This means, νt /ν variations are substantially governed
by the bound variations, which is in contrast to the dynamic
modeling concept applied. Overall, the use of Eq. (38) in
conjunction with the DSM cannot be recommended.

There may be two reasons for the DSMS shortcomings,
the behavior of the DSMS can be caused by the known short-
comings of the DSM concept, or, it can be caused by the
approximation applied to provide an equilibrium value for the
subgrid kinetic energy. This question can be addressed by con-
sidering the corresponding behavior of the LDME shown in
Fig. 18. We see that the range of νt /ν variations allowed by
the bounds is less restrictive than the corresponding range
of the DSMS. However, compared to the LDMK, there is
still a significant restriction of νt /ν variations. Similar to the
DSMS model behavior, we see that there are extended periods
of time where the νt /ν variation is equal to the correspond-
ing bound variation. The direct comparison of LDME-1B and
LDME-0.5B curves shows advantages compared to the DSMS:
we see that the bounding does not have a very strong
effect on νt /ν variations. The comparison of DSMS and

LDME hitting probabilities given in Table III also supports the
view that the LDME has advantages compared to the DSMS
(for example, the probability of upper bound hittings implied
by the LDME-0.5B is clearly reduced compared to the DSMS
case). Overall, however, the significant reduction of νt /ν vari-
ations compared to the LDMK in conjunction with unphysical
variations of νt /ν over extended periods of time do not pro-
vide support for the use of Eq. (38) in conjunction with the
LDME. Therefore, first of all, the DSMS and LDME problems
reported here indicate that the reason for these shortcomings
is given by the use of the k approximation equation (34). In
other words, the use of exact local realizability conditions via
the calculation of k has clear advantages compared to the use of
approximations for k.

VIII. SUMMARY AND CONCLUSIONS

PDF-realizable dynamic LES models can be derived from
an underlying stochastic model for turbulent velocities. Such
dynamic LES are proven to have significant advantages com-
pared to the models that do not honor realizability con-
straints.24–26,28 In previous applications to turbulent channel
flows and the turbulent Ekman layer, such models enabled
stable simulations without the need for clipping or averag-
ing dynamic model parameters.25,26 However, with respect to
more complex flows, it was found that such dynamic mod-
els are not always computationally stable.28 To overcome
this problem, a local dynamic bounding of model parame-
ters, which ensures the realizability of the SGS stress tensor,
was derived and tested here. The main result derived is the
conclusion that a PDF-realizable model which involves the
calculation of the subgrid kinetic energy is computationally
stable if it is also stress-realizable. On the other hand, a model
that is not stress-realizable can become unstable.

We considered reasons for instability in order to better
understand why realizability and stability are closely related
to each other. It was assumed previously that long-term corre-
lations of negative dynamic model parameters are responsible
for instability.12 We did not find support for this view: we
concluded that strong imbalances of Cs standard deviations
in space and time (which are excluded if the model is stress-
realizable) imply instabilities. In particular, we concluded that
instability is caused by the stable spatial organization of sig-
nificant unphysical states, which are represented by wall-type
gradient streaks.

We also compared the stress-realizable dynamic model
obtained with other dynamic LES models. The option to com-
bine our dynamic LES model with a constant clipping (which
corresponds to the use of the LDMK-CC) was found to be lit-
tle attractive. For a certain choice of the clipping constant, the
LDMK-CC has unpredictable stability properties because of
the production of strong non-equilibrium states (bound peaks).
The LDMK-PTV, which ensures a positive total viscosity, was
identified to be equivalent to a LDMK-CC which only allows
small negative dynamic parameter values: so this model does
not offer a promising alternative. We also discussed the trans-
fer of our dynamic bounding approach to equilibrium models
that do not solve for the subgrid kinetic energy: we considered
the equilibrium version of our LDMK (the LDME) and DSM



105104-21 R. Mokhtarpoor and S. Heinz Phys. Fluids 29, 105104 (2017)

stabilized in this way (the DSMS). Although the models per-
form differently (the LDME offers clear advantages compared
to the DSMS), our conclusion was that these bounded equi-
librium models cannot perform in a comparable way than the
LDMK: they suffer from a significant reduction of subgrid vis-
cosity bounds and unphysical bound calculations for extended
periods of time. The reason for that is the algebraic approxi-
mation for the subgrid kinetic energy, which introduces local
imbalances.

Our overall conclusion is the following. We may consider
optimal dynamic LES as having at least the following proper-
ties. First, such LES should be local in physical space without
involving artificial information (artificial clipping parameters
or correlations, see the third paragraph of the Introduction).
Second, such LES should be stable for a wide range of simu-
lation time steps, Reynolds numbers, and numerical schemes.
These properties are not trivial, but dynamic LES suffers from
problems with these properties over decades. The main result
of our studies is that it is possible to design such LES. It
requires a strict physical consistency: a PDF-realizable and
stress-realizable LES model. Here, strict stress-realizability
requires the inclusion of the subgrid kinetic energy in the LES
calculation. LES models that do not honor such strict physical
consistency can become unstable.
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