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The description of turbulent mixing and chemical reactions by Lagrangian probability density
function methods offers some significant advantages over other methods, mainly due to the
simulation of mixing processes and the exact treatment of chemical transformations. A key problem
of such methods is the information on the time scales of processes, because they determine the
dynamics and intensity of mixing. This question is considered for stratified flow. Different models
are presented for the development of these time scales in time and their stationary spatial patterns
in dependence on shear and stratification. The model predictions are shown to be in agreement with
large-eddy simulations of stratified homogeneous shear flow. Two further applications of these
models are considered: the description of transitions between flow regimes �characterized by
different scaling quantities� in the stationary atmospheric surface layer and, second, the simulation
of buoyant plume rise. It is shown that the predictions of the stationary frequency model agree with
measured data. The consideration of limit cases of this model leads to connections between
second-order closure parameters and �critical� flow numbers that characterize these transitions.
These relationships are shown to be very advantageous for the application of closure models. A new
flow number that characterizes the transition to free convective flow under unstable stratification is
introduced here in analogy to the critical gradient Richardson number, which characterizes the onset
of turbulence in stably stratified flow. The second application provides a new theory for buoyant
plume rise. Two parameters that describe the turbulent mixing in the entrainment and extrainment
stages of plume rise are explained as ratios of the relevant time scales. The two-thirds power law of
buoyant plume rise, which is observed for nonturbulent and neutrally stratified flow, is obtained
without having to make ad hoc assumptions. For turbulent flow, the plume’s leveling-off is
calculated in accord with measurements. © 1998 American Institute of Physics.
�S1070-6631�98�02504-5�

I. INTRODUCTION

Lagrangian probability density function �PDF� methods
enable a much more comprehensive description of turbu-
lence than do two-equation or Reynolds-stress models, more-
over they are still tractable computationally.1–9 The great
advantage of this approach is that it enables the exact repre-
sentation of chemical reactions, which is not the case with
other methods,1 where errors of several orders of magnitude
may arise from insufficient approximations.4,8 Further, turbu-
lent mixing �e.g., between a buoyant plume and the ambient
fluid, see Sec. VI� can be described by using these methods
without the need to make ad hoc assumptions on entrainment
processes. This can be done by considering the motion and
properties of all the fluid particles of the flow, which re-
quires, consequently, Lagrangian equations that are consis-
tent with Eulerian budget equations for the turbulence.

One approach to arriving at such equations is the appli-
cation of partly modeled Eulerian, Reynolds-averaged, hy-
drodynamic equations for moments up to second order as a
guideline for the derivation of the stochastic Lagrangian
theory;10–13 this means that stochastic processes that have

known Eulerian budgets are simulated. One important prob-
lem when designing such Lagrangian PDF models is the
scaling of these complex interacting processes for stratified
shear flows. Essentially, this problem reduces to the estima-
tion of the dissipation time scale �, which defines a charac-
teristic turbulence frequency ����1. When adopting the
relationship between Lagrangian stochastic models and
second-order moment equations, the characteristic frequen-
cies of all the other processes are found to be proportional to
� �or they are modeled as being dependent on this
quantity�.14 The same problem of estimating � arises if a
Lagrangian stochastic equation for the frequency is postu-
lated, because the change of � has to be specified in order to
close the joint velocity–dissipation PDF equation.15,16

The calculation of this characteristic turbulence fre-
quency � �or, alternatively, of the dissipation� is a central
question in second-order modeling. It is accepted that a great
deal of uncertainty in respect to two-equation models or
Reynolds-stress models lies in the transport equation for �
that complements these equations.17,18 There are various
methods for the estimation of �, but these often require the
solution of many complicated partial differential
equations.17,19 The consideration of temperature effects con-
siderably increases the complexity of these equations. Thus-
the application of these methods to providing time scale in
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formation for particle models would appear to be very ex-
pensive and to be related to considerable �numerical� error
influences �see Sec. II B�, which is of relevance in respect to
efficient computation.20

The calculation of � in Lagrangian PDF methods for
stratified shear flows is investigated here. First, Lagrangian
stochastic models and their relationship to second-order mo-
ment equations are considered. Second, a model for the time
behavior of � is presented. Its application to the simulation
of developing anisotropy is addressed in Sec. III. The results
are shown to be in accord with large-eddy simulation �LES�
and experimental data for stratified flows. Another model for
the estimation of the stationary values of � in inhomoge-
neous flows is derived in Sec. IV and its predictions are
compared with those of the model presented in Sec. III. In
this second approach, � is calculated as a consequence of
second-order budget equations of turbulence. In Sec. V, we
discuss the application of these models to the explanation of
transitions between flow regimes �characterized by different
scaling quantities� in the stratified atmospheric surface layer.
The consideration of these transitions reveals relationships
between the second-order closure parameters and flow num-
bers which characterize these limit cases. In Lagrangian
equations, the closure parameters play a different role than
they do in Eulerian transport equations for moments because
they determine quantitatively the one-point joint velocity–
temperature PDF.21 Thus, these connections permit the ad-
justment of the turbulence statistics to specific flow charac-
teristics. In Sec. VI, the turbulent mixing between a buoyant
�stack� plume and the ambient flow is considered. Theories
previously applied to this phenomenon are based on ad hoc
assumptions, which is essentially related to questions of the
scaling of turbulent mixing, i.e., its dependence on shear and
stratification. This problem is solved here with the models
presented for � where the two-thirds power law is derived as
well as �entrainment� parameters that characterize the mixing
intensity and determine, e.g., the final plume height.

II. LAGRANGIAN STOCHASTIC THEORY AND
TURBULENCE BUDGET EQUATIONS

A turbulent flow is considered which is described by
Reynolds-averaged Navier–Stokes �RANS� equations up to
second order. The turbulence budget equations �with mod-
eled pressure redistribution and dissipation terms� are pre-
sented in Sec. II A. In Sec. II B, we consider Lagrangian
equations that provide a theory of turbulence as being the
stochastic motion of all the fluid particles. Eulerian transport
equations for all moments of the one-point velocity–
temperature PDF can be derived from these Lagrangian
equations. The equations depend on the choice of coeffi-
cients in the Lagrangian equations, which are chosen here
such that the Eulerian budget equations presented in Sec.
II A are satisfied exactly. More details of the derivation, i.e.,
the estimation of coefficients, can be found elsewhere, to-
gether with a discussion of different equation types and the
relations to approaches applied previously.13 The Lagrangian
equations presented in Sec. II B reveal, in particular, the rel-
evance of models for the turbulence frequency �.

A. Turbulence budget equations

The Eulerian �subscript E� velocity UE(x,t) and poten-
tial temperature �E(x,t) at the position x�(x1,x2,x3) and
time t are considered together in a four-dimensional state
vector ZE(x,t)��UE(x,t),�E(x,t)� . The ensemble average
of the component k of ZE is denoted by �ZE

k 	, and z�ZE

��ZE	�(u ,
) are the fluctuations. The equations for the
mean fields �ZE

k 	 are not presented here13 because they are
not essential to the analysis below. All the variances of the
velocity and potential temperature fields are described as el-
ements of the matrix of second moments

V�� �u1u1	 �u1u2	 �u1u3	 �u1
	

�u2u1	 �u2u2	 �u2u3	 �u2
	

�u3u1	 �u3u2	 �u3u3	 �u3
	

�
u1	 �
u2	 �
u3	 �
2	

� . �1�

The elements of V are denoted by small superscripts if
they run from 1 to 4 and by capital superscripts if they run
only over velocity components from 1 to 3. The transport
equations for the moments of second-order Vi j are consid-
ered in an approximation for the dissipation according to
Kolmogorov’s theory22 and Rotta’s23 approximation of a
return-to-isotropy pressure redistribution is applied as a
simple example. The sum VKK over velocity autovariances
gives twice the turbulent kinetic energy �TKE� q2�VKK

�summation over repeated superscripts is assumed� and the
ratio ��q2/(2�) defines a dissipation time scale �, where �
denotes the mean dissipation rate of TKE. The inverse time
scale � gives the turbulence frequency ����1. The second-
order moment equations may then be written13

DVi j

Dt
�Ri j�Pi j

��
k1

2� � Vi j�
q2

3
� i j ���g� i3�

k1�k3

2�
� i4�V4 j

��g� j3�
k1�k3

2�
� j4�V4i

�
�k1�2 �/3•q2��2k3�2k4�k1�V

44

2�

�� i4� j4�
q2

3�
� i j , �2�

where the Boussinesq approximation and the incompressibil-
ity constraint are applied. Here, the operator D/Dt(•)
���/�t��/�xK�ZE

K	�(•) is used,  is the thermal expansion
coefficient, and g is the acceleration due to gravity. The
equation system �2� is not closed because the gradients of
triple correlations Ri j���zKziz j	/�xK appear as unknown
terms. This closure problem is not considered here because it
does not play any role in the derivation of the Lagrangian
theory considered next. The production Pi j��zKzi	��ZE

j 	/
�xK��zKz j	��ZE

i 	/�xK is proportional to the gradients
��ZE

J 	/�xK of the mean velocity (J�1,2,3), but it is also
proportional to the gradients ��ZE

4	/�xK of the potential tem-
perature field. Only the terms on the right-hand side of �2�,
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which represent the redistribution and dissipation, are mod-
eled. The closure parameters k1 and k3 arise from Rotta’s
return-to-isotropy theory,23 and k4 describes the ratio of the
time scales for the dissipation of TKE to that of the potential
temperature variance. A variety of different estimates for
these closure parameters can be found in the literature, as
discussed in Sec. V. These parametrizations agree with those
applied, e.g., by Launder,24 with the exception of the rapid
pressure term �proportional to a very small parameter k2 , see
Sec. V�, which is neglected here together with a correspond-
ing term in the heat flux equation.13 This model is the sim-
plest possible for the return to isotropy,10,25 where the whole
of the redistribution is modeled by the slow pressure fluctua-
tions. The contributions of other terms can be partly compen-
sated for by variations of the values for the closure
parameters.26 The simplicity of Eq. �2� makes it well suited
to a demonstration of the way in which such equations can
be applied as guidelines for the development of a Lagrangian
theory.

Equation �2� requires one important additional ingredi-
ent: a model for the calculation of the turbulence frequency
����1 that determines the scale of the turbulence. The de-
velopment of equations for � and some related questions
have been reviewed, e.g., by Wilcox. He presents as a state-
of-the-art formulation of such an equation17,19

D

Dt
����2� �C�2�1 ���C�1�1 �

P

� �
�

�

�x j � � ���C�

q2

2� � ��

�x j� , �3�

where P is the production of TKE, C�1 , C�2 , C� , and � are
constants �their estimation is discussed by Wilcox, standard
values are C�1�1.56, C�2�1.9, C��0.09, and ��0.5� and
� is the kinematic molecular viscosity. The production–
dissipation ratio of TKE, P��PLL/2�gV34 to �
�q2/(2�), can be obtained by adopting the definition of
PLL�2�zKzL	��ZE

L	/�xK as

P

�
�

2�

q2 � �VKL
��ZE

L	
�xK �gV34� , �4�

which also contains terms related to the buoyancy produc-
tion. The model �3� is denoted the basic frequency model
�BFM�. This equation is postulated in a formal analogy to
transport equations for the TKE. The terms on the right-hand
side of �3� represent the main processes that cause changes of
� in space and time: dissipation �the first term�, production
�the second term�, and diffusion �the third and fourth terms�.
This model plays an essential part in the following explana-
tions because it represents �due to the relationships between
the Eulerian and Lagrangian theory� one way to determine
the time scales in Lagrangian PDF methods. This is dis-
cussed in Sec. II B in conjunction with the presentation of
the Lagrangian theory.

B. Lagrangian stochastic theory

The flow considered in Sec. II A is now described in the
Lagrangian framework. A Lagrangian theory that is fully
consistent with the equations for the mean velocities and

temperatures and the turbulence budget equations �2� can be
derived by considering linear equations for the stochastic
process ZL(t)��UL(t),�L(t)� , where UL(t) and �L(t) are
fluid particle velocities and potential temperature �the sub-
script L denotes a Lagrangian quantity�, respectively. Such
equations may be written as �I runs again from 1 to 3 in
contrast to i�

d

dt
xL

I � t ��ZL
I � t �, �5a�

d

dt
ZL

i � t ���ai	�Gi j�ZL
j ��ZE

j 	��bi j
dW j

dt
, �5b�

where dW j/dt is a Gaussian process with vanishing mean
values, �dW j/dt	�0, and with uncorrelated values at differ-
ent times, �dWi/dt(t)•dW j/dt�(t�)	�� i j�(t�t�). The
symbol � i j is the Kronecker delta and �(t�t�) is the delta
function. This approach permits the derivation of Lagrangian
equations which are explicit in the velocities and tempera-
tures. This is in contrast to approaches3,13 that are aimed at
the consistency of the Lagrangian theory with evolution
equations for the one-point joint velocity–temperature PDF
of the flow. The latter require information on this PDF,
which is a nontrivial problem that has previously been
handled by empirical methods.9

The constraint of consistency between the averaged con-
servation equations for momentum and potential temperature
derived from �5a� and �5b� and those obtained within the
Eulerian closure theory determines �ai	. The variance equa-
tions derived from �5a� and �5b� are identical to Eq. �2�, if
the matrix b is determined by13

B�
1

4� � C0q2 0 0 0

0 C0q2 0 0

0 0 C0q2 0

0 0 0 C1�

2	

� , �6a�

where Bi j� 1
2b

ikbk j, and, if the matrix G is given by

Gi j��
k1

4�
� i j�

k1�k3

2�
� i4� j4�g� i3� j4 . �6b�

The constants in �6a� depend on the closure param-
eters, C0�(k1�2)/3 and C1�2k3�2k4�k1 . A discussion
of the nonuniqueness of G can be found elsewhere.13 Addi-
tional constraints are required �e.g., to correlations �dZL

i (t)/
dt ZL

j (t)	 with i� j� in order to estimate G completely but
these influences can be neglected in many applications. The
construction of these Lagrangian equations �5a� and �5b�
confirms the realizability of the second-order moment equa-
tion �2� provided that the coefficients �ai	, Gi j, and bi j are
bounded. We note that these variance equations are repro-
duced without any assumptions about the transport terms
Ri j. Hence, the incorporation of information on the time
scale � is most essential for the Lagrangian equations. This
means that these equations depend on � and the closure pa-
rameters k1 , k3 , and k4 if mean quantities are derived from
particle properties.1,7,13
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The application of the BFM to the modeling of � in
Lagrangian PDF methods would be related to different prob-
lems. First, Eqs. �3� and �4� combined with �2� are not closed
because of the appearance of the triple correlation gradients
in the Eulerian transport equation �2�. Second, the spatial
transport terms in �3� and in Eq. �2� would represent ‘‘Eule-
rian elements’’ in a Lagrangian theory of the turbulent flow,
which would cause a considerable computational effort and
corresponding numerical problems. Third, the formulation of
the spatial gradient terms on the right-hand side of �3� cannot
be seen to be better founded than other choices. With the
same argument to represent the influence of the main pro-
cesses, one can postulate transport equations similar to �3�
for � �recent developments of models for the TKE dissipation
rate have been reviewed, e.g., by Hanjalić�27 or for �2.17,19

The transformation of these equations into transport equa-
tions for � recovers the dissipation and production terms on
the right-hand side of �3�, but different spatial transport
terms are obtained.

Thus, to provide a time scale determining equation for
particle methods for stratified flow two methods are consid-
ered below. The first approach neglects the ‘‘Eulerian ele-
ments’’ in the BFM �3�, i.e., the spatial transport terms. This
model for the development of the turbulence frequency � in
time is investigated in Sec. III and applied to the calculation
of the buoyant plume rise in Sec. VI. The stationary spatial
patterns of � are calculated in the second approach without
reference to the BFM as a consequence of turbulence equa-
tion �2�. This is explained in Sec. IV and implications for the
description of the atmospheric surface layer are considered in
Sec. V.

III. THE HOMOGENEOUS FREQUENCY MODEL

In Sec. III A, the BFM �3� is considered for a horizon-
tally homogeneous flow with a stationary forcing by shear

and stratification. This specification illustrates in more detail
the problems that would be related to its application in par-
ticle methods for stratified flow. The above-described first
approach to solving these questions is then developed in Sec.
III B, where the BFM is simplified.

A. The BFM for a flow with stationary forcing

As is often done in geophysical applications, we con-
sider a horizontally homogeneous flow with a mean horizon-
tal velocity U along the x1 axis. The mean flow is considered
to be stationary, such that it depends only on the vertical
coordinate x3, i.e., �ZE	��U(x3),0,W ,�(x3)� . Here, W is
the mean vertical velocity, which is constant due to the in-
compressibility constraint, and � is written for the mean
Eulerian potential temperature. This assumed stationarity
simplifies the explanations and comparisons given below and
it provides a sufficient frame for all the flows considered:
homogeneous shear flow, the stationary atmospheric bound-
ary layer, and the buoyant plume rise, where the changes of
the turbulence in time �which are determined by �� are con-
sidered to be much faster than those of the mean fields.28

These assumptions in respect to the mean fields provide sta-
tionary time scales that describe the forcing by shear and
stratification �see Sec. V A�, �U���U/�x3��1 and ��
��g��/�x3��1/2, respectively.

The evolution of the dissipation time scale � forced by
�U and �� is described by the BFM �3� combined with the
turbulence equation �2�. It is advantageous to consider a
combination of t and � with the mean velocity gradient; i.e.,
t��t(�U/�x3) and the dimensionless time scale T
��(�U/�x3) are introduced. The couplings in Eq. �2� are
reduced for the flow under consideration and one obtains for
the variances the equation system

D

Dt� � V̂13

V̂14

V̂34

V̂33

V̂44

q̂2

� �� R̂13

R̂14

R̂34

R̂33

R̂44

R̂KK

� �
1

T � �k1/2 T 0 �T 0 0

�RiT �k3/2 �T 0 0 0

0 0 �k3/2 �RiT T 0

0 0 2T �k1/2 0 �k1�2 �/6

0 0 �2RiT 0 �k4 0

�2T 0 2T 0 0 �1

� � V̂13

V̂14

V̂34

V̂33

V̂44

q̂2

� , �7�

where the operator D/Dt�(•)���/�t��W(�U/�x3)�1

��/�x3](•) and the gradient Richardson number Ri
��g��/�x3�/��U/�x3]2 are used. The matrix V of
second-order moments and the matrix R of gradients of
third-order moments are here modified to

V̂�
1

q0
2 � �u1u1	 �u1u2	 �u1u3	 ��u1
	

�u2u1	 �u2u2	 �u2u3	 ��u2
	

�u3u1	 �u3u2	 �u3u3	 ��u3
	

��
u1	 ��
u2	 ��
u3	 �2�
2	

� ,

R̂�
1

q0
2 � R̂11 R̂12 R̂13 �R̂14

R̂21 R̂22 R̂23 �R̂24

R̂31 R̂32 R̂33 �R̂34

�R̂41 �R̂42 �R̂43 �2R̂44

� , �8�

such that all elements of V̂ and R̂ are dimensionless. These
quantities as well as q̂2�q2/q0

2 are normalized to the initial
value of twice the TKE q0

2, and the abbreviation
��g(�U/�x3)�1 is applied in �8�. The equation for V̂11

reads
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DV̂11

Dt�
�R̂11��

k1

2T
V̂11�2V̂13�

k1�2

6T
q̂2, �9�

which is coupled with �7� via q̂2 and V̂13. The V̂22 are deter-
mined by V̂22� q̂2�V̂33�V̂11, and the remaining compo-
nents of V̂ satisfy

D

Dt� � V̂12

V̂23

V̂24
� �� R̂12

R̂23

R̂24
� �

1

T � �k1/2 �T 0

0 �k1/2 1

0 �RiT �k3/2
�

�� V̂12

V̂23

V̂24
� . �10�

Consequently, the estimation of � through the BFM �3�
coupled with �7� requires, even for this simplified flow, the
solution of seven partial differential equations and informa-
tion about the gradients of third-order terms, which are es-
sential ingredients of turbulence models for stratified flow.21

This effort to provide � for Lagrangian particle methods �and
the related influences of numerical errors� is in obvious con-
tradiction with the practical requirements for calculations
where, e.g., a detailed chemistry is additionally considered.
Moreover, there are unsolved questions as to the justification
of the spatial transport terms on the right-hand side of �3� as
discussed above.

B. The homogeneous frequency model

We now consider an approximation where the spatial
transport terms of � are neglected in the BFM �3�. Corre-
spondingly, the influence of all the other ‘‘Eulerian ele-
ments’’ �the spatial transport terms of the variances V̂ and
the gradients of triple correlations R̂� on the estimation of �
is also neglected in Eq. �7�. The BFM �3� then reads

d

dt�
T��C�2�1 ���C�1�1 �2T� �

V̂13

q̂2 �
V̂34

q̂2 � . �11�

This model is denoted the homogeneous frequency model
�HFM� because of the neglect of spatial transport terms. By
adopting the definition �4� of P/� , this relation can also be
written as dT/dt��(C�2�1)�P/�•(C�1�1). Hence, T
changes as long as the dissipation and production do not
balance each other. If the dissipation time scale reaches a
stationary balance with the time scale of forcing �U

���U/�x3��1, i.e., if T becomes constant, relation �11� pro-
vides a constant asymptotic value p�(C�2�1)/(C�1�1) of
P/� . The values given above for C�1 and C�2 yield p
�1.6, which is a typical value for a homogeneous shear
flow.29

Consequently, turbulent flows can be described by the
HFM �11� where P/� becomes constant asymptotically. This
is ensured at least for two benchmark turbulent flows: an
homogeneous shear flow and the logarithmic layer of an
equilibrium turbulent boundary layer. The first flow consti-
tutes a basic building-block for free turbulent shear flows and
the latter flow serves as a cornerstone for the calculation of
practical wall-bounded turbulent flows of engineering and

environmental interest.29 This condition permits the applica-
tion of the PDF approach to stratified geophysical flows �the
atmospheric boundary layer, for instance�, where similar as-
sumptions are often applied.30,31

In Sec. VI, we discuss Eq. �11� in relation to its ap-
plication to the explanation of buoyant plume rise. It is
important to note that the consideration of combinations of
� with the shear �U/�x3 permits the calculation of the
time development and spatial patterns of �
�(�U/�x3)/T(Ri,t�U/�x3) in dependence on the vertical
profiles of shear and stratification. This is illustrated below
where the same � as provided by the BFM is obtained by
means of �11� for a flow with a logarithmic mean velocity
profile. This approach can be also applied to unsheared tur-
bulence. This is demonstrated in respect to buoyant plume
rise and in Sec. V, where we show that the stationary �
combines then with the vertical temperature gradient.

This frequency model differs from that applied by
Pope16 for a neutrally stratified inhomogeneous flow because
of the couplings with the second-order equation �7�. In his
model, the � equation is decoupled from the variance equa-
tions by the assumption that the turbulent shear stress V̂13 is
related to the mean strain rate via a turbulent viscosity, V̂13

��C�q2T/2,32,33 with C��0.09 as above �the vertical heat
flux V̂34 is equal to zero under these conditions�. In order to
assess the performance of a comparable simplification of the
complex calculation of T , let us consider a model where the
second term on the right-hand side of �11� is proportional to
T2, i.e.,

d

dt�
T��C�2�1 ��C�C�1�1 �T2. �12�

By applying the parametrization V̂13��C�q2T/2
in �11� one can see that C is equal to C� under neutral
stratification where V̂34 disappears. The introduced param-
eter C determines the asymptotic value T� of T , since C
�(C�2�1)/(C�1�1)•T�

�2. Hence, C depends on the strati-
fication because T� varies strongly with it �see below�. In
order to take this variation into account, let us apply the
relation between C and T� for the estimation of C , where T�

is assumed to be known �e.g., through the approach pre-
sented in Sec. IV�. Then, �12� becomes

d

dt�
T��C�2�1 ��1�T2/T�

2 �. �13�

This equation is solved by �I is the initial value of T at t
�0�

T�T�

T� /I�1��T� /I�1 �exp��2�C�2�1 �t�/T��

T� /I�1��T� /I�1 �exp��2�C�2�1 �t�/T��
.

�14�

Model �14� is denoted the simplified homogeneous fre-
quency model �SHFM�.

The time scale T calculated by the HFM and the SHFM
is shown in Figs. 1 and 2 for different stratified flows and
different values of the asymptotic production–dissipation ra-
tio of TKE p . This is done for the HFM by solving the
coupled equation system �7� and �11� by a Runge–Kutta pro-
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cedure with the initial conditions V̂ i j�1/3•� i j and T(t�0)
�I�1, i.e., the development of anisotropy is considered for
an initially isotropic flow. The chosen initial value of V̂44 has
only a negligible influence on the calculated curves. The val-
ues p�1 and p�1.6 are considered because they are known
to characterize the stationary features of the logarithmic layer
of an equilibrium turbulent boundary layer and an homoge-
neous shear flow, respectively.29 The parameters k1 , k3 , and
k4 are given by standard values: k1 was set to 8.3,10 k3

�6.14 provides the ratio k3 /k1�0.74, and k4�3.76 pro-
vides a critical gradient Richardson number of 0.21 �see Sec.
V�. The chosen value of Ri at unstable stratification corre-
sponds with that of Ri0 �see also Sec. V� and Ri�0.13 was
used for LES by Kaltenbach et al.34 These curves show that
the time scale T decreases with growing instability of the
flow �i.e., for smaller Ri�. For constant shear �U/�x3, this
result confirms the expectation that the time scale �
�q2/(2�) of the TKE dissipation becomes smaller with in-

creasing intensity of turbulence. T grows with a higher pro-
duction �for a higher p� because it is proportional to the
shear. Although the SHFM has the same initial and
asymptotic values �these are taken here from the HFM, but
they can also be estimated independently, as demonstrated in
Sec. IV� as the HFM, there can be considerable differences at
intermediate times. The differences are relatively small for
unstably and neutrally stratified flows; however the deviation
is larger for stable stratification.

For the homogeneous shear flow (p�1.6), the time be-
havior of the components A11 and A13 of the tensor of an-
isotropy Ai j�Vi j/q2�1/3•� i j is shown in Fig. 3. The curves
of the time scale T are given in Fig. 2 for the same stratifi-
cations. The dynamic behavior is in agreement with LES and
direct numerical simulation �DNS� data which show that the
asymptotic stage is reached if about t��6.34,35 The investi-
gation by experiment of the features of the asymptotic stage
provides relatively accurate data only for unstratified shear
flows. This knowledge was obtained in wind-tunnel studies
and has been summarized by Tavoularis and Karnik.36 Strati-
fied flow experiments provide a considerable scatter of mea-
sured data;37,38,24 more precise estimations are provided by
DNS and LES data.34,35 In Table I, the findings for the
asymptotic values of Ai j, the correlation coefficients � i j

�V̂ i j/�V̂ iiV̂ j j �without summation over repeated indices
here�, and the ratio V34/V14 obtained with the HFM are com-
pared to Tavoularis and Karnik’s results and LES data �DNS
data provide very similar results if the strength of stratifica-
tion is not too high� that are available for neutrally and stably
stratified flows.34 The data calculated by the HFM are at least
qualitatively in a good agreement with the results of experi-
ments and the LES data. It is worth emphasizing that stan-
dard values are used for the parameters k1 , k3 , and k4 for
this comparison, i.e., they are not fitted to, e.g., the LES data.
The anisotropy is somewhat overestimated by the HFM and
the T obtained is somewhat too small. However, it must be
noted that these LES data present mean values in space that
vary in time, e.g., by 3%. The relation between T and the

FIG. 1. The development of the normalized time scale T���U/�x3 in the
normalized time t��t�U/�x3 as obtained by the HFM and the SHFM for
different stratified flows and an asymptotic production–dissipation ratio of
TKE p�1.

FIG. 2. The same curves as in Fig. 1, but now for p�1.6.

FIG. 3. The development of anisotropy in the components A11 and A13 of
the anisotropy tensor for different values of the gradient Richardson num-
ber Ri where p�1.6.
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elements of the anisotropy tensor is demonstrated in Sec. V
in relation to the investigation of the effect of flow number
variations. These results confirm the idea that the time scale
of the TKE dissipation becomes smaller �i.e., T also becomes
smaller for approximately constant shear� if the anisotropy
becomes stronger. A corresponding adjustment between the
results of the HFM and the experimental results and LES
data provides much better agreement. The equality of the
components A22 and A33 at Ri�0 is caused by the neglect of
rapid pressure terms in the HFM. Nevertheless, these terms
are also dropped in the following sections because our pri-
mary interest is in the time scale estimation.

IV. THE STATIONARY FREQUENCY MODEL

The HFM explains the variation of the dissipation time
scale � with changes of turbulence, which is represented by
the variance terms in �11�. Under stationary conditions, this
model provides for the dependence of the normalized time
scale T��(�U/�x3) on the turbulence

p�2T� �
V̂13

q̂2 �
V̂34

q̂2 � , �15�

where p�(C�2�1)/(C�1�1) is the stationary value of P/� .
This relation corresponds to �4� for the considered flow, i.e.,
it can also be obtained as a consequence of the definitions of
P , ��q2/(2�), as well as for T and V̂ . Consequently, the
dependence of T on the turbulence �i.e., on the normalized
variances in the brackets� is determined under stationary con-
ditions through �15� if p is given. It is worth emphasizing
that no reference is made here to the BFM or HFM. By

calculating the variances in �15� by means of the second-
order moment equation �7� for the same flow as that consid-
ered in Sec. III, one can derive an equation for the
asymptotic values of T . This is now done in order to further
assess the results obtained in Sec. III. The value p has to be
given also in the above-described approach, where it is de-
termined by the choice of C�1 and C�2 . Thus, the approach
developed below can be applied under the same conditions
as the HFM, this means at least for a homogeneous shear
flow and the logarithmic layer of an equilibrium turbulent
boundary layer.

In Sec. IV A, the second-order moment transport equa-
tion �7� is used for the calculation of the variances in �15� in
dependence on T . In Sec. IV B, this relation is converted into
an equation for T and its predictions are compared to the
stationary values provided by the HFM. Such spatial patterns
of the � field are important in many geophysical applications
where stratification effects may lead to � variations over
several orders of magnitude. Because of the lack of other
concepts, these effects are often included in an ad hoc way in
frequency calculations for dispersion models.39

A. The production–dissipation ratio of TKE

Relation �15� for T can be made much more explicit by
adopting Eq. �7� for the calculation of the variances V̂13/ q̂2

and V̂34/ q̂2. For the flow under consideration, these equa-
tions are only a consequence of the applied pressure and
dissipation parametrizations. The asymptotic variance values
are determined according to Eq. �7� by

� d13

d14

d34

d33��k1�2 �/�6T �
d44

� �� �k1 /�2T � 1 0 �1 0

�Ri �k3 /�2T � �1 0 0

0 0 �k3 /�2T � �Ri 1

0 0 2 �k1 /�2T � 0

0 0 �2Ri 0 �k4 /T

� � V̂13/ q̂2

V̂14/ q̂2

V̂34/ q̂2

V̂33/ q̂2

V̂44/ q̂2

� . �16�

Here, the abbreviations di j��DV̂i j/Dt��R̂ i j� q̂�2 are introduced for the transport terms. The calculation of V̂13/ q̂2 and V̂34/ q̂2

by �16� then yields

TABLE I. The normalized time scale T , elements of the anisotropy tensor and correlation coefficients calcu-
lated by the HFM and LES for different gradient Richardson numbers Ri, where ri�Ri/�Ri� is used. The results
of Tavoularis and Karnik’s �Ref. 36� measurements �abbreviated as TK� at Ri�0 are also shown.

Ri �0.25 0 0.13

HFM HFM TK LES HFM LES

T 2.71 4.15 4.5 5.0 8.12 5.7
A11 0.144 0.225 0.18 0.184 0.296 0.220

�A22 0.112 0.112 0.06 0.033 0.112 0.036
�A33 0.032 0.112 0.11 0.150 0.183 0.184
�A13 0.225 0.193 0.16 0.151 0.119 0.105
��13 0.593 0.549 0.48 0.493 0.388 0.365
�14/ri 0.914 0.970 ¯ 0.600 1.007 0.603

��34/ri 0.874 0.769 ¯ 0.467 0.534 0.323
�V34/V14 0.761 0.499 ¯ 0.480 0.259 0.282
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V̂34

q̂2 �
4k4RiT2�d33��k1�2 �/�6T ���2k1T�k4d34�Td44�

k1k3k4�4RiT2�2k4�k1�
, �17a�

V̂13

q̂2 �
2T��2k1Td14�2k3T�d33��k1�2 �/�6T ���d13��4�k1�2k3�T

2V̂34/q2

k1
2k3�4RiT2 . �17b�

By inserting these relations into �15�, this approach reveals
that the asymptotic values of T depend on the transport terms
di j and p . These quantities have to be specified in order to
obtain T in dependence on the gradient Richardson number
Ri.

The same problem of estimating di j and p was consid-
ered by Mellor and Yamada30 in different studies on the
applicability of closures in second-order equations for geo-
physical fluid problems. They derived a hierarchy of equa-
tions: the level 4 model takes all the derivatives di j into
account, the level 3 model neglects all derivatives but d44,
the level 2.5 model assumes that d44�0, and finally, the
level 2 model assumes p�1. They note that these levels of
models represent decreasing levels of complexity and com-
putational requirements. They found that the level 2.5 model
can be applied successfully to solve most of the problems
they considered. The approximations of this 2.5 level are
applied here also, in order to obtain a robust frequency
model for the simulation of complex processes. It is worth
emphasizing that the applied approximations are used only
for the � calculation and do not imply, e.g., changes in the
structure of the Lagrangian equations �5a� and �5b�, where �
appears. This approach differs from that discussed in Sec. III
where asymptotic values of di j are determined through the
closure of the equations by the neglect of gradients of third-
order terms. There, d13 and d33 do not vanish but they
achieve small stationary values.

When all the di j are neglected, by inserting expressions
�17a� and �17b� into relation �15� one obtains

P�
PrtT

2

Pr0T0
2�

RiT2

Ri0T0
2 � 1��p�1 �� 1�

Ri0
Pr0

� � . �18�

In this relation Prt�k3 /k1�k1k3�Ric /Ri0•4RiT2�/�k1k3

�4RiT2� is the turbulent Prandtl number Prt�RiV̂13/V̂34

�this may be seen by inserting �17a� and �17b�� and T0
2

�3k1
2/�4(k1�2)� is the value of T2 under neutral stratifica-

tion (Ri�0) for a balanced production–dissipation ratio p
�1. The numbers Pr0, Ri0, and Ric are interpreted as flow
numbers in the following section. They appear as combina-
tions of the closure parameters k1 , k3 , k4 and are given by

Pr0�
k3

k1
, �19a�

Ri0�
3

4T0
2

k1k3k4

k4�k1�4 ��3k1
, �19b�

Ric�
k3�k4

k4

Ri0
Pr0

. �19c�

Inversely, the numbers Pr0, Ric , and Ri0 determine the clo-
sure parameters k1 , k3 , and k4 , since k1��2Pr0�3Ric
�4Ri0�3Ri0 /Pr0�/�Pr0�Ri0� , k3�Pr0k1 , and k4�k3 /�1
�RicPr0 /Ri0� .

B. The stationary frequency model

For given p , �U/�x3, and ��/�x3, the derived relation
�18� represents a quadratic equation for �2. The normalized
time scale T���U/�x3 can be obtained then as a function of
p and Ri,

T2

T0
2 ��

�Ri0�Ri����pRi0�

2Ri�Ric��Ri�

����Ri0�Ri����pRi0�

2Ri�Ric��Ri� �2

�
p�Ri0

Ri�Ric��Ri�
,

�20�

where ��1�(p�1)�1�Ri0 /Pr0� and ���RicPr0�Ri0
�(2Pr0�1��/�Pr0�Ri0� are introduced. Relation �20� can be
applied to calculate T provided Ri�Ric /� . This model is
denoted the stationary frequency model �SFM�.

In Fig. 4, the Ri dependence of T is shown according to
�20� for different values p of the production–dissipation ra-
tio of TKE, where the parameters k1 , k3 , and k3 are set as
above. The curves following from the HFM are also pre-
sented. For p , the values p�1.6 �homogeneous shear flow�,
p�1 �logarithmic boundary layer�, and p�0.4 �in contrast
to p�1.6� are chosen. We see that there are no significant
differences between the predictions of these models and that

FIG. 4. T in dependence on the gradient Richardson number Ri as calcu-
lated by the HFM and the SFM for different values p of the asymptotic
production–dissipation ratio of TKE.
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they provide the same result for p�1. T becomes infinite at
Ri→Ric /� , where ��1 for p�1. This curve shows the fea-
tures discussed in the previous section, i.e., that T
���U/�x3 becomes smaller with increasing instability of
the flow and larger with higher values of the production–
dissipation ratio p of TKE. Relation �20� is investigated in
more detail in Sec. V, together with an interpretation of the
numbers Pr0, Ric , and Ri0, which appear as parameters in
the derived time scale relation.

In order to assess the range of applicability of the neglect
of derivatives di j, let us consider the estimation of T by Eq.
�15� for a neutral stratification where no assumptions are
made on the di j. In this case, only d13 and d33 are unequal to
zero and one obtains for T by means of �17a�, �17b� and �15�,

T

T0�p
�

�1�3/��k1�2 �p�•�d13�2��3/��k1�2 �p�d13

1�6/�k1�2 �d33 .

�21�

Consequently, both a negative d13 and a positive d33 �as
provided by the HFM for p�1; the opposite signs appear for
p�1� enlarge T , as may be seen in Fig. 4 at Ri�0. Their
possible influence can be assessed together with that of
variations of p .

V. APPLICATION TO ATMOSPHERIC SURFACE
LAYER

The predictions of the SFM are compared now with ob-
servations in the atmospheric surface layer. This is done in
connection with consideration of the parameters k1 , k3 , and
k4 that appear in relation �20� and determine the values of
the flow characteristics �Table I�. These parameters were es-
timated by different methods and a multitude of data exists
for them, as presented in Table II. In most cases, they are
fitted to some of the characteristics of Table I for a neutrally
stratified flow,30 or they are fitted to the characteristics of
flows without buoyancy or shear, respectively.40 In the La-
grangian approach presented in Sec. II, these parameters play
a quite different role than they do in second-order closures
because there are no other adjustable constants: all the tur-
bulence statistics are determined. Thus, they have to be re-
lated to characteristic flow numbers which describe the tran-
sition between different scaling regimes. It is shown below
that these transitions appear as limit cases of the SFM. The
relations obtained provide a link between combinations of
second-order closure parameters and flow numbers. The es-
timation of these characteristic flow numbers is described in
Sec. V D.

A. Flow numbers

The existence of characteristic flow numbers related to
transitions between flows with different scaling quantities is
revealed by considering the relevant time scales. For strati-
fied flow, it can be seen from �18� that the production–
dissipation ratio of TKE is determined by �U���U/�x3��1

and ����g��/�x3��1/2, the time scales of forcing by
shear and stratification, respectively, and the time scale of
dissipation ��q2/(2�). One may expect that two character-
istic numbers appear in the relations between these time

scales: First, under stable stratification it has to be ensured
that the forcing by shear is strong enough for the develop-
ment of turbulence. Second, under unstable conditions it may
be expected that a critical number describes the onset of
convective processes �i.e., spatial transport of TKE� with in-
creasing flow instability. Nonstratified flow is then character-
ized by the turbulent Prandtl number that complements the
first two characteristic numbers.

These numbers emerge by considering the relation �18�
for a balanced production–dissipation ratio of TKE, p�1. In
this case we obtain

p�1�� Prt

Pr0
�

Ri

Ri0
� T2

T0
2 , �22�

where Ric limits the range of applicability of this relation for
the calculation of � by the condition Ri�Ric . The number
Pr0 was explained above to be the turbulent Prandtl number
Prt under neutral conditions. This number is defined �in the
limit ��/�x3→0� as the ratio of the contributions �normal-
ized to the corresponding gradients� of production by shear
PU��V13(�U/�x3) and buoyancy production P��gV34

to the production P�PU�P� of TKE,

Pr0�
PU /��U/�x3�2

P� /��g��/�x3�
. �23�

Ric appears as the characteristic number for the change of
flow properties under stable conditions. Condition �22� can-
not be fulfilled for Ri�Ric , i.e., the flow does not reach an
asymptotic equilibrium state because the turbulence �i.e., the
dissipation� is not strong enough to compensate for the pro-
duction. In terms of the time scales considered, this condition
Ri�Ric can be written as a constraint for the forcing by
shear,

�U
2 �Ric��

2 . �24�

Because the first term PrtT
2/(Pr0T0

2) on the right-hand side
of �22� is positive for a positive Prt , we obtain from this
relation for unstable stratification �with �g��/�x3���

2 � a
condition for the dissipation time scale �,

�2�Ri0T0
2��

2 . �25�

This relation quantifies the expectation that the dissipa-
tion of TKE has to be large enough under unstable condi-
tions for a local transfer of TKE. The equal sign in �25�
applies if there is no shear �as given under convective con-
ditions, see below�, i.e., �2�Ri0T0

2��
2 for �U/�x3�0. It is

worth emphasizing that this relation for unstable flow is
characterized by Ri0 because T0 represents a normalization
of T and is given by its value at neutral stratification, T0

�T(Ri�0)��/�U . Hence, Ri0 determines the onset of con-
vective processes under unstable conditions in analogy to
Ric , which characterizes the onset of turbulence under stable
conditions. This is explained in more detail below, where Ri0
is shown to characterize the transition between the surface
layer and the local free convection layer.31,45,46

The parameters Pr0, Ric , and Ri0 can be estimated by
their relations �19a�–�19c� with the closure parameters k1 ,
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k3 , and k4 . From the data for Pr0, Ric , and Ri0 given in
Table II, ranges of possible values for these numbers can be
derived,

0.66�Pr0�2.36, �26a�

0.20�Ric�0.89, �26b�

0.11�Ri0�0.43. �26c�

These values are compared with estimations of these num-
bers in Sec. V D. First, the predictions of the SFM are shown
to be in accord with measured data and the result of the BFM
for a neutrally stratified flow with logarithmic mean velocity
profile.

B. Turbulence frequency

The obtained dependence of T on the gradient Richard-
son number is now compared to estimates obtained for the
atmospheric surface layer. By applying the definition of �, T
has to be estimated from T�q2(�U/�x3)/(2�). The quanti-
ties on the right-hand side of this relation were measured as
functions of ��x3/L , where L��u�

3/(�gV0
34) is the

Monin–Obuchov length.46 This quantity determines the ratio
of the cubic friction velocity u�

3�(�V0
13)3/2 to the vertical

heat flux V0
34 , where the subscript 0 denotes the values of

these fluxes at the surface and � is the von Kármán constant.
The vertical gradient of the horizontal wind was estimated as
�U/�x3�u� /l�M(�), where l is a mixing length and47

�M� � 1�4.7� , for Ri�0
�1�15���1/4, for Ri�0. �27�

Different estimations for the dissipation rate exist, for in-
stance, ��u�

3/l or ��u�
3/l�1�1/2���2/3�3/2.47 These formulas

provide

q2

2�

�U

�x3 �
1

2 � q

u�
� 2

�M���� 1, E1
�1�1/2���2/3�3/2, E2 , �28�

where E1 refers to the first and E2 to the second expression
for �. The results for T are presented in Fig. 5 together with
the result of the SFM for p�1. Here, q/u� is set to be 2.39 in
correspondence with estimations presented by Mellor and
Yamada,30 which gives the same T0 for all these curves. The
parameter � can be calculated by the inversion of estimations
of Ri in dependence on �. One obtains ��Ri for Ri�0, and
for Ri�0 this relation reads47

���
1

2

RicPr0�Ri/Ric
1�Ri/Ric

��1

4 �RicPr0�Ri/Ric
1�Ri/Ric

�2

�
RiRic

1�Ri/Ric
. �29�

Here, the turbulent Prandtl number under neutral strati-
fication is Pr0�0.74 as above and Ric�0.21 is taken as that
value where � becomes infinite. As can be seen in Fig. 5, the
calculated values agree at least qualitatively well with the
estimates. All curves become infinite at Ri→Ric but they
differ in their asymptotic behavior. For unstable stratifica-
tion, we find the modeled curve within the range of esti-
mates.

In order to reduce the complex dependence of T(Ri), let
us develop the relation �20� at Ri�0. One obtains then ��
and � are given above�

T�T0p1/2�1�� �

Ri0
�

p

� �Ri��1/2

. �30�

This model is denoted the simplified stationary frequency
model �SSFM�. As shown in Fig. 6 for p�1, there is no
important difference between the curve calculated by �20�
and this approximation, so that asymptotic frequency calcu-
lations can be simplified by applying relation �30�.

C. Logarithmic velocity profile

Relation �20� provides the turbulence frequency �
���1 combined with the shear �U/�x3. The vertical profile
of � can be obtained then by estimating �U/�x3, e.g., in a
Lagrangian flow model as the gradient of spatial averages

FIG. 5. T in dependence on Ri as calculated by the SFM for p�1. The dots
and the triangles correspond to different estimates obtained for the atmo-
spheric surface layer �see Eq. �28��.

FIG. 6. T calculated in dependence on Ri by the SFM and the SSFM for
p�1.
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over particle velocities.7 Let us assume that the logarithmic
velocity law is obtained in this way for a neutrally stratified
flow, i.e.,

U�x3��
u�

�
ln� x3

x0
3� , �31�

where x0
3 is a constant roughness length �u� and � are given

above�. Then, � is given according to �20� for p�1 as �
�T0(�U/�x3)�1, this means that we find

��T0

�x3

u�
��2T0

3 �x3

q
, �32�

where the second expression for � is obtained by applying
the relation u�

2�q2/(2T0) which follows from the solution
of the second-order equation �7�. This expression is now
compared with the result obtained from the BFM �5�. This
reads for the conditions in the logarithmic layer

1

�2 �C�2�C�1��
C��q2

2

�

�x3 �� �

�x3

1

� � , �33�

because the left-hand side of �5� and � disappear, P/��1,
and q2 is constant.17 This equation is solved with �
�d�/dx3�0 at x3�0 by

���2�C�2�C�1�

C��

x3

q
�� 2

C�
3/2

�x3

q
, �34�

where the second expression for � follows from the con-
straint C�

1/2 (C�2�C�1)/���2 for the coefficients of the
BFM, which is required in order to be in consistency with
the logarithmic velocity law.17 We note that the SFM pro-
vides for the specified logarithmic velocity law exactly the
same result as the BFM if T0�C�

�1/2 . The standard value
C��0.09 then leads to T0�3.33, which corresponds to k1

�12.4 �see Sec. IV�. This value is greater than the previ-
ously applied value k1�8.3 for the description of developing
anisotropy in a homogeneous shear flow. It does not fall
within the range of data presented in Table II. Nevertheless,
it corresponds to C0�(k1�2)/3�3.5, which again corre-
sponds to the findings of Du et al., who derived C0�3.0
�0.5.48

D. Estimation of flow numbers

The flow numbers Ric , Pr0, and Ri0 can be derived from
measurements in the atmospheric surface layer if the limit
cases of the scaling quantity ��x3/L→� , �→0, and �→��
are considered, respectively.

Under stable conditions, Ric determines the transition
between the surface layer and another layer which is charac-
terized by x3-less scaling. This layer is found in the upper
heights of the stable boundary layer, i.e., �→� , where local
turbulence conditions are completely decoupled from the di-
rect influence of the surface.31 The increase of � with grow-
ing stability of the flow �Ri becomes larger� is reflected by
relation �29�, which gives a fit to measured values. Accord-
ing to this relation, � goes to infinity for a critical gradient
Richardson number Ric�0.21. This value is found within the
ranges 0.21�Ric�0.25 of other estimates where relation
�29� appears in a modified form.46,47 This range is signifi-
cantly smaller than �26b�, which was obtained from the
second-order closure parameters.

Under neutral conditions (��0), direct measurements
of the turbulent Prandtl number Prt are presented in Table II,
because the value of k3�Pr0k1 was calculated by measure-
ments of Pr0 and estimations of k1 .30,40 These data give a
range of 0.66�Pr0�2.36 for this quantity. The value Pr0

�0.74 corresponds to the velocity and potential temperature
profiles applied for the derivation of relation �29�47 and it
coincides with the value obtained by LES.34 However, a
value of Pr0�1 is compatible with the results of many
investigations.46

For highly unstable conditions (�→��) Monin–
Obuchov scaling fails and has to be replaced by free convec-
tive scaling.46 This limit case permits the estimation of Ri0.
The shear becomes insignificant here and Ri0 has to be cal-
culated according to �25� by

Ri0T0
2� lim

�→��
� �g

��

�x3

q2

2�� . �35�

By adopting Monin–Obuchov scaling we have
�g��/�x3��h(�)gV0

34/(�u�x
3), where �h(�) has to

be fitted to measurements. With the definitions of L��u�
3 /

(�gV0
34) and x3��L , this expression can be rewritten to

�g��/�x3���h(�)�gV0
34/u�

2�2/� . By inserting this
expression in �35� we find

TABLE II. The second-order closure parameters k1 , k2 , k3 , and k4 estimated by different authors and the flow
numbers Pr0, Ric , and Ri0 calculated by means of their relations with the k1 , k3 , and k4 .

k1 k2 k3 k4 Pr0 Ric Ri0

Wichmann and Schallera 5.0 0.0 3.4 1.48 0.68 0.20 0.11
Mellor and Yamadab 6.0 0.08 7.5 1.66 1.25 0.68 0.24
Zeman and Lumleyc 3.25 0.0 7.0 ¯ 2.15 ¯ ¯
André et al.d 9.0 0.0 9.7 2.5 1.08 0.85 0.32
Wyngaard et al.e 6.7 0.0 4.4 1.4 0.66 0.40 0.12
Yamadaf 5.0 0.05 11.8 2.0 2.36 0.89 0.43

a Reference 40.
b Reference 30.
c Reference 41.

d Reference 42.
e Reference 43.
f Reference 44.
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Ri0T0
2� lim

�→��
� �

�h���

4� � q

u�
��� � 4� , �36�

if ��gV0
34 is applied.31 The profiles required for the calcu-

lation of this limit value are found from the measurements
�h��1�

4/3(��)�1/3 as well as (q/u�)
2�(a1

2�2a2
2)

�(��)2/3.46 With these data we arrive at

Ri0�
�1

4
�a1

2�2a2
2�2C��

4/3, �37�

where T0�C�
�1/2 is used. The values �1�0.7, a1�1.8, and

a2�1.7 yield Ri0�C�/0.07�4/3. This then leads to Ri0
�0.38 if ��0.4 and C��0.09 are applied. This value is
found within the upper range 0.11�Ri0�0.43 of �26c�. The
derived value in combination with Pr0�0.74 and Ric�0.21
yields the high value k1�14.4. Instead, the choice Ri0
�0.35 �which can be justified by the approximate estimation
of �1 , a1 , and a2�

46 would be compatible with k1�12.4
derived above.

The influence of variations of the flow numbers is pre-
sented in Table III. Standard values for k1 , k3 , and k4 were
applied to the comparison of the predictions of the HFM
with LES data for homogeneous shear flow �see Sec. III�,
which correspond to the values Pr0�0.74, Ric�0.21, and
Ri0�0.25 for the flow numbers. The results of Kaltenbach
et al. indicate that the effective critical gradient Richardson
number Ric /� equals approximately 0.5 because the flow
does not achieve quasisteady states for larger Ri.34 The defi-
nition of this number, Ric /� , in Sec. IV now permits the
adjustment of Ric to the value 0.7, which leads to Ric /�
�0.5. The calculated characteristic quantities given in Table
I are presented for this value in Table III. We see that the
agreement between these values and Tavoularis and Karnik’s
measured data and the LES data is much better than for
Ric�0.21. This also applies to the correlation coefficients for
the horizontal and vertical heat flux �14 and �34, respec-
tively. Variations of the other two flow numbers �Pr0�0.63
has been estimated, e.g., by Rohr et al.�38 may lead to similar
changes in the T values and the elements of Ai j but here the
values of �14 and �34 are not as satisfactorily obtained as
with Ric�0.7. This example illustrates the way in which
these relations between second-order closure parameters and
flow numbers can be used for the adjustment of parameters

to different flows. Here, changes of the flow numbers cause
changes in all the characteristics of the flow, in contrast to
the effect of variations of closure parameters. In particular,
the variations of the flow numbers presented in Table III
influence the correlation coefficients �14 and �34 in a very
different way: These correlations are decreased by the
change of Ric , increased by the change of Pr0, and adjusted
to each other by the change of Ri0.

VI. APPLICATION TO BUOYANT PLUME RISE

The explanation of the turbulent mixing between a buoy-
ant �stack� plume and the surrounding fluid is of considerable
practical relevance because these mixing effects strongly in-
fluence the spatial distribution of plume substances, and their
chemical reaction with compounds distributed in the ambient
flow. In the Eulerian approach, i.e., based on the conserva-
tion equations of mass, momentum, and thermal energy,
these mixing processes are described by entrainment and ex-
trainment concepts, as illustrated in Fig. 7.49 The idea of
entrainment of air into plumes by plume-generated turbu-
lence enables the explanation of the two-thirds power law of
the buoyant plume rise that is observed in a neutrally strati-
fied flow without significant turbulence.50,51 For a turbulent
flow, the extrainment �i.e., entrainment of plume material
into the surrounding fluid due to the ambient turbulence�
concept proposed by Netterville permits the calculation of
both the leveling-off of the plume and its final height.49

However, these entrainment and extrainment concepts re-

FIG. 7. Illustration of turbulent mixing between a �stack� plume and the
ambient flow.

TABLE III. The normalized time scale T , elements of the anisotropy tensor, and the correlation coefficients calculated by the HFM for different gradient
Richardson numbers Ri. In each case, one of the flow numbers Ric�0.21, Pr0�0.74, and Ri0�0.25 is replaced by the value given above, where the other two
numbers are left unchanged.

Ric�0.7 Pr0�0.6 Ri0�0.33

Ri �0.25 0 0.13 �0.25 0 0.13 �0.25 0 0.13
T 3.05 4.49 6.15 2.99 4.51 8.11 3.21 4.53 6.82
A11 0.102 0.171 0.213 0.099 0.169 0.235 0.107 0.166 0.220

�A22 0.086 0.086 0.086 0.084 0.084 0.084 0.083 0.083 0.083
�A33 0.017 0.086 0.128 0.014 0.084 0.151 0.024 0.083 0.137
�A13 0.192 0.179 0.151 0.194 0.177 0.125 0.190 0.177 0.143
�13 0.517 0.505 0.451 0.521 0.502 0.387 0.514 0.499 0.434
�14/ri 0.636 0.683 0.702 0.941 1.030 1.088 0.866 0.933 0.982

��34/ri 0.698 0.587 0.460 0.898 0.797 0.589 0.884 0.810 0.689
�V34/V14 0.936 0.602 0.402 0.820 0.546 0.307 0.856 0.614 0.417
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quire the introduction of parameters that cannot be directly
derived from measurements and which are not explicitly re-
lated to the shear or stratification of the flow �see Sec.
VI B�.49,52 This means that the turbulent mixing of plume
and ambient fluid particles �its intensity� cannot be scaled in
adjustment to variations of the mean velocity and tempera-
ture gradients but is handled by ad hoc assumptions. More-
over, the dispersion of plume material �the plume width�
cannot be obtained.

In the Lagrangian approach, both the mean plume fea-
tures and the plume dispersion are described. The dynamics
of turbulent mixing is reflected in this approach by the fre-
quencies which appear in the plume particle equations. It
was shown by van Dop, that the two-thirds power law of
buoyant plume rise and the final height can be explained as
consequences of their changes.28 However, this was also
done by means of ad hoc assumptions for these frequencies,
so that the scaling of mixing could not be explained. The
latter can be achieved if the mixing of plume and ambient
flow �i.e., their fluid particles� is indeed simulated by means
of a theory of particle motion in accord with turbulence bud-
get equations. This is now demonstrated by applying the sto-
chastic particle equations presented in Sec. II.

The Lagrangian equations for the description of the ver-
tical motion of particles were derived by van Dop.28 They
read

d

dt
�xL

3	��UL
3	, �38a�

d

dt
�UL

3	��
k1

4�
�UL

3	�g��L���E		, �38b�

d

dt
g��L���E		��

2k3�k1

4�
g��L���E		, �38c�

if their coefficients are chosen such that these equations are
consistent with the second-order equations �2�. By neglecting
the drift terms �ai	 and the mean Eulerian vertical velocity,
this can be proved by means of �5a� and �5b� and �6a� and
�6b�. These equations can be rewritten for a neutral stratifi-
cation by introducing the normalized particle height Z
��xL

3	(�U/�x3)2/B0 , particle velocity W��UL
3	(�U/

�x3)/B0 , and buoyancy B�g��L���E		/B0 , where B0

is the initial value of g��L���E		 at t�0. For a constant
shear �U/�x3 one obtains

dZ

dt�
�W, �39a�

dW

dt�
��

k1

4T
W�B , �39b�

dB

dt�
��

2k3�k1

4T
B , �39c�

where the normalized time t��t�U/�x3 is again applied.
The advantage of the here-presented approach of applying
Lagrangian equations in consistency with budget equations
of turbulence consists essentially in the estimation of the

�normalized� particle frequencies k1/4T and (2k3�k1)/4T in
terms of the �normalized� turbulence frequency T�1. The
time behavior of this frequency is described by the HFM
�11� with p�1.6 as for an homogeneous shear flow. The
implications of this assumption are considered below and
compared with the results of previously applied methods.

A. Nonturbulent flow

First, we consider buoyant plume rise in a neutrally
stratified and nonturbulent ambient flow. This case is rel-
evant to the initial stage of plume rise where the influence of
the ambient turbulence can be neglected �the entrainment
stage� and for a calm ambient turbulence. In the frequency
equation �11�, this case is described by the first term on the
right-hand side. The second and third terms vanish ��U/�x3

→0 for the unsheared turbulence and V34 is zero due to the
neutral stratification� and we obtain as a solution of the equa-
tion system �39a�–�39c� combined with �7� and �11� and the
initial conditions Z(t�0)�0, W(t�0)�0, and B(t�0)
�1 the normalized height Z over the source as

Z�
I2�m1

�C�2�1 �2�m1�m2�
� �I��C�2�1 �t��m1�Im1

m1

�
�I��C�2�1 �t��m2�Im2

m2
Im1�m2� , �40�

where the abbreviations m1�2�(2k3�k1)/4(C�2�1) and
m2�1�k1 /4(C�2�1) are used and I gives the initial value
of T as above.

For t�→� , this curve approaches �provided m2�m1 as
usually given with standard values for these parameters�

Z�
1

m1�m1�m2�
� I

C�2�1 � 2�m1

t�
m1, �41�

if I is neglected with respect to t� and only the highest power
of t� is taken into account. By applying the definitions of Z ,
I , and t�, the mean particle height over the source is ob-
tained as

�xL
3	�

B0�0
2

m1�m1�m2��C�2�1 �2�m1 � t

�0
� m1

, �42�

where �0 is the initial value of �, �0��(t�0). This expres-
sion corresponds to the two-thirds power law49–51 when m1

�2/3, i.e.,

C�2�1�
3k1

8 � Pr0�
1

2 � . �43�

The similarity behavior of the buoyant plume rise ap-
pears as a consequence of explaining buoyant turbulence as
stochastic particle motion and adopting the HFM �which cor-
responds here to Kolmogorov’s original frequency equation,
without the spatial transport terms�,22 provided that this con-
sistency constraint �43� is fulfilled between the parameter
C�2 of the dissipation model and the parameters of the tur-
bulence model. The values applied above, C�2�1.9 and k1

�8.3, lead to Pr0�0.79, which is rather close to the assumed
Pr0�0.74.
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This power law can also be deduced in the Eulerian
framework from conservation equations of mass, momen-
tum, and thermal energy by means of the entrainment
assumption.49–51 This approach provides

�xL
3	�� 3F0

2P
2 U0

� 1/3

t2/3, �44�

where F0 is the initial plume buoyancy, U0 is the horizontal
mean velocity at source height, and P is the plume entrain-
ment constant �which is usually denoted 49,51 but is written
here in accordance to T , see below�. Usually, P�0.6 is
assumed,51 but the use of P�0.65 is also supported by
measurements.49 Comparison of the coefficients of �42� and
�44� shows that the asymptotic behavior is the same in these
approaches when P is determined by

P�
C

�0
2 � F0

B0
3U0

�C

R0

B0�0
2 , �45�

where the definitions of I and �in the last expression on the
right-hand side� F0�U0B0R0

2 are applied. R0 gives the ra-
dius of the active plume at the end of the bending-over
phase.49 Additionally, the abbreviation

C�
2

3
�C�2�1 �2� 1�

k1�1�Pr0�

2�C�2�1 � �
3/2

�46�

is used in �45�, where C�3/2 is found with the values for
the parameters given above. We see that P is found to be
proportional to the ratio of the length scale R0 of the plume
width at the end of the bending-over stage to the length scale
B0�0

2 of the mean plume height, i.e., it gives a measure for
the intensity of the plume-generated turbulence. The value
P�0.66 �which is very near to P�0.65 as derived by
Netterville�49 is found for the entrainment constant if the
diameter of the active plume is assumed to be equal to the
mean plume height over the source in the bending-over stage
at t��0 , i.e., 2R0��xL

3	, where �xL
3	�0.875B0�0

2 is found
through �42�. The curve �40� that follows for a nonturbulent
flow �the shear in the normalizations of Z and t� compensate
each other� from the solution of �39a�–�39c� combined with
�7� and �11� is presented in Fig. 8. Asymptotically, this
curves coincides with the two-thirds power law given by
�41�. For the Nanticoke plume rise measurements, �0

�4.3 s is deduced from the estimations of F0 , U0 , and
B0 .49 For the wind shear �U/�x3�T� /���0.04 s�1 is
found by adopting a value of ��100 s for the ambient
turbulence28 and applying T��4 �see Sec. III�. This leads to
the initial value I��0�U/�x3�0.172 of T that is applied to
the calculation of the curves presented in Fig. 8.

B. Turbulent flow

For a turbulent flow with nonvanishing shear, one ob-
serves that the plume levels off and reaches a final plume
height �the dashed line in Fig. 8�. This is the result of ex-
trainment �see Fig. 7� and is described by the second and
third terms on the right-hand side of �11�, where the influ-
ence of the ambient turbulence is reflected by the normalized
variances. The final plume rise is found to be

�xL
3	��1.838I �I �

B0

��U/�x3�2 , �47�

where the asymptotic value of Z is calculated numerically.
Curve  (I) is presented in Fig. 9. Adopting the data of the
Nanticoke experiments, B0�0.764 m s�2 and the other
quantities given above �leading to  �0.77�, one obtains for
the final plume height �xL

3	�116 m. This agrees fairly well
with �xL

3	�(119�40) m as found in the Nanticoke experi-
ments. This final plume height goes to infinity for a nontur-
bulent ambient flow, �U/�x3→0, because  (I)→0.4 and,
consequently, �xL

3	�0.735B0�0 /(�U/�x3).
In the Eulerian approach,49 the extrainment concept

leads to a final plume height of

�xL
3	��� 3F0

P
2 U0 f 2� 1/3

, �48�

FIG. 8. The normalized height Z as function of t� as obtained by the HFM.
The solid curve represents the curve �40�, which is found for a nonturbulent
flow. The dashed curve shows the result for a turbulent flow. The triangles
represent the observed two-thirds power law of the buoyant plume rise.

FIG. 9. The factor  in Eq. �47� in dependence on the initial normalized
time scale I .
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where a turbulence buffet frequency f �2PiEU0 /!E is in-
troduced. Here, iE is the intensity of turbulence and !E is the
length scale of large-scale eddies. By comparing this expres-
sion with �47� one finds that both approaches provide the
same final value if

f �T

�U

�x3 , �49�

where �45� is applied and T�0.7I1/2/(C 
3/2(I)) is intro-

duced. Hence, the simulation of the turbulent mixing be-
tween plume and ambient flow particles in the Lagrangian
approach permits the explicit calculation of the turbulence
buffet frequency f , so that the dependence of the mixing on
shear is obtained. In contrast, the mixing intensity is de-
scribed in the Eulerian expression for f by iEU0 /!E , which
cannot be directly derived from measurements. The quantity
T is the parameter of the extrainment stage corresponding
to the parameter P of the entrainment stage. It is determined
by the ratio of the plume time scale �0 to that of the ambient
turbulence �U�(�U/�x3)�1. The value I�0.172 applied
above leads to T�0.29. The appearance of P in the Eule-
rian expression results from the assumption that these two
parameters T and P are proportional to each other.

VII. SUMMARY

Stochastic particle models of buoyant turbulence enable
an understanding of turbulent mixing effects, as demon-
strated in Sec. VI. The scaling of mixing �its dependence on
shear and stratification� depends in these models on the char-
acteristic turbulence frequency �, for which here different
models have been considered. The presented HFM �11� de-
scribes the time behavior and the asymptotic values of � in
accord with LES data for stratified homogeneous shear
flows. This model is coupled with a second-order closure
model for the turbulence through the production–dissipation
ratio of TKE. A decoupling of this model �as is usually done
for neutrally stratified flow� leads to the SHFM �14� dis-
cussed in Sec. III. This model predicts the � behavior of
neutrally and unstably stratified flow similar to the HFM. For
stably stratified flow, the differences between the HFM and
the SHFM become greater with growing stability. The SFM
�20� provides analytically the stationary spatial patterns of �
similar to the HFM. This model can be simplified remark-
ably to the SSFM �30�, as demonstrated in Sec. V. The SFM
and the HFM are applied to the description of transitions
between turbulent flow regimes in the stationary atmospheric
surface layer and to buoyant plume rise, respectively.

The SFM has been shown to be in accord with estimates
obtained for the atmospheric surface layer. For a given loga-
rithmic mean velocity profile, we demonstrated in Sec. V C
that its predictions agree with those of the BFM �3�. Limit
cases of this model describe transitions between different
scaling regimes in the atmospheric surface layer and provide
links between closure parameters and flow numbers that
characterize these transitions. Here, we have introduced a
new flow number Ri0 that describes the transition to free
convective flow under unstable stratification in analogy to
the critical gradient Richardson number, Ric , which deter-

mines the onset of turbulence under stable stratification �see
Sec. V D�. The calculation of model parameters through es-
timations of these flow numbers offers various advantages:
�i� these connections provide insight into the limits of the
applicability of second-order closures �given by the derived
laminarization and convection limits for stably and unstably
stratified flow, respectively�, �ii� the parameter variation is
explained for different turbulent flows �a possible range of
values can be assessed directly�, and �iii� the variation of
flow numbers offers new possibilities for the adjustment of
model parameters to special flow properties, as illustrated in
Sec. V D.

By applying the HFM, a new theory is presented for
buoyant plume rise, which is explained as the result of the
turbulent motion of fluid particles of the plume and ambient
flow as well as the change of their temperatures. This permits
the calculation of the entrainment and extrainment param-
eters P and T that reflect the effects of turbulent mixing by
plume-generated and ambient turbulence, respectively, in
terms of the relevant time �or length� scales. Consequently,
the dynamic behavior of buoyant plume rise can be ex-
plained without ad hoc assumptions. For a neutrally stratified
and nonturbulent flow, the two-thirds power law is derived
and for a turbulent flow the plume’s leveling-off is found to
be in agreement with measurements in the atmosphere.
Buoyant plume rise simulations which apply the theory pre-
sented here offer considerable advantages over other meth-
ods: �i� mean plume rise and dispersion can be calculated
consistently, �ii� the �possibly large� variations of the mixing
intensity are explained only by measurable quantities in de-
pendence on shear and stratification, which enables in par-
ticular �iii� accurate calculations of chemical transformations
in reactive plumes �or in any other buoyant flows� where the
knowledge of the mixedness of species is essential.
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