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Molecular to fluid dynamics: The consequences of stochastic molecular motion
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The derivation of fluid dynamic equations from molecular equations is considered. This is done on the basis
of a stochastic model for the molecular motion which can be obtained by a projection of underlying determin-
istic equations. The stochastic model is used to derive fluid dynamic equations where the molecular stress
tensor and heat flux appear as unknowns. However, the stochastic model also implies transport equations for
these quantities. Combined with the assumption of a local equilibrium state, these transport equations can be
used to derive a hierarchy of algebraic expressions for the molecular stress tensor and heat flux. A scaling
analysis then explains the range of applicability of the Navier-Stokes model. The latter is relevant, for example,
to simulations of high-Mach-number turbulent flows.
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[. INTRODUCTION of the Boltzmann equation; see, for example, Cercigipi
_ _ ~Bird [5], and Esposit@t al.[6] and references therein. How-

A comprehensive understanding of the range of applicagyer, this approach is also faced with several questions. The
bility of the Navier-Stokes equations is important with regardfirst problem arises from the fact that such equations are
to a rigorous foundation of the theory of turbulence, and it isrelated to the consideration of rarefied gases, whereas one is
relevant to fundamental studies of the physics of turbuleninterested in dense fluidgases and liquidgsn fluid mechan-
flows. Such investigations are based, in general, on the direats in general. The second problem arises from the fact that
solution of the Navier-Stokes equatioiidirect numerical the derivation of the fluid dynamic equations in this way
simulation, but sufficient data for #complete assessment poses a nontrivial problem. By adopting this approach one
of simulation results are unavailable in general. One needsnay find a variety of equations, and the physical relevance of
therefore, strong theoretical arguments to support results otsuch extensions of the Navier-Stokes equations cannot be
tained by direct numerical simulation. This is relevant, forseen to be fully clarified until noy4—7. _
example, to simulations of high-Mach-number flows which  Instead of using the Boltzmann equatip4i or its sto-
may involve shocks. For strong shocks, the presence of largehastic versiong5] for the derivation of equations for the
gradients and the highly nonequilibrium state of the fluidluid and thermodynamics, one may also apply stochastic
suggest that the applicability of the Navier-Stokes modefliffusion models for the molecular motion. One way to ad-
may become questionabjé]. The need to address the suit- dress this problem is to assume th'at the position of a mol-
ability of fluid dynamic equations also appears with regard toequle represents a stochast!c d|ffus_|on pro¢8ksHowever,

this assumption is only valid for time steps that are large

simulations of two-phase or viscoelastic flows where the T
. ph S compared to a characteristic time scale for molecular veloc-
Navier-Stokes model is known to fail in many caggg

) T . ity correlations(7,,; see Sec. lli this means one applies a
. The quEstlon ofdthedvgl|d|ty O.f the ][\lawer—SAtc]):!(es eque,"relatively crude mode[9]. Hence, this approach also has
tions can be considered in a variety of ways. A 1irst way 1Sgq, qpq| shortcomings. Macroscopic transport coefficients are

given by the use of concepts of extended irreversible therg i o lated from the molecular dynamics but they have to

mcl)dynar:]}_lcs, v¥her§!n contrast to_g;e srl]mple ;qu-gradlent be introduced as external variables. Further, due to the fact
relationships of ordinary irreversible thermo ynami&) =yt dynamics of velocity fluctuations are only asymptoti-
transport equations for the molecular stress tensor and he lly described, this analysis had to be limited to incom-
flux are constructecﬂZ]. However, the problem of thaF aP- pressible flows such that corrections to the Navier-Stokes
proach is given by the fact that coefficients of corrections t odel could not be obtained. A better way to develop sto-

the Navier-Stokes model cannot be obtained as a part of thg, i models for the molecular motion is to assume that
construction of these equations. Thus, such equations are n dsition and velocity of a molecule represent a stochastic

unique so that their use cannot be seen as a general meth ﬁlfusion process, which was pioneered by Kirkwood and
for the assessment of the validity of the Navier-Stokes QU850 workers[10-14. Compared to molecular position mod-

t'orf' o hod is aiven by th . ons for theS1S: the consideration of a velocity model has the significant
nother method Is given by the use of equations for the, 44 nage that macroscopic transport equaiioosficients
molecular motion which then imply equations for the fluid

d th d ics. Mostly. this i ‘ d he b .may be obtained as a consequence. Nevertheless, there are a
and thermodynamics. Mostly, this is performed on the basiy, hje of relevant questions related to the previous use of

this approach. First, Kirkwoog10] introduced such a mo-
lecular velocity model as a heuristic model for liquidgith
*Present address: Department of Mathematics, University of fixed Prandtl number; see belp\irhis leads to the ques-
Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA. tion (i) of how it is possible to explain the range of applica-
Electronic address: heinz@uwyo.edu bility of this model(its applicability to flows with different
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Prandtl numbepson the basis of first principles. A second
question is related to the fact that Kirkwood’s model was
applied previously only to recover the Navier-Stokes model
[10-14. There is, therefore, the question) of how physi- L/
cally consistent extensions of the Navier-Stokes model can Stochastic molecular model
be obtained, which may be used to control its applicability
and to extend it in order to simulate, for example, high-
Mach-number flows. This is a nontrivial problem; see, e.g,
the discussion of Cercignaf] with regard to correspond-
ing extensions on the basis of the Boltzmann equation. Transport equations for the
Questions(i) and (i) will be addressed here. The fluid stress tensor and heat flux
dynamic variables will be defined in Sec. Il. In Sec. lll, a
projection of the underlying deterministic equations for the
molecular motion is used to obtain a stochastic molecular
model. This results in a molecular acceleration model which | Fiuid dynamics (unknown Algebraic models for the
. . . stress tensor and heat flux) stress tensor and heat flux
generalizes Kirkwood's velocity model. However, the study
of this model is relatively complex. Thus, the model analysis
will be performed in two steps: the consequences of the im-
plied simpler velocity model will be investigated first, and Navier-Stokes model for the
modifications of the resulting equations for the fluid and stress tensor and heat flux
thermodynamics, which arise from the consideration of the
more general acceleration model, will be presented in the

Aglpendﬁ(.' J?e” tra?Spor:hequtatlﬁnst.for ﬂl:_jldl dyna_rgllc \(/ja”_ FIG. 1. An illustration of the derivation of fluid dynamic equa-
avies which foflow from the stochastic model considered arg;, s fom molecular equations presented here. The projection op-

also presented in Sec. Ill. These equations are unclosed dlé?ator technique can be used to reduce coupled deterministic equa-
to the appearance of the unknown _molecular Stress tensqpns for all the molecules to a stochastic acceleratieglocity)

and heat flux. However, the stochastic molecular model als@qyation for one molecule. The stochastic model considered implies
implies transport equations for the latter quantities. Comyransport equations for the fluid mass density, velocity, and energy,
bined with the assumption of a local equilibrium state, thesgyhere the molecular stress tensor and heat flux appear as un-
transport equations can be used for the calculation of thenowns. Additionally, the stochastic model implies transport equa-
molecular stress tensor and heat flsee Fig. 1 for an illus- tions for these quantities. Algebraic models for the molecular stress
tration). This will be shown in Sec. IV. The closure of the tensor and heat flux can be found by adopting the local equilibrium
equations for the fluid and thermodynamics will be ad-approximation. The Navier-Stokes model is then recovered,,if
dressed in Sec. V on the basis of a scaling analysis. Sectidrecomes small compared to the fluid dynamic time sGate

VI deals with conclusions of this analysis.

Deterministic molecular dynamics

Closed fluid dynaniics

Y h 4

A4

p(x,t) = (p™(x,1)). (2.3
In Eq.(2.2), &(--) is the delta function ang* (t) denotes the

To prepare the derivation of equations for the fluid andposition of a molecule at time It is worth noting thatp!™

thermodynamics in the following sections, it is convenient to(and thereforep) is not normalized to unity. Relatio(®.2)
define first the fluid dynamic variables. shows thaip™ integrates to the total ma$g of molecules
within the domain considered:

Il. FLUID DYNAMICS VARIABLES

A. Conditional ensemble means
. o . . M = f dxp™(x,1). (2.4
Fluid dynamic variables can be defined by adopting con-

ditional ensemble means. We define the mean of any func-
tion Q of molecular propertiege.g., velocitiey conditioned
on the positiorx in physical space by the expression

By invoking the ergodic theorerfil5], the ensemble av-
eraging considered here may be seen as a spatial filter pro-
cedure where the filter width is much smaller than the do-
- 1 main considered but such that a very large number of
Q(x,t) = ——(pM(x,1)Q). (2.1) molecules is involved into the calculation of meansxat
p(x,1) Thus, such ensemble-averaged variables describe the proper-
ties of a continuum: they represent fluid dynamic variables
The symbol(:--) denotes an ensemble meaif?” refers to as, for instance, the fluid mass density or velocity; see Sec.
the instantaneous molecular mass density, Il C.

P ™(x,t) = MS(X* (t) =), (2.2) B. Conditioned velocity probability density function

_ . . The conditional meax2.1) may also be represented as a
and the mean mass densiifx, t) is defined as the ensemble mean of a probability density functioPDP. This relation
mean ofp™: reads
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— 1— 1

Qx,t) = f dwQ(w,x, ) F™(w,x,t), (2.5 e(x,t) = SUViT 5 f dw(w; = U (w; = U)F™(w,x,1).
where the conditional PDF of molecular velocities is given (2.10
by Further fluid dynamic variables will be considered below in

1 conjunction with the consideration of transport equations for
FM(w,x,t) = W(p(m)(x,t)ﬁ(v * (X * (1),0) = w)). the calculation of, U;, ande.
p(X,
(2.6)

Ill. FROM THE MOLECULAR TO FLUID DYNAMICS

Here, V* (x* (t),t)=(V1*, Vo*,V3*) is the velocity of a . . : .
molecuIe.(Thé)co)ns(is'ilency2 of tﬁe)definitio@sl) anzj/ (2.5 Away to address the questio@3and(ii) described in the
— , i ) Introduction is the use of a systematic procedure for the con-
for Q may be seen by inserting EQ.6) into Eq.(2.9. The  girction of stochastic equations. Such a methodology is
use of the shifting property o functions and integration  yiyen by the projection operator technique. The basic idea of
over the velocity sample space then recovers rela@oh). — ihis technique is to extract the dynamics of relevant variables
The definition(2.6) represents a relation between Eulerianom any (completg deterministic dynamics. This results in
and Lagrangian variables: the Eulerian PBI at position  contributions to the dynamics of relevant variables that are
x is defined in terms of the Lagrangian particle propertiesyyjicit deterministic functions of the relevant variables
x*(.t) and Vf(t). Thls.relauonshlp will be used below to (which may involve memory effectsand remaining contri-
derive the fluid dynamics as a consequence of molecular mg;tions that involve the influence of all the other variables.
tion: this means that a model for* (t) and V* (1) will be  The Jatter terms have the properties of stochastic forces. The
used to calculat&™. The knowledge of this PDF then en- projection operator technique may be applied in various vari-
ables the calculation of fluid dynamic variables. To see thignts: see, for instance, Grabétt], Lindenberg and West
we write Eq.(2.6) in the following way: [17], and Zubaret al.[18,19. One way is to derive a PDF
) = transport equation for relevant variables, which has the struc-
F™(w,x,1) = 6(V (x,) =w). (2.7 ture of a generalized Fokker-Planck equation. Another way is
to derive equations for the instantaneous dynamics of rel-

Her h Lagrangian rticle veloci is written . . .
ere, the Lagrangian particle velocity Is tte evant variable$20]. This approach will be used here.

V*(x*(1),1)=V*(x,t)=V(x,t). The replacement ok* (t)
by x in V* is a consequence of the propertiessfunctions.
V is then used to denote the corresponding Eulerian velocity,
which is nothing but the velocity of that molecule which has ] . ] .
the propertyx* (t)=x (we consider a continuum where one  We WI!| restrict the attention to the case of monatomic
finds a molecule at each positioiccording to Eq(2.7), all  fluids which do not have internal degrees of freedonta-
the fluid dynamic variables may be obtained fréit? by  tional or vibrational energy Thus, the state of each molecule
multiplying this PDF with the corresponding variables andiS completely described by its positiogt, velocity V;*, and
integration over the sample space. This may be seen in Se@cceleratiom*. The projection operator technique then pro-
Il C with regard to the fluid velocity and energy. vides the following equations ifx*,V*,A*) is considered
as a Markov procesg0]:

A. Stochastic molecular models

C. Fluid dynamic variables dx*

Relation(2.7) will be used now to define fluid dynamic at (3.13
variables in addition to the mass densityhat is defined by
Eqg. (2.3). The fluid velocityU;(i=1,3) is given by the mean dv;* .
velocity of molecules in an infinitesimal vicinity of bl (3.1
Ui(x,t):Vi(x,t):f dwwiF™(w,x,t).  (2.8) LW SN PV [ 4e dw;
dat 7 T ! ! 37, dt |’
The deviations oV,(x,t) from their mean velocitiet);(x,t) (3.10

will be denoted by lowercase letters:
The fluid velocity U;, kinetic energye, external forceFi(m)
vi(X,t) = Vi(x,t) = Vi(x,1). (2.9  (which may be caused, for example, by grayitand the
characteristic time scales for molecular acceleration and ve-
These fluctuations); vanish in the mass-weighted mean, |ocity correlations,r, and 7, respectively, may depend on
vi(x,t)=0, but they do not vanish in the ensemble mean inyosition and time. The relation betweeg and intermolecu-
general{v;) # 0. The intensity of fluctuations; is character- |ar forces was described by Kirkwodd0], and the relation
ized by the specifignormalized by magskinetic energye, of r, and 7, to fluid dynamic parameters will be considered
which is defined by below. dW/dt refers to a Gaussian process with vanishing
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means and uncorrelated values at different tifgsis the  positions and velocities. We multiply the transport equation

Kronecker delty for F™p/M, which is implied by Egs(3.3), with M to ob-
tain
dW dw , , dW
—)=0, { /()= ) =8;8t-t"). (3.2 (m) E(m)
< dt> < dt()dt/( )> Ijg( ) ( ) &p;m:_apv;ﬂxl:m_ﬁ _i(Wi_Ui)_l_Fi(m) pF(m)

The incorporation of the white-noise procedé//dt in the '2 L m
acceleration equatiof8.10 (which is a significantly weaker + 2e 0 pF™ (3.4)
assumption than to apply such a term in a velocity model: 37 MWW, ' '

see belowrepresents the most relevant assumption related to o ) ) )

the construction of Eqq3.1). Compared to the application The multiplication of Eq(3.4) with the corresponding vari-

of the Boltzmann equation, the appearance of such a stocha@P!es and integration over the velocity space results in trans-
tic force may be seen as the effect of the interaction of longPOrt quations for the fluid dynamic variables. For the mass
range forces between the molecules, which produce a coflensityp(x,1), fluid velocity Uj(x,t) and specific kinetic en-
tinuous sequence of small and almost stochastic velocit§dy €X,t) we obtain in this way:

changes. Such an approach is, therefore, a valid concept for ap  apU,

the modeling of a dense fluid. The molecules are assumed to —+—=0, (3.59
move independently. This corresponds to the consideration g o

of a perfect fluid.

Equations(3.1) can be applied to derive the equations of pY; , VY ap _ (3.5D
the fluid and thermodynamics. However, this results in rela- at % X Pri '
tively complex developments, as will be shown in the Ap-
pendix. To keep the explanation of essential steps simple we dpe  dpUe 4 U
will do the following. First, we use a simplified version of % + 77: + %I: + pjk&: =pQs- (3.59

Egs.(3.1) to construct transport equations for fluid dynamic

variables. A corresponding analysis of E¢&1) will be per-  On the right-hand sides, we applied for source terms due to
formed in the Appendix, which will be used to discuss theexternal forces the abbreviations

modifications of fluid dynamic equations, which arise from F=F Qu=Tw, 3.6

the consideration of the more general acceleration model. = BT Ik '
Correspondingly, we now assume thgis small, which cor-  wheref, =F\"™ -F, are fluctuations of external forces. On the
respondgwith regard to the discrete version of §.10]to  |eft-hand sides of Eqs(3.5h and (3.50, we defined the

the consideration of time stepst>r,. In this case, EQs. stress tensop; and heat flux vectogy via the relations
(3.1) reduce to I

d pij = pvivj, (3.7a
Xi*
at Vi*, (3.39 1
k= Epvkvnvn- (3.70
avi* =- i(\/i *— U +F™ 4 /ﬁ%_ (3.3p  Equations(3.5) were derived here as a consequence of the
dt Tm 37y dt stochastic mode(3.3), but they are independent of all the

The assumption of a small time scaigof acceleration fluc- model details(with the exception of the appearance of the

(m) ;
tuations is equivalent to the neglect of correlations of force&NOWn external forcé™). The same equatiori8.5) can be

due to intermolecular interactions. This is a valid assumptiofpPtained by adopting the Boltzmann equation for the mo-
if one is mainly interested in fluid dynamic motions which /ecular motion; see, for instance, Cercigngy. Therefore,

are independent of details of the intermolecular collision protn€ Physics is embedded in the unknown quantities of Egs.
cess. One obtains in this way a local model for velocities(3-2P and(3.50: p; andgy (the source ternQg is assumed
which is sufficient to generalize the Navier-Stokes equationd® P& known.

(see the following sectionsEquations(3.3) are equivalent
to the molecular velocity model that was suggested by Kirk-
wood. The difference is given by the fact that Kirkwood
introduced this model as a heuristic model for liqujd$)],
whereas it is derived here as asymptotic limit of the acce
eration model, Eqg.3.1), which is a consequence of under-
lying deterministic molecular dynamics.

C. Molecular stress tensor and heat flux equations

The calculation ofy; andg can be addressed on the basis
of their transport equations, which are implied by the sto-
|chastic model3.3). In correspondence to the derivation of
Egs.(3.5), one obtains fop;; the equation

K P

% + &Ukpi' + IpUKL{V; + k&Ui k&
at X X Yoxe " %y

B. Unclosed fluid dynamic equations

2 -
The stochastic mode(3.3) can be rewritten into an =_T_7Tij+Pfin+Piji- (3.9

equivalent Fokker-Planck equati¢®l]. The definition(2.6) m

of F(M reveals thatF™p/M is the joint PDF of particle With regard to the developments made in Sec. IV, it is con-
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venient to splitp;; into an isotropic and deviatoric part:
(3.9

The isotropic part, which is the pressure, is related &mde
via

Pij = P& + ;.

pi _ 2e
=== 3.10
P=737r3 (3.10
Hence, the equation fgr follows from Eq.(3.5¢). According
to Eq.(3.8), m;; satisfies the equation

Jmij . i N Ipvi(vivj — VL G/3)
A I X,

_ 2
—p(fivj + fjl}i - éfnvnb‘ij>

aJ; J; 2 U
= - —my = 20§ - M M S 6y
Tm (9Xk &Xk 3 an
(3.11)
Here,
1/0U; U, 20U
d== —'+—l———”5-) 3.1
3 2<an ax 3 (3.12

refers to the deviatoric part of the rate-of-strain tensor:

-1 )

(3.13
2\ax  ox,

PHYSICAL REVIEW E 70, 036308(2004)

the corresponding Gaussian expressions for these terms: see
the developments made in Sec. IV.

The equations forr;; and ¢, obtained here differ signifi-
cantly from corresponding equations which are postulated
within the framework of the extended irreversible thermody-
namics. Within that approach one does only obtain a certain
class of transport equations fpj andq; where several un-
known parameters appeésee the discussion of Jaat al.

[2]). In contrast to that, the use of the stochastic m@8e)
combined with a model fot,, or v corresponds to a consis-
tent choice of parameters that are unknown within the ap-
proach of extended irreversible thermodynamics.

IV. ASSUMPTION OF A LOCAL EQUILIBRIUM

To obtain closed equatiorn{8.5) and to discuss the differ-
ence to the Navier-Stokes equations, we will apply now the
usual assumption that there exists a local equilibr{@in In
this case, Eq9:3.11) and(3.14) can be reduced to algebraic
expressions for the molecular stress tensor and heat flux, as
will be shown next.

A. Calculation of the deviatoric stress tensor

To derive an algebraic expression foy; one has to ne-
glect the first two gradient terms on the left-hand side of Eq.
(3.11). This corresponds to the assumption that there exists
an equilibrium state where production, dissipation and mo-
lecular diffusion of; balance each other locally. The third
term on the left-hand of relatio(8.11) represents an aniso-

A transport equation fog; may be obtained on the basis tropic contribution due to molecular diffusion: see, for in-
of the PDF transport equatiai3.4) in the same way as the stance, Eq(4.7) below. Such diffusion terms are often found
transport equation forr;. However, this equation involves to be of minor relevance in turbulence models, and the same
triple correlations which appear as unknowns. Therefore, thehay be assumed regarding the molecular scale. Thus, we

most convenient way to address the determinatiog; &f to

apply a Gaussian approximation for this tefwhich implies

consider its calculation as a special case of the calculation afs neglect. Correspondingly, we may neglect the last three
triple correlations. Their transport equation is given accordterms on the left-hand side of E¢8.11), which involve the

ing to Eq.(3.4) by

dpvivjvy N dpUnuivjvy

- pfivjvk - pijiUk_ pkain

ot M
Ipv LV U, oU;
= _ ZPUmlibjUk ~ 0 k- v ik
N K X
AUy IpVVm——  IPVVm—
P Umuivj t vjvg t Vil
axm m m
pvwm— 3

ViU; — —UjV;Uk-
My Ty

Equation(3.11) for m; and Eq.(3.14) for triple correlations

anisotropic part of the production by external forces. Such
external force-velocity correlations are found to be of minor

relevance under many conditions. The resulting algebraic re-
lation for m;; then reads

2 4e

- d
— == — da_
. 1j 3 pSJ

U,
o
%,

L2 WUy
Xy 3 nk Xy !

(4.2

This equation form; can be solved by adopting a technique
that was pioneered by Popa2—24 with respect to the con-
struction of corresponding algebraic models for the stress
tensor in turbulence models. The resulting general expression
for m; can be written in terms of contributions of growing

JU;
77'ik_l

have to be complemented by a model for the characteristiorder in velocity gradients. A simple method to obtain the
correlation time scale,, of molecular velocity fluctuations low-order terms of this general expression fgy is given by

[or, alternatively, for the kinematic viscosity, see relation

(4.4) below]. Then, Egs(3.11) and(3.14) are still unclosed

due to the appearance of third-order correlations in(Ed.1)
and fourth-order correlations in E¢3.14). Approximations

the following successive approximation.

In the first order of approximation we assume thgtis a
linear function of velocity gradients. This is equivalent to the
neglect of all the terms that involve; multiplied by veloc-

for these correlations may be obtained by reducing theiity gradients in Eq.(4.1). In this case, we find forr; the
transport equations to algebraic expressions or by adoptingxpression
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W _ d
) == 2uS", (4.2 3 de ge
! S T_UinUk:_EK(‘Sim‘Sjk"'éjmélk*' Smij)
where we introduced the viscosity " "
Ui aJ; AUy
= pv. (43) —Kmvmvjvk— Wmvmvivk—gmvmvivj.
. o . N (4.6)
The kinematic viscosity, which appears as a diffusion co-
efficient in Eq.(4.2), is an abbreviation for In analogy to the derivation of Eq4.2), the first-order
approximation for triple correlations is obtained by neglect-
e ing the last three termgelated to the production by velocity
V=g (4.4) gradient$ in Eq. (4.6):
By introducing the mean thermal molecular velocity v =— 4v e S S +8 S +8.-8). (4.
=(2e)'2 and mean free path=r,(e/2)"? Eq. (4.4 may itk 9 &xm( m3t Omdk * Gmy)- (47)

also be brought into the form which is used in kinetic gas

theory, v=u;\/3. The analysis of the acceleration model The second order of approximation is found by inserting Eq.
(3.1) in the Appendix shows that the consideration of finite (4.7) into the last three terms of E¢4.6):

T, does not result in a change of the structure of @&y,

but expression4.4) is generalized by EqAT7). S ) P —— . Tm

In the second order of approximation, we apply the first- ' 1 Itk 3
order approximatioit4.2) in the terms that involver; on the U U U
right-hand side of Eq(4.1). This leads to an expression for X(—'vmv,—v_ku) + 1y v D+ _kUmUin(l)>-
m;; which involves velocity gradients of second order: Xm Xm Xm

(4.8
Ty U, T U TmdU,
ij ®= 7"ii(l> - ij(l)fa_xk - Wik@?g: + Wnk(l)ggk‘sii According to its definition(3.7b), the heat fluxg; is then
given in the first order of approximation by the correspond-
(4.5 ing reduction of Eq(4.7):

Higher-order approximations can be constructed by repeating de
this successive approximation. g =-k—. (4.9

The comparison of relatiori4.5 with models derived
within the framework of extended irreversible thermodynam-
ics (see the corresponding discussion of &ual. [2]) re-
veals the same advantage as pointed out above with regard
equations for the transport of the molecular stress tensor and 10
heat flux: the coefficients of nonlinear terms are completely K="—pv. (4.10
determined here. This fact is relevant to simulations of high- 9
Mach-number flows because experimental data for the as- _ o . )
sessment of simulation results are hardly available for MacH N€ ratio of the diffusion coefficienig=pv in Eq. (4.2) and
numbersNy,,>4 [2]. It is worth noting that the construction * IN EQ. (4.9) determines the Prandtl numbigg, in the spe-
of nonlinear models for thésubgrid-scalg stress tensor in  Cific kinetic energy equation, which is defined by
filtered equations for turbulence also leads to the question of
how the coefficients of nonlinear contributions have to be Np, = E_ (4.1
chosen[25,26. With regard to that, it has been shown re- K
cently that the explanation of the dynamics of turbulent fluc-
tuations by a stochastic model represents a way to overcomgie use of expressiof@.10 in the definition(4.11) implies
this problem[27]. then the value

Here, we introduced the heat conduction coefficiettat is
Qgtermined by

B. Heat flux calculation Np, = 0 (4.12

With the same arguments as applied above, we neglect all
the terms on the left-hand side of E.14). Further, we as a consequence of the stochastic m@8ed). This result
approximate the velocity correlation of fourth order by the agrees with the corresponding consequence of the Chapman-
corresponding Gaussian expression, which is a requiremeinskog method14]. The explanation of Prandtl number
to be in consistency with the use of the Gaussian approximarariations requires consideration of finitg see expression
tion for the triple correlation term in E@3.11). In combina-  (A10) in the Appendix.
tion with the assumption of isotropic velocity variances this The calculation ofj; in the second order of approximation
leads to the relation leads by means of E@4.9) to
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3
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(1)
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The last term can be rewritten by replacing the gradient ot

the kinetic energye in Eq. (4.7) by means of expression
(4.9):

G

I 2
Uitk 5—pqm<1><6nm5ik+(S.mankwmam). (4.14

This results then in the following expression for the heat flux

g; in the second order of approximation:

@_ mMNi @ _ 27mUx
3 X, " 15 ox,

+ d<m5ni)-

2

qi = Qi Qm(l)(5nm5|k + 5im5nk

(4.19
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B. Scaling of the first-order approximations

By scaling Egs(3.5) in terms of the scaling parameters
ntroduced above, one obtains the following expressions for
he scaled deviatoric part; of the stress tensor and heat flux
q; in the first order of approximation:

(1) 2
TTij _ +o db
==—p5 (5.4a
P0Uo2 Nge )
(D) 10 et
B N : (5.4b)

e p .
poUor  INgre X"

The plus refers to scaled quantities; this means we applied in
Egs. (5.4) the abbreviationg*=p/po, §;* =S;°Lo/Up, and
e'=ele,

These expressions recover the known scaling of the first-

Higher-order approximations may be found by repeating thig)qer approximations with the inverse Reynolds number:

successive approximation. Essentially,
advantages of Eq4.5) for the molecular stress tensor also
applies to Eq(4.15).

V. SCALING ANALYSIS

the discussion of thgeqe termgand all higher-order approximations, see below

become very small in the case of a high Reynolds nurtder
small kinematic viscosity). However, their neglect would
result in the reduction of Eqg3.5b and (3.50 to partial
differential equations of first order, which has consequences
with regard to the boundary conditions that can be applied

A way to assess the range of applicability of various mod-{24].

els (of the Navier-Stokes modefor m;; andg; is to rescale

the fluid dynamic equations. This will be done next by adopt-

ing a reference densify,, velocity U, kinetic energye,, and
lengthL, (the reference time scale ig/U,).

A. Scaling parameters

The only parameter of the stochastic mo@B) is =,. By
invoking relation(4.4), Eqs.(3.5) then only depend on. By
adopting the scaling variablé$, andL,, the kinematic vis-
cosity » can be made dimensionless by introducing the Rey
nolds number

Uolo

Nre= —.
14

(5.9

The coupling between the velocity and energy equations

can be assessed by introducing the speed of saynd
=(yPo/ po)*’? via the following parametrization af:

_3Po_

3.2
2p0 2y
The middle expression determines a reference preggure
according to Eq(3.10. The parametey=c,/c, refers to the

ratio of the constant-pressure to constant-volume specifi
heats(for monatomic fluids,y has the valuey=5/3). By

(5.2

applying a,, the ratio between the characteristic molecular

velocity scaldJ, to the velocity scal@, related to the energy
equation can be determined by means of the Mach numbe

(5.3

C. Scaling of the second-order approximations

The expressiongt.5) and(4.15), which were obtained for
the deviatoric partr; of the stress tensor and heat figxin
the second order of approximation, reveal that the dimen-
sionless quantityr,,0U;/dx; controls the appearance of con-
tributions in addition to first-order approximations. By
adopting Eq(4.4) for 7, this quantity can be written

U,
;M
maxj

;"
_
X;
(5.5

This expression makes use of the definition of the Knudsen
number

e+

_3vil 2y N, U/

_2y
e O7XJ - e NRe &XJ+ -

NrNZ,

= Nee (5.6)

The last expression in E@5.6) results from the application
of the definitions oy, andNg. combined with Eq(4.4) for
v and Eq.(5.2) for e,.

The combination of Eqgs(5.4) and (5.5 shows that
second-order approximations scale with the squared Knud-
en number. Expressiaib.5) can be used to assess the re-
quirement to involve terms in addition to first-order approxi-
mations form; andg;. Compared to first-order contributions,
second-order contributions scale WitRgdNZ,=NZ_/Ng,
which is shown in Fig. 2 for different values &, The
influence of the Mach number can be investigated by rescal-
ing the fluid dynamic equations such that positions are nor-
malized on the mean free pakh 7.,(e/2)*2. This was done

which will be used below to assess the relevance of correddy Levermoreet al. [1] who investigated the relevance of

tions to the Navier-Stokes model.

corrections to the Navier-Stokes model by comparing sta-
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of third and fourth order; see Sec. IV. In a second step we
- applied the usual local-equilibrium assumption in the equa-

0.08 - B tions for the molecular stress tensor and heat flux, which
B implies algebraic corrections to the Navier-Stokes model of

. 0084 B growing order in velocity gradients. All these expressions,
Nya! J‘(I)Reu B which may be derived by adopting an integrity basis

[22-24, are fully determinedadditional parameters are not
involved). In a third step it was shown that the Navier-Stokes
model is recovered provided thatdU;/dx; becomes small
(due to the fact that,<m, it is sufficient to consider a
constraint forr,). This condition implies the need thig
=71,S<1. Here, Mg=7,/S* represents a dimensionless
time scale ratio wher&=(2S,%S,%) refers to the charac-
FIG. 2. The parameteN;./Ng. in relation (5.5 against the teristic shear rate of fluid motion. Hence, the applicability of
Reynolds numbeNg, for different values of the Mach numbBli,..  the Navier-Stokes model requires that the scales of molecular
and fluid motions be well separated. It is of interest to note
tionary planar shock profiles calculated by the Navier-Stokeshat the time scale ratiblg, which controls the relevance of
model and the direct simulation Monte Carlo method develcorrections to the Navier-Stokes mod@llach number ef-
oped by Bird[5]. According to their results, the applicability fects, has the same structure as the gradient Mach number
of first-order approximations forr; andq; is well justified  that is used as an indicator for the relevance of compressibil-
for Nya<2. ForNy,=3, they observed deviations of 10%— ity effects within the framework of turbulence models
30%, and they found an unacceptable performance of first2g 3q.
order apprOX|matlons for the ca_Baﬂa:4. On this bas_;ls, one In that way, answers to questioi$ and(ii) described in
may estimate by means of Fig. 2 that the Navier-Stokegne |ntroduction were presented. With regard to questipn
model is well applicable in cases whelg,<2 andNge it \yas shown that any deterministic dynamics imply a gen-
exceeds the critical Reynolds number for the onset of turbug, 5jization of Kirkwood's velocity model: the acceleration
lence (Nge>400. model(3.1). This model may be applied to flows with differ-
ent Prandtl numbers; this mean to both dense gases and lig-
VI. SUMMARY AND CONCLUDING REMARKS uids. With regarc_i to_questiofii), the b_er_1_efit of the findings
presented here is given by the possibility to control the ap-
The relation between the molecular and fluid dynamics iplicability of the Navier-Stokes model. This can be done by
relevant to a rigorous foundation of the theory of turbulence monitoring Mg. This number is available in simulations, as
but methOdS applled preViOUSly d|d not prOVide Sufﬂcientmay be seen by replacingn by v Via re'ation (44) It iS
answers to this question. Lebowitz, for example, stqted: “ItiSyorth emphasizing that the use of the conditidig<1 is
no secret that there does not exist at present anything reseryificantly simpler than the application of certain matrices
bling a rigorous derivation of the hydrodynamic equationsgom moments of the molecular velocity PDF, as suggested
governing the time evolution of macroscopic variables fromby Levermoreet al. [1]. Corrections to the Navier-Stokes
the laws governing the dynamics of their microscopic con- 1 4al and nonequilibrium effects can be involv@ethout

stituents”[28]. With regard to this question, it is of interest any need for the introduction of additional parametérthe

that the analysis of the stochastic motion of molecules PrO3pplicability of the Navier-Stokes model is not well justified,
vides a relatively simple view of the relation between theas given, for example, with regard to high-Mach-number
molecular and fluid dynamics. The basis for that is given byg ... witr,1 shocks ’

deriving the stochastic acceleration mo¢@ll) for the mo-
lecular dynamics of dense fluids from atgomplete deter-
ministic dynamics by means of the projection operator tech-
nique[9,20]. For simplicity, the analysis of this acceleration
model was performed such that the implications of its )
asymptotic limit[of the velocity modek3.3)] were studied I am thankful for the reference to the work of Kirkwood
first, and the investigation of EqE3.1) in the Appendix was and Lebowitzet al. [10-14.
used then to explain modifications which arise from the con-
sideration of the more general acceleration model.

In both variants, this means by adopting the molecular APPENDIX
acceleration or velocity model, the Navier-Stokes model can
be derived as the result of three steps, see the illustration in In analogy to the consideration of consequences of the
Fig. 1. In a first step, transport equations for the moleculastochastic velocity moddl3.3) in Secs. Ill and IV, we ana-
stress tensor and heat flux were obtained, which appear &&ze here the implications of the more general acceleration
unknowns in Eqgs(3.5). These transport equations can bemodel (3.1). This can be done on the basis of the Fokker-
closed by adopting parametrizations for velocity correlationsPlanck equation

ACKNOWLEDGMENTS

036308-8



MOLECULAR TO FLUID DYNAMICS: THE...

Apfm __ Apw; ™ ~ dpoy ™
it X, o,

1% 1
4| ag+ =y - Uy = F™ | £
da m Ta

2e  Fpfm

2 ’
3TTa” dajda;

(A1)

which corresponds to the stochastic mo@&l). Here f(™
refers to the joint acceleration-velocity PDF conditioned on
the positionx, and & denotes the sample-space acceleration.
By multiplying Eq. (Al) with appropriate variables and
integration one may find transport equations for all the mo-
ments of the joint acceleration-velocity PDF. The direct in-
tegration of Eq(A1) recovers the continuity equati@8.53.

The equations for the mean velocity and acceleratior
read

PHYSICAL REVIEW E 70, 036308(2004)
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FIG. 3. The dependence of the Prandtl numbigf on 7,/ 7,

according to Eq(A10) for different values of the parametgr

DU; dpvpp; — Dajvivy oA aJ; AUy

—+ =A, A2a) —rvown— +ravwn— +avivm—

Dt %o i ( ) Dt U]Ukvmaxm aivkvm(?Xm a1U]vmaXm
_ VBV IPOB— U —  IpUD—
DA dpvwai _ 1 _ T e i T ok KT kg
— + = =(F-A), (A2b) PIXm PORm POXm POXm
Dt PNy, Ta

whereD/Dt=4/ gt+Ud/ 9%, denotes the substantial deriva-
tive. The equations for the moments of second order are
given by

Dvw; dpogpiv; — N — ;i —
—'l+&l+vjvm—'+vivm =aw; +au;,
Dt P m MNm
(A3a)
Da1-v-+r9pvma1-v- —dA  —d;

|
tovivm—— tau
Jm; m

D&a-vk

%jﬂ( - finUk> y (A4b)

m

1
= Aigjuk+ &)~ (ainUk+

a

A A Uy
+ ajvkvmg + a,-vkvm&l + aiajvmﬂx—
m m m

Dt

+ PV UK IPU——  IPUA——  IPUUk——
- vy~ iUk — 3
PIXm PIXm PIXm PPXm

vk T v

1/ — _
:aiajak—:a<2a1-ajvk+ k—fiajvk—fja,-vk),

Dt P m IXm T
1 (— — Lo (Adc)
=a1-aj——(aivj—fivj+w>, (A3b)
Ta Tm
— — - — Daa;ay &E A &Kk
Daia + &pvmala + J‘Uma_p\l-'-aivm% Dt +ajakva +aiakvm(9x +aiajvm(9x
Dt P M X, m m m
P IpUm3iadx  IpUmdi——  IpUpd——  IpUmB——
1 [ U+ aiun; de 1 _ . _ 1A, _ A,
=- _<23iaj - figj - fja + LALUE 5|j>v * PP PPXm %% PIXm A PIXm x4
Ta Tm 37aTm
(A30) ___(3—&&‘3“ DB+ VBB + UK,
Ta ] Tm
wherea; and f; refer to acceleration and body force fluctua-
tions, respgctlvely. Correspondingly, one finds for the mo- _fiajak_fjaiak_fkaiaj>- (A4d)
ments of third order the transport equations

Dovjviv U, dU; JJ
—'J—k+v]-vkvm—'+vivkvm +vivjvm—k of
Dt Ny " P
IPUVVVK  IPUi——  IPUj——  IPUUK——
+ - 12 ViU~ Vivj
PIXm P m m
:a{UjUk'l'ajUiUk"' ivj, (A4a)
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First, we will use Eqs(A3) to generalize the calculation
the deviatoric stress tensat; in Sec. IV. For simplicity,

the effect of finiter, will be only considered with respect to
the first-order approximation af;; (higher-order approxima-
tions can be obtained as shown in Sec).IBy neglecting
body force effects and the left-hand sides of E&gb) and
(A3c), we obtain forav; andaa; the expressions
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a__i T = 1<— 1—> 0 = mamof aju + &aw;] — Tmaivjvk ~ vivjvk,  (A8D)
=

= v viv
Pl + 77 ag =\ Tm )

(A5)

By adopting this expression fogv;, Eq. (A3a) provides
equations for the kinetic energyand m;;. The equation foe
corresponds to Eq3.50) with the exception tha®g=0 since
body force effects are neglected here. By neglecting contri-
butions due to the first two terms on the left-hand side of Eq.
(A3a) and adopting isotropic variances in the production
terms (which are proportional to velocity gradientsthe
equation forar; implies the first-order approximation

_(1+,8) 5km ij 7'a7'ma1'ajak_27'maiajvk_aivl'vk

~ QjuiUk, (A8c)

0 =3maaja + yaw; + aaw; + aajuy,  (A8d)

where B=—(e/ 7,7)d(Ta7m) [ e is introduced. To derive Eq.
(A8c) we used the assumption thgt and r,, may vary in
Wij(l) =- ZMS,-d- (A6)  space via a temperatufer, alternatively, kinetic energyde-
pendenced( 7,7y | Xm=[(7a1y) | d€]del %, The analysis of

Here, the viscosityw=pv, where the kinematic viscosityis Egs. (A8) then shows that

given in generalization of Eq4.4) by

v:ﬂe(uﬁ). (A7)

m__proe
3 Tm -

. A9
NPr&Xi ( )

g
The generalization of the heat flux calculation can be per-

formed in correspondence to the developments made in See.is determined by EqA7), and the Prandtl numbeép, is

IV, where again the attention is restricted to the approximagiven in generalization of Eq4.12) by

tion of first order. We neglect body force effects and the first

four terms on the left-hand sides of Ega4). In addition to 9

that, we approximate correlations of fourth order by their ~ Np= 10<1+ )<1+0 5—><

corresponding Gaussian expressions, and we apply Tm

=2e/34;, av;=0 andaa;=2e/(37,7,)d; for the variances: (A10)

see the relatiogA5). In this case, EqQ9A4) reduce to

4e e

-1
1+(35 +,3)3> .

Tm

Corresponding Prandtl number variations are illustrated in
[ Skt SimOik + &mbij] = @vju + auivk + awiv;, Fig. 3 for different values of3. One observes thdllp, in-
creases with decreasing resolutigii 7, effects become
(A8a)  smalley.
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