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The derivation of fluid dynamic equations from molecular equations is considered. This is done on the basis
of a stochastic model for the molecular motion which can be obtained by a projection of underlying determin-
istic equations. The stochastic model is used to derive fluid dynamic equations where the molecular stress
tensor and heat flux appear as unknowns. However, the stochastic model also implies transport equations for
these quantities. Combined with the assumption of a local equilibrium state, these transport equations can be
used to derive a hierarchy of algebraic expressions for the molecular stress tensor and heat flux. A scaling
analysis then explains the range of applicability of the Navier-Stokes model. The latter is relevant, for example,
to simulations of high-Mach-number turbulent flows.
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I. INTRODUCTION

A comprehensive understanding of the range of applica-
bility of the Navier-Stokes equations is important with regard
to a rigorous foundation of the theory of turbulence, and it is
relevant to fundamental studies of the physics of turbulent
flows. Such investigations are based, in general, on the direct
solution of the Navier-Stokes equations(direct numerical
simulation), but sufficient data for a(complete) assessment
of simulation results are unavailable in general. One needs,
therefore, strong theoretical arguments to support results ob-
tained by direct numerical simulation. This is relevant, for
example, to simulations of high-Mach-number flows which
may involve shocks. For strong shocks, the presence of large
gradients and the highly nonequilibrium state of the fluid
suggest that the applicability of the Navier-Stokes model
may become questionable[1]. The need to address the suit-
ability of fluid dynamic equations also appears with regard to
simulations of two-phase or viscoelastic flows where the
Navier-Stokes model is known to fail in many cases[2].

The question of the validity of the Navier-Stokes equa-
tions can be considered in a variety of ways. A first way is
given by the use of concepts of extended irreversible ther-
modynamics, where(in contrast to the simple flux-gradient
relationships of ordinary irreversible thermodynamics[3])
transport equations for the molecular stress tensor and heat
flux are constructed[2]. However, the problem of that ap-
proach is given by the fact that coefficients of corrections to
the Navier-Stokes model cannot be obtained as a part of the
construction of these equations. Thus, such equations are not
unique so that their use cannot be seen as a general method
for the assessment of the validity of the Navier-Stokes equa-
tions.

Another method is given by the use of equations for the
molecular motion which then imply equations for the fluid
and thermodynamics. Mostly, this is performed on the basis

of the Boltzmann equation; see, for example, Cercignani[4],
Bird [5], and Espositoet al. [6] and references therein. How-
ever, this approach is also faced with several questions. The
first problem arises from the fact that such equations are
related to the consideration of rarefied gases, whereas one is
interested in dense fluids(gases and liquids) in fluid mechan-
ics in general. The second problem arises from the fact that
the derivation of the fluid dynamic equations in this way
poses a nontrivial problem. By adopting this approach one
may find a variety of equations, and the physical relevance of
such extensions of the Navier-Stokes equations cannot be
seen to be fully clarified until now[4–7].

Instead of using the Boltzmann equation[4] or its sto-
chastic versions[5] for the derivation of equations for the
fluid and thermodynamics, one may also apply stochastic
diffusion models for the molecular motion. One way to ad-
dress this problem is to assume that the position of a mol-
ecule represents a stochastic diffusion process[8]. However,
this assumption is only valid for time steps that are large
compared to a characteristic time scale for molecular veloc-
ity correlations(tm; see Sec. III); this means one applies a
relatively crude model[9]. Hence, this approach also has
several shortcomings. Macroscopic transport coefficients are
not calculated from the molecular dynamics but they have to
be introduced as external variables. Further, due to the fact
that dynamics of velocity fluctuations are only asymptoti-
cally described, this analysis had to be limited to incom-
pressible flows such that corrections to the Navier-Stokes
model could not be obtained. A better way to develop sto-
chastic models for the molecular motion is to assume that
position and velocity of a molecule represent a stochastic
diffusion process, which was pioneered by Kirkwood and
co-workers[10–14]. Compared to molecular position mod-
els, the consideration of a velocity model has the significant
advantage that macroscopic transport equations(coefficients)
may be obtained as a consequence. Nevertheless, there are a
couple of relevant questions related to the previous use of
this approach. First, Kirkwood[10] introduced such a mo-
lecular velocity model as a heuristic model for liquids(with
a fixed Prandtl number; see below). This leads to the ques-
tion (i) of how it is possible to explain the range of applica-
bility of this model (its applicability to flows with different
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Prandtl numbers) on the basis of first principles. A second
question is related to the fact that Kirkwood’s model was
applied previously only to recover the Navier-Stokes model
[10–14]. There is, therefore, the question(ii ) of how physi-
cally consistent extensions of the Navier-Stokes model can
be obtained, which may be used to control its applicability
and to extend it in order to simulate, for example, high-
Mach-number flows. This is a nontrivial problem; see, e.g,
the discussion of Cercignani[4] with regard to correspond-
ing extensions on the basis of the Boltzmann equation.

Questions(i) and (ii ) will be addressed here. The fluid
dynamic variables will be defined in Sec. II. In Sec. III, a
projection of the underlying deterministic equations for the
molecular motion is used to obtain a stochastic molecular
model. This results in a molecular acceleration model which
generalizes Kirkwood’s velocity model. However, the study
of this model is relatively complex. Thus, the model analysis
will be performed in two steps: the consequences of the im-
plied simpler velocity model will be investigated first, and
modifications of the resulting equations for the fluid and
thermodynamics, which arise from the consideration of the
more general acceleration model, will be presented in the
Appendix. The transport equations for fluid dynamic vari-
ables which follow from the stochastic model considered are
also presented in Sec. III. These equations are unclosed due
to the appearance of the unknown molecular stress tensor
and heat flux. However, the stochastic molecular model also
implies transport equations for the latter quantities. Com-
bined with the assumption of a local equilibrium state, these
transport equations can be used for the calculation of the
molecular stress tensor and heat flux(see Fig. 1 for an illus-
tration). This will be shown in Sec. IV. The closure of the
equations for the fluid and thermodynamics will be ad-
dressed in Sec. V on the basis of a scaling analysis. Section
VI deals with conclusions of this analysis.

II. FLUID DYNAMICS VARIABLES

To prepare the derivation of equations for the fluid and
thermodynamics in the following sections, it is convenient to
define first the fluid dynamic variables.

A. Conditional ensemble means

Fluid dynamic variables can be defined by adopting con-
ditional ensemble means. We define the mean of any func-
tion Q of molecular properties(e.g., velocities) conditioned
on the positionx in physical space by the expression

Q̄sx,td =
1

rsx,td
krsmdsx,tdQl. s2.1d

The symbolk¯l denotes an ensemble mean.rsmd refers to
the instantaneous molecular mass density,

rsmdsx,td = Mdsx * std − xd, s2.2d

and the mean mass densityrsx ,td is defined as the ensemble
mean ofrsmd:

rsx,td = krsmdsx,tdl. s2.3d

In Eq. (2.2), ds¯d is the delta function andx* std denotes the
position of a molecule at timet. It is worth noting thatrsmd

(and thereforer) is not normalized to unity. Relation(2.2)
shows thatrsmd integrates to the total massM of molecules
within the domain considered:

M =E dxrsmdsx,td. s2.4d

By invoking the ergodic theorem[15], the ensemble av-
eraging considered here may be seen as a spatial filter pro-
cedure where the filter width is much smaller than the do-
main considered but such that a very large number of
molecules is involved into the calculation of means atx.
Thus, such ensemble-averaged variables describe the proper-
ties of a continuum: they represent fluid dynamic variables
as, for instance, the fluid mass density or velocity; see Sec.
II C.

B. Conditioned velocity probability density function

The conditional mean(2.1) may also be represented as a
mean of a probability density function(PDF). This relation
reads

FIG. 1. An illustration of the derivation of fluid dynamic equa-
tions from molecular equations presented here. The projection op-
erator technique can be used to reduce coupled deterministic equa-
tions for all the molecules to a stochastic acceleration(velocity)
equation for one molecule. The stochastic model considered implies
transport equations for the fluid mass density, velocity, and energy,
where the molecular stress tensor and heat flux appear as un-
knowns. Additionally, the stochastic model implies transport equa-
tions for these quantities. Algebraic models for the molecular stress
tensor and heat flux can be found by adopting the local equilibrium
approximation. The Navier-Stokes model is then recovered iftm

becomes small compared to the fluid dynamic time scaleS−1.
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Q̄sx,td =E dwQsw,x,tdFsmdsw,x,td, s2.5d

where the conditional PDF of molecular velocities is given
by

Fsmdsw,x,td =
1

rsx,td
krsmdsx,tddsV * „x * std,t… − wdl.

s2.6d

Here, V * (x* std ,t)=sV1* , V2* , V3* d is the velocity of a
molecule. The consistency of the definitions(2.1) and (2.5)
for Q̄ may be seen by inserting Eq.(2.6) into Eq. (2.5). The
use of the shifting property ofd functions and integration
over the velocity sample space then recovers relation(2.1).

The definition(2.6) represents a relation between Eulerian
and Lagrangian variables: the Eulerian PDFFsmd at position
x is defined in terms of the Lagrangian particle properties
x* std and V * std. This relationship will be used below to
derive the fluid dynamics as a consequence of molecular mo-
tion: this means that a model forx* std and V * std will be
used to calculateFsmd. The knowledge of this PDF then en-
ables the calculation of fluid dynamic variables. To see this
we write Eq.(2.6) in the following way:

Fsmdsw,x,td = d„Vsx,td − w…. s2.7d

Here, the Lagrangian particle velocity is written
V * (x* std ,t)=V * sx ,td=Vsx ,td. The replacement ofx* std
by x in V* is a consequence of the properties ofd functions.
V is then used to denote the corresponding Eulerian velocity,
which is nothing but the velocity of that molecule which has
the propertyx* std=x (we consider a continuum where one
finds a molecule at each position). According to Eq.(2.7), all
the fluid dynamic variables may be obtained fromFsmd by
multiplying this PDF with the corresponding variables and
integration over the sample space. This may be seen in Sec.
II C with regard to the fluid velocity and energy.

C. Fluid dynamic variables

Relation (2.7) will be used now to define fluid dynamic
variables in addition to the mass densityr that is defined by
Eq. (2.3). The fluid velocityUisi =1,3d is given by the mean
velocity of molecules in an infinitesimal vicinity ofx:

Uisx,td = Visx,td =E dwwiF
smdsw,x,td. s2.8d

The deviations ofVisx ,td from their mean velocitiesUisx ,td
will be denoted by lowercase letters:

visx,td = Visx,td − Visx,td. s2.9d

These fluctuationsvi vanish in the mass-weighted mean,
visx ,td=0, but they do not vanish in the ensemble mean in
general,kvilÞ0. The intensity of fluctuationsvi is character-
ized by the specific(normalized by mass) kinetic energye,
which is defined by

esx,td =
1

2
vivi =

1

2
E dwswi − Uidswi − UidFsmdsw,x,td.

s2.10d

Further fluid dynamic variables will be considered below in
conjunction with the consideration of transport equations for
the calculation ofr, Ui, ande.

III. FROM THE MOLECULAR TO FLUID DYNAMICS

A way to address the questions(i) and(ii ) described in the
Introduction is the use of a systematic procedure for the con-
struction of stochastic equations. Such a methodology is
given by the projection operator technique. The basic idea of
this technique is to extract the dynamics of relevant variables
from any (complete) deterministic dynamics. This results in
contributions to the dynamics of relevant variables that are
explicit deterministic functions of the relevant variables
(which may involve memory effects) and remaining contri-
butions that involve the influence of all the other variables.
The latter terms have the properties of stochastic forces. The
projection operator technique may be applied in various vari-
ants: see, for instance, Grabert[16], Lindenberg and West
[17], and Zubarevet al. [18,19]. One way is to derive a PDF
transport equation for relevant variables, which has the struc-
ture of a generalized Fokker-Planck equation. Another way is
to derive equations for the instantaneous dynamics of rel-
evant variables[20]. This approach will be used here.

A. Stochastic molecular models

We will restrict the attention to the case of monatomic
fluids which do not have internal degrees of freedom(rota-
tional or vibrational energy). Thus, the state of each molecule
is completely described by its positionxi*, velocity Vi*, and
accelerationAi*. The projection operator technique then pro-
vides the following equations ifsx* , V * , A * d is considered
as a Markov process[20]:

dxi*

dt
= Vi * , s3.1ad

dVi*

dt
= Ai*, s3.1bd

dAi*

dt
=

1

ta
H− Ai * −

1

tm
sVi * − Uid + Fi

smd +Î 4e

3tm

dWi

dt
J .

s3.1cd

The fluid velocityUi, kinetic energye, external forceFi
smd

(which may be caused, for example, by gravity), and the
characteristic time scales for molecular acceleration and ve-
locity correlations,ta and tm, respectively, may depend on
position and time. The relation betweentm and intermolecu-
lar forces was described by Kirkwood[10], and the relation
of ta andtm to fluid dynamic parameters will be considered
below. dWi /dt refers to a Gaussian process with vanishing
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means and uncorrelated values at different times(di j is the
Kronecker delta):

KdWi

dt
L = 0, KdWi

dt
stddWj

dt8
st8dL = di jdst − t8d. s3.2d

The incorporation of the white-noise processdWi /dt in the
acceleration equation(3.1c) (which is a significantly weaker
assumption than to apply such a term in a velocity model:
see below) represents the most relevant assumption related to
the construction of Eqs.(3.1). Compared to the application
of the Boltzmann equation, the appearance of such a stochas-
tic force may be seen as the effect of the interaction of long-
range forces between the molecules, which produce a con-
tinuous sequence of small and almost stochastic velocity
changes. Such an approach is, therefore, a valid concept for
the modeling of a dense fluid. The molecules are assumed to
move independently. This corresponds to the consideration
of a perfect fluid.

Equations(3.1) can be applied to derive the equations of
the fluid and thermodynamics. However, this results in rela-
tively complex developments, as will be shown in the Ap-
pendix. To keep the explanation of essential steps simple we
will do the following. First, we use a simplified version of
Eqs.(3.1) to construct transport equations for fluid dynamic
variables. A corresponding analysis of Eqs.(3.1) will be per-
formed in the Appendix, which will be used to discuss the
modifications of fluid dynamic equations, which arise from
the consideration of the more general acceleration model.
Correspondingly, we now assume thatta is small, which cor-
responds[with regard to the discrete version of Eq.(3.1c)] to
the consideration of time stepsDt@ta. In this case, Eqs.
(3.1) reduce to

dxi*

dt
= Vi * , s3.3ad

dVi*

dt
= −

1

tm
sVi * − Uid + Fi

smd +Î 4e

3tm

dWi

dt
. s3.3bd

The assumption of a small time scaleta of acceleration fluc-
tuations is equivalent to the neglect of correlations of forces
due to intermolecular interactions. This is a valid assumption
if one is mainly interested in fluid dynamic motions which
are independent of details of the intermolecular collision pro-
cess. One obtains in this way a local model for velocities,
which is sufficient to generalize the Navier-Stokes equations
(see the following sections). Equations(3.3) are equivalent
to the molecular velocity model that was suggested by Kirk-
wood. The difference is given by the fact that Kirkwood
introduced this model as a heuristic model for liquids[10],
whereas it is derived here as asymptotic limit of the accel-
eration model, Eqs.(3.1), which is a consequence of under-
lying deterministic molecular dynamics.

B. Unclosed fluid dynamic equations

The stochastic model(3.3) can be rewritten into an
equivalent Fokker-Planck equation[21]. The definition(2.6)
of Fsmd reveals thatFsmdr /M is the joint PDF of particle

positions and velocities. We multiply the transport equation
for Fsmdr /M, which is implied by Eqs.(3.3), with M to ob-
tain

]rFsmd

]t
= −

]rwiF
smd

]xi
−

]

]wi
F−

1

tm
swi − Uid + Fi

smdGrFsmd

+
2e

3tm

]2rFsmd

]wj]wj
. s3.4d

The multiplication of Eq.(3.4) with the corresponding vari-
ables and integration over the velocity space results in trans-
port equations for the fluid dynamic variables. For the mass
densityrsx ,td, fluid velocity Uisx ,td and specific kinetic en-
ergy esx ,td we obtain in this way:

]r

]t
+

]rUi

]xi
= 0, s3.5ad

]rUj

]t
+

]rUiUj

]xi
+

]pij

]xi
= rFj , s3.5bd

]re

]t
+

]rUke

]xk
+

]qk

]xk
+ pjk

]Uj

]xk
= rQB. s3.5cd

On the right-hand sides, we applied for source terms due to
external forces the abbreviations

Fj = Fj
smd, QB = fkvk, s3.6d

wherefk=Fk
smd−Fk are fluctuations of external forces. On the

left-hand sides of Eqs.(3.5b) and (3.5c), we defined the
stress tensorpij and heat flux vectorqk via the relations

pij = rviv j , s3.7ad

qk =
1

2
rvkvnvn. s3.7bd

Equations(3.5) were derived here as a consequence of the
stochastic model(3.3), but they are independent of all the
model details(with the exception of the appearance of the
known external forceFi

smd). The same equations(3.5) can be
obtained by adopting the Boltzmann equation for the mo-
lecular motion; see, for instance, Cercignani[4]. Therefore,
the physics is embedded in the unknown quantities of Eqs.
(3.5b) and(3.5c): pij andqk (the source termQB is assumed
to be known).

C. Molecular stress tensor and heat flux equations

The calculation ofpij andqk can be addressed on the basis
of their transport equations, which are implied by the sto-
chastic model(3.3). In correspondence to the derivation of
Eqs.(3.5), one obtains forpij the equation

]pij

]t
+

]Ukpij

]xk
+

]rvkviv j

]xk
+ pjk

]Ui

]xk
+ pik

]Uj

]xk

= −
2

tm
pi j + rf iv j + rf jvi . s3.8d

With regard to the developments made in Sec. IV, it is con-
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venient to splitpij into an isotropic and deviatoric part:

pij = pdi j + pi j . s3.9d

The isotropic part, which is the pressure, is related tor ande
via

p =
pii

3
= r

2e

3
. s3.10d

Hence, the equation forp follows from Eq.(3.5c). According
to Eq. (3.8), pi j satisfies the equation

]pi j

]t
+

]Ukpi j

]xk
+

]rvksviv j − vnvndi j /3d
]xk

− rS f iv j + f jvi −
2

3
fnvndi jD

= −
2

tm
pi j − 2pSij

d − p jk
]Ui

]xk
− pik

]Uj

]xk
+

2

3
pnk

]Un

]xk
di j .

s3.11d

Here,

Sij
d =

1

2
S ]Ui

]xj
+

]Uj

]xi
−

2

3

]Un

]xn
di jD s3.12d

refers to the deviatoric part of the rate-of-strain tensor:

Sij =
1

2
S ]Ui

]xj
+

]Uj

]xi
D . s3.13d

A transport equation forqi may be obtained on the basis
of the PDF transport equation(3.4) in the same way as the
transport equation forpi j . However, this equation involves
triple correlations which appear as unknowns. Therefore, the
most convenient way to address the determination ofqi is to
consider its calculation as a special case of the calculation of
triple correlations. Their transport equation is given accord-
ing to Eq.(3.4) by

]rviv jvk

]t
+

]rUmviv jvk

]xm
− rf iv jvk − rf jvivk − rfkviv j

= −
]rvmviv jvk

]xm
− r

]Ui

]xm
vmv jvk − r

]Uj

]xm
vmvivk

− r
]Uk

]xm
vmviv j +

]rvivm

]xm
v jvk +

]rv jvm

]xm
vivk

+
]rvkvm

]xm
viv j −

3r

tm
viv jvk. s3.14d

Equation(3.11) for pi j and Eq.(3.14) for triple correlations
have to be complemented by a model for the characteristic
correlation time scaletm of molecular velocity fluctuations
[or, alternatively, for the kinematic viscosityn; see relation
(4.4) below]. Then, Eqs.(3.11) and (3.14) are still unclosed
due to the appearance of third-order correlations in Eq.(3.11)
and fourth-order correlations in Eq.(3.14). Approximations
for these correlations may be obtained by reducing their
transport equations to algebraic expressions or by adopting

the corresponding Gaussian expressions for these terms: see
the developments made in Sec. IV.

The equations forpi j and qi obtained here differ signifi-
cantly from corresponding equations which are postulated
within the framework of the extended irreversible thermody-
namics. Within that approach one does only obtain a certain
class of transport equations forpij andqi where several un-
known parameters appear(see the discussion of Jouet al.
[2]). In contrast to that, the use of the stochastic model(3.3)
combined with a model fortm or n corresponds to a consis-
tent choice of parameters that are unknown within the ap-
proach of extended irreversible thermodynamics.

IV. ASSUMPTION OF A LOCAL EQUILIBRIUM

To obtain closed equations(3.5) and to discuss the differ-
ence to the Navier-Stokes equations, we will apply now the
usual assumption that there exists a local equilibrium[2]. In
this case, Eqs.(3.11) and (3.14) can be reduced to algebraic
expressions for the molecular stress tensor and heat flux, as
will be shown next.

A. Calculation of the deviatoric stress tensor

To derive an algebraic expression forpi j one has to ne-
glect the first two gradient terms on the left-hand side of Eq.
(3.11). This corresponds to the assumption that there exists
an equilibrium state where production, dissipation and mo-
lecular diffusion ofpi j balance each other locally. The third
term on the left-hand of relation(3.11) represents an aniso-
tropic contribution due to molecular diffusion: see, for in-
stance, Eq.(4.7) below. Such diffusion terms are often found
to be of minor relevance in turbulence models, and the same
may be assumed regarding the molecular scale. Thus, we
apply a Gaussian approximation for this term(which implies
its neglect). Correspondingly, we may neglect the last three
terms on the left-hand side of Eq.(3.11), which involve the
anisotropic part of the production by external forces. Such
external force-velocity correlations are found to be of minor
relevance under many conditions. The resulting algebraic re-
lation for pi j then reads

2

tm
pi j = −

4e

3
rSij

d − p jk
]Ui

]xk
− pik

]Uj

]xk
+

2

3
pnk

]Un

]xk
di j .

s4.1d

This equation forpi j can be solved by adopting a technique
that was pioneered by Pope[22–24] with respect to the con-
struction of corresponding algebraic models for the stress
tensor in turbulence models. The resulting general expression
for pi j can be written in terms of contributions of growing
order in velocity gradients. A simple method to obtain the
low-order terms of this general expression forpi j is given by
the following successive approximation.

In the first order of approximation we assume thatpi j is a
linear function of velocity gradients. This is equivalent to the
neglect of all the terms that involvepi j multiplied by veloc-
ity gradients in Eq.(4.1). In this case, we find forpi j the
expression
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pi j
s1d = − 2mSij

d, s4.2d

where we introduced the viscosity

m = rn. s4.3d

The kinematic viscosityn, which appears as a diffusion co-
efficient in Eq.(4.2), is an abbreviation for

n =
tme

3
. s4.4d

By introducing the mean thermal molecular velocityuT
=s2ed1/2 and mean free pathl=tmse/2d1/2, Eq. (4.4) may
also be brought into the form which is used in kinetic gas
theory, n=uTl /3. The analysis of the acceleration model
(3.1) in the Appendix shows that the consideration of finite
ta does not result in a change of the structure of Eq.(4.2),
but expression(4.4) is generalized by Eq.(A7).

In the second order of approximation, we apply the first-
order approximation(4.2) in the terms that involvepi j on the
right-hand side of Eq.(4.1). This leads to an expression for
pi j which involves velocity gradients of second order:

pi j
s2d = pi j

s1d − p jk
s1dtm

2

]Ui

]xk
− pik

s1dtm

2

]Uj

]xk
+ pnk

s1dtm

3

]Un

]xk
di j .

s4.5d

Higher-order approximations can be constructed by repeating
this successive approximation.

The comparison of relation(4.5) with models derived
within the framework of extended irreversible thermodynam-
ics (see the corresponding discussion of Jouet al. [2]) re-
veals the same advantage as pointed out above with regard to
equations for the transport of the molecular stress tensor and
heat flux: the coefficients of nonlinear terms are completely
determined here. This fact is relevant to simulations of high-
Mach-number flows because experimental data for the as-
sessment of simulation results are hardly available for Mach
numbersNMa.4 [2]. It is worth noting that the construction
of nonlinear models for the(subgrid-scale) stress tensor in
filtered equations for turbulence also leads to the question of
how the coefficients of nonlinear contributions have to be
chosen[25,26]. With regard to that, it has been shown re-
cently that the explanation of the dynamics of turbulent fluc-
tuations by a stochastic model represents a way to overcome
this problem[27].

B. Heat flux calculation

With the same arguments as applied above, we neglect all
the terms on the left-hand side of Eq.(3.14). Further, we
approximate the velocity correlation of fourth order by the
corresponding Gaussian expression, which is a requirement
to be in consistency with the use of the Gaussian approxima-
tion for the triple correlation term in Eq.(3.11). In combina-
tion with the assumption of isotropic velocity variances this
leads to the relation

3

tm
viv jvk = −

4e

9

]e

]xm
sdimd jk + d jmdik + dkmdi jd

−
]Ui

]xm
vmv jvk −

]Uj

]xm
vmvivk −

]Uk

]xm
vmviv j .

s4.6d

In analogy to the derivation of Eq.(4.2), the first-order
approximation for triple correlations is obtained by neglect-
ing the last three terms(related to the production by velocity
gradients) in Eq. (4.6):

viv jvk
s1d = −

4n

9

]e

]xm
sdimd jk + d jmdik + dkmdi jd. s4.7d

The second order of approximation is found by inserting Eq.
(4.7) into the last three terms of Eq.(4.6):

viv jvk
s2d = viv jvk

s1d −
tm

3

3S ]Ui

]xm
vmv jvk

s1d +
]Uj

]xm
vmvivk

s1d +
]Uk

]xm
vmviv j

s1dD .

s4.8d

According to its definition(3.7b), the heat fluxqi is then
given in the first order of approximation by the correspond-
ing reduction of Eq.(4.7):

qi
s1d = − k

]e

]xi
. s4.9d

Here, we introduced the heat conduction coefficientk that is
determined by

k =
10

9
rn. s4.10d

The ratio of the diffusion coefficientsm=rn in Eq. (4.2) and
k in Eq. (4.9) determines the Prandtl numberNPr in the spe-
cific kinetic energy equation, which is defined by

NPr =
m

k
. s4.11d

The use of expression(4.10) in the definition(4.11) implies
then the value

NPr =
9

10
, s4.12d

as a consequence of the stochastic model(3.3). This result
agrees with the corresponding consequence of the Chapman-
Enskog method[14]. The explanation of Prandtl number
variations requires consideration of finiteta: see expression
(A10) in the Appendix.

The calculation ofqi in the second order of approximation
leads by means of Eq.(4.8) to
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qi
s2d = qi

s1d −
tm

3
S ]Ui

]xn
qn

s1d +
]Uk

]xn
rvnvivk

s1dD . s4.13d

The last term can be rewritten by replacing the gradient of
the kinetic energye in Eq. (4.7) by means of expression
(4.9):

vnvivk
s1d =

2

5r
qm

s1dsdnmdik + dimdnk + dkmdnid. s4.14d

This results then in the following expression for the heat flux
qi in the second order of approximation:

qi
s2d = qi

s1d −
tm

3

]Ui

]xn
qn

s1d −
2tm

15

]Uk

]xn
qm

s1dsdnmdik + dimdnk

+ dkmdnid. s4.15d

Higher-order approximations may be found by repeating this
successive approximation. Essentially, the discussion of the
advantages of Eq.(4.5) for the molecular stress tensor also
applies to Eq.(4.15).

V. SCALING ANALYSIS

A way to assess the range of applicability of various mod-
els (of the Navier-Stokes model) for pi j andqi is to rescale
the fluid dynamic equations. This will be done next by adopt-
ing a reference densityr0, velocityU0, kinetic energye0, and
lengthL0 (the reference time scale isL0/U0).

A. Scaling parameters

The only parameter of the stochastic model(3.3) is tm. By
invoking relation(4.4), Eqs.(3.5) then only depend onn. By
adopting the scaling variablesU0 andL0, the kinematic vis-
cosity n can be made dimensionless by introducing the Rey-
nolds number

NRe=
U0L0

n
. s5.1d

The coupling between the velocity and energy equations
can be assessed by introducing the speed of sounda0
=sgp0/r0d1/2 via the following parametrization ofe0:

e0 =
3p0

2r0
=

3

2g
a0

2. s5.2d

The middle expression determines a reference pressurep0
according to Eq.(3.10). The parameterg=cp/cv refers to the
ratio of the constant-pressure to constant-volume specific
heats(for monatomic fluids,g has the valueg=5/3). By
applying a0, the ratio between the characteristic molecular
velocity scaleU0 to the velocity scalea0 related to the energy
equation can be determined by means of the Mach number

NMa =
U0

a0
, s5.3d

which will be used below to assess the relevance of correc-
tions to the Navier-Stokes model.

B. Scaling of the first-order approximations

By scaling Eqs.(3.5) in terms of the scaling parameters
introduced above, one obtains the following expressions for
the scaled deviatoric partpi j of the stress tensor and heat flux
qi in the first order of approximation:

pi j
s1d

r0U0
2 = −

2

NRe
r+Sij

d+
, s5.4ad

qi
s1d

r0U0e0
= −

10

9NRe
r+ ]e+

]xi
+ . s5.4bd

The plus refers to scaled quantities; this means we applied in

Eqs. (5.4) the abbreviationsr+=r /r0, Sij
d+

=Sij
dL0/U0, and

e+=e/e0.
These expressions recover the known scaling of the first-

order approximations with the inverse Reynolds number:
these terms(and all higher-order approximations, see below)
become very small in the case of a high Reynolds number(a
small kinematic viscosityn). However, their neglect would
result in the reduction of Eqs.(3.5b) and (3.5c) to partial
differential equations of first order, which has consequences
with regard to the boundary conditions that can be applied
[24].

C. Scaling of the second-order approximations

The expressions(4.5) and(4.15), which were obtained for
the deviatoric partpi j of the stress tensor and heat fluxqi in
the second order of approximation, reveal that the dimen-
sionless quantitytm]Ui /]xj controls the appearance of con-
tributions in addition to first-order approximations. By
adopting Eq.(4.4) for tm, this quantity can be written

tm
]Ui

]xj
=

3n

e

]Ui

]xj
=

2g

e+

NMa
2

NRe

]Ui
+

]xj
+ =

2g

e+ NReNKn
2 ]Ui

+

]xj
+ .

s5.5d

This expression makes use of the definition of the Knudsen
number

NKn =
NMa

NRe
=

e+

Î6g

tm
Îe0

L0
. s5.6d

The last expression in Eq.(5.6) results from the application
of the definitions ofNMa andNRe combined with Eq.(4.4) for
n and Eq.(5.2) for e0.

The combination of Eqs.(5.4) and (5.5) shows that
second-order approximations scale with the squared Knud-
sen number. Expression(5.5) can be used to assess the re-
quirement to involve terms in addition to first-order approxi-
mations forpi j andqi. Compared to first-order contributions,
second-order contributions scale withNReNKn

2 =NMa
2 /NRe,

which is shown in Fig. 2 for different values ofNMa. The
influence of the Mach number can be investigated by rescal-
ing the fluid dynamic equations such that positions are nor-
malized on the mean free pathl=tmse/2d1/2. This was done
by Levermoreet al. [1] who investigated the relevance of
corrections to the Navier-Stokes model by comparing sta-
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tionary planar shock profiles calculated by the Navier-Stokes
model and the direct simulation Monte Carlo method devel-
oped by Bird[5]. According to their results, the applicability
of first-order approximations forpi j and qi is well justified
for NMaø2. For NMa=3, they observed deviations of 10%–
30%, and they found an unacceptable performance of first-
order approximations for the caseNMa=4. On this basis, one
may estimate by means of Fig. 2 that the Navier-Stokes
model is well applicable in cases whereNMaø2 and NRe
exceeds the critical Reynolds number for the onset of turbu-
lencesNRe.400d.

VI. SUMMARY AND CONCLUDING REMARKS

The relation between the molecular and fluid dynamics is
relevant to a rigorous foundation of the theory of turbulence,
but methods applied previously did not provide sufficient
answers to this question. Lebowitz, for example, stated: “It is
no secret that there does not exist at present anything resem-
bling a rigorous derivation of the hydrodynamic equations
governing the time evolution of macroscopic variables from
the laws governing the dynamics of their microscopic con-
stituents”[28]. With regard to this question, it is of interest
that the analysis of the stochastic motion of molecules pro-
vides a relatively simple view of the relation between the
molecular and fluid dynamics. The basis for that is given by
deriving the stochastic acceleration model(3.1) for the mo-
lecular dynamics of dense fluids from any(complete) deter-
ministic dynamics by means of the projection operator tech-
nique[9,20]. For simplicity, the analysis of this acceleration
model was performed such that the implications of its
asymptotic limit [of the velocity model(3.3)] were studied
first, and the investigation of Eqs.(3.1) in the Appendix was
used then to explain modifications which arise from the con-
sideration of the more general acceleration model.

In both variants, this means by adopting the molecular
acceleration or velocity model, the Navier-Stokes model can
be derived as the result of three steps, see the illustration in
Fig. 1. In a first step, transport equations for the molecular
stress tensor and heat flux were obtained, which appear as
unknowns in Eqs.(3.5). These transport equations can be
closed by adopting parametrizations for velocity correlations

of third and fourth order; see Sec. IV. In a second step we
applied the usual local-equilibrium assumption in the equa-
tions for the molecular stress tensor and heat flux, which
implies algebraic corrections to the Navier-Stokes model of
growing order in velocity gradients. All these expressions,
which may be derived by adopting an integrity basis
[22–24], are fully determined(additional parameters are not
involved). In a third step it was shown that the Navier-Stokes
model is recovered provided thattm]Ui /]xj becomes small
(due to the fact thattaøtm it is sufficient to consider a
constraint fortm). This condition implies the need thatMg
=tm S!1. Here, Mg=tm/S−1 represents a dimensionless
time scale ratio whereS=s2Sik

dSki
dd1/2 refers to the charac-

teristic shear rate of fluid motion. Hence, the applicability of
the Navier-Stokes model requires that the scales of molecular
and fluid motions be well separated. It is of interest to note
that the time scale ratioMg, which controls the relevance of
corrections to the Navier-Stokes model(Mach number ef-
fects), has the same structure as the gradient Mach number
that is used as an indicator for the relevance of compressibil-
ity effects within the framework of turbulence models
[29,30].

In that way, answers to questions(i) and(ii ) described in
the Introduction were presented. With regard to question(i),
it was shown that any deterministic dynamics imply a gen-
eralization of Kirkwood’s velocity model: the acceleration
model(3.1). This model may be applied to flows with differ-
ent Prandtl numbers; this mean to both dense gases and liq-
uids. With regard to question(ii ), the benefit of the findings
presented here is given by the possibility to control the ap-
plicability of the Navier-Stokes model. This can be done by
monitoring Mg. This number is available in simulations, as
may be seen by replacingtm by n via relation (4.4). It is
worth emphasizing that the use of the conditionMg!1 is
significantly simpler than the application of certain matrices
from moments of the molecular velocity PDF, as suggested
by Levermoreet al. [1]. Corrections to the Navier-Stokes
model and nonequilibrium effects can be involved(without
any need for the introduction of additional parameters) if the
applicability of the Navier-Stokes model is not well justified,
as given, for example, with regard to high-Mach-number
flows with shocks.
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APPENDIX

In analogy to the consideration of consequences of the
stochastic velocity model(3.3) in Secs. III and IV, we ana-
lyze here the implications of the more general acceleration
model (3.1). This can be done on the basis of the Fokker-
Planck equation

FIG. 2. The parameterNMa
2 /NRe in relation (5.5) against the

Reynolds numberNRe for different values of the Mach numberNMa.
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]rf smd

]t
= −

]rwi f
smd

]xi
−

]rai f
smd

]wi

+
]

]ai
Fai +

1

tm
swi − Uid − Fi

smdG r

ta
f smd

+
2e

3tmta
2

]2rf smd

]a j]a j
, sA1d

which corresponds to the stochastic model(3.1). Here f smd

refers to the joint acceleration-velocity PDF conditioned on
the positionx, anda denotes the sample-space acceleration.

By multiplying Eq. (A1) with appropriate variables and
integration one may find transport equations for all the mo-
ments of the joint acceleration-velocity PDF. The direct in-
tegration of Eq.(A1) recovers the continuity equation(3.5a).
The equations for the mean velocityUi and accelerationĀi
read

DUi

Dt
+

]rvmvi

r]xm
= Āi , sA2ad

DĀi

Dt
+

]rvmai

r]xm
=

1

ta
sFi − Āid, sA2bd

whereD /Dt=] /]t+Um] /]xm denotes the substantial deriva-
tive. The equations for the moments of second order are
given by

Dviv j

Dt
+

]rvmviv j

r]xm
+ v jvm

]Ui

]xm
+ vivm

]Uj

]xm
= aiv j + ajvi ,

sA3ad

Daiv j

Dt
+

]rvmaiv j

r]xm
+ v jvm

]Āi

]xm
+ aivm

]Uj

]xm

= aiaj −
1

ta
Saiv j − f iv j +

viv j

tm
D , sA3bd

Daiaj

Dt
+

]rvmaiaj

r]xm
+ ajvm

]Āi

]xm
+ aivm

]Āj

]xm

= −
1

ta
S2aiaj − f iaj − f jai +

aiv j + ajvi

tm
−

4e

3tatm
di jD ,

sA3cd

whereai and f i refer to acceleration and body force fluctua-
tions, respectively. Correspondingly, one finds for the mo-
ments of third order the transport equations

Dviv jvk

Dt
+ v jvkvm

]Ui

]xm
+ vivkvm

]Uj

]xm
+ viv jvm

]Uk

]xm

+
]rvmviv jvk

r]xm
−

]rvmvi

r]xm
v jvk −

]rvmv j

r]xm
vivk −

]rvmvk

r]xm
viv j

= aiv jvk + ajvivk + akviv j , sA4ad

Daiv jvk

Dt
+ v jvkvm

]Āi

]xm
+ aivkvm

]Uj

]xm
+ aiv jvm

]Uk

]xm

+
]rvmaiv jvk

r]xm
−

]rvmai

r]xm
v jvk −

]rvmv j

r]xm
aivk −

]rvmvk

r]xm
aiv j

= aiajvk + aiakv j −
1

ta
Saiv jvk +

viv jvk

tm
− f iv jvkD , sA4bd

Daiajvk

Dt
+ ajvkvm

]Āi

]xm
+ aivkvm

]Āj

]xm
+ aiajvm

]Uk

]xm

+
]rvmaiajvk

r]xm
−

]rvmai

r]xm
ajvk −

]rvmaj

r]xm
aivk −

]rvmvk

r]xm
aiaj

= aiajak −
1

ta
S2aiajvk +

aiv jvk + ajvivk

tm
− f iajvk − f jaivkD ,

sA4cd

Daiajak

Dt
+ ajakvm

]Āi

]xm
+ aiakvm

]Āj

]xm
+ aiajvm

]Āk

]xm

+
]rvmaiajak

r]xm
−

]rvmai

r]xm
ajak −

]rvmaj

r]xm
aiak −

]rvmak

r]xm
aiaj

= −
1

ta
S3aiajak +

viajak + v jaiak + vkaiaj

tm

− f iajak − f jaiak − fkaiajD . sA4dd

First, we will use Eqs.(A3) to generalize the calculation
of the deviatoric stress tensorpi j in Sec. IV. For simplicity,
the effect of finiteta will be only considered with respect to
the first-order approximation ofpi j (higher-order approxima-
tions can be obtained as shown in Sec. IV). By neglecting
body force effects and the left-hand sides of Eqs.(A3b) and
(A3c), we obtain foraiv j andaiaj the expressions

FIG. 3. The dependence of the Prandtl numberNPr on ta/tm

according to Eq.(A10) for different values of the parameterb.
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aiv j = −
1

rtm

pi j

1 + ta/tm
, aiaj =

1

ta
Saiv j +

1

tm
viv jD .

sA5d

By adopting this expression foraiv j, Eq. (A3a) provides
equations for the kinetic energye andpi j . The equation fore
corresponds to Eq.(3.5c) with the exception thatQB=0 since
body force effects are neglected here. By neglecting contri-
butions due to the first two terms on the left-hand side of Eq.
(A3a) and adopting isotropic variances in the production
terms (which are proportional to velocity gradients), the
equation forpi j implies the first-order approximation

pi j
s1d = − 2mSij

d. sA6d

Here, the viscositym=rn, where the kinematic viscosityn is
given in generalization of Eq.(4.4) by

n =
tme

3
S1 +

ta

tm
D . sA7d

The generalization of the heat flux calculation can be per-
formed in correspondence to the developments made in Sec.
IV, where again the attention is restricted to the approxima-
tion of first order. We neglect body force effects and the first
four terms on the left-hand sides of Eqs.(A4). In addition to
that, we approximate correlations of fourth order by their
corresponding Gaussian expressions, and we applyviv j
=2e/3di j , aiv j =0 andaiaj =2e/ s3tatmddi j for the variances:
see the relation(A5). In this case, Eqs.(A4) reduce to

4e

9

]e

]xm
fdimd jk + d jmdik + dkmdi jg = aiv jvk + ajvivk + akviv j ,

sA8ad

0 = tatmfaiajvk + aiakv jg − tmaiv jvk − viv jvk, sA8bd

4e

9
s1 + bd

]e

]xm
dkmdi j = tatmaiajak − 2tmaiajvk − aiv jvk

− ajvivk, sA8cd

0 = 3tmaiajak + ajakvi + aiakv j + aiajvk, sA8dd

whereb=−se/tatmd]statmd /]e is introduced. To derive Eq.
(A8c) we used the assumption thatta and tm may vary in
space via a temperature(or, alternatively, kinetic energy) de-
pendence,]statmd /]xm=f]statmd /]eg]e/]xm. The analysis of
Eqs.(A8) then shows that

qi
s1d = −

rn

NPr

]e

]xi
. sA9d

n is determined by Eq.(A7), and the Prandtl numberNPr is
given in generalization of Eq.(4.12) by

NPr =
9

10
S1 +

ta

tm
DS1 + 0.5

ta

tm
DS1 + s3.5 +bd

ta

tm
D−1

.

sA10d

Corresponding Prandtl number variations are illustrated in
Fig. 3 for different values ofb. One observes thatNPr in-
creases with decreasing resolution(if ta effects become
smaller).
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