Homework 3 (MATH 5490-01)Name (Print):Due date: Thursday, March 7, 2013

Consider the instantaneous emission of a mass M = 0.1 kg from a point source at position $y_0 = 10$ m. The mean wind velocity in x direction is U = 10 m/s, and the diffusion coefficient is $D = U y_0$.

- 1. Develop a diffusion model that can be used for the simulation of the diffusion process described above. Present the model such that the vertical diffusion in y direction can be described. Specify boundary conditions for the following cases:
 - a) no boundary,
 - b) totally reflecting boundary,
 - c) totally absorbing boundary.
- 2. Calculate for the totally absorbing boundary case the total amount of mass in the domain considered divided by M at
 - a) x = 10 m

b) x = 100 m

Here, x is the distance from the source.

Hint: This calculation can be performed by writing the corresponding integral in terms of error functions.

- 3. Derive an analytical formula for the concentration distribution that can be used for partially absorbing and partially reflecting boundaries. This formula should contain the cases of a totally absorbing boundary and a totally reflecting boundary as limit cases.
- 4. Use this formula to provide the analytical concentration distribution for the case of a boundary with 50% reflection. Use this formula to calculate the position of the maximum and the maximal ground concentration for this case.