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Abstract. The application of large eddy simulation (LES) to turbulent reacting flow calculations is
faced with several closure problems. Suitable parametrizations for filtered reaction rates for instance
are hardly available in general. A way to overcome these problems is investigated here. This is
done by extending LES equations for filtered velocities and scalars (mass fractions of species and
temperature) to equations that involve subgrid scale (SGS) fluctuations. Such equations are called
filter density function (FDF) methods because they determine the FDF, which is essentially the
probability density function of SGS variables. The FDF model considered involves only three para-
meters: C0 that controls the generation of velocity fluctuations and two parameters which determine
the relaxation of velocity and scalar fluctuations. The consideration of this model may be seen as
the analysis of a limiting case: the implications of the most simple equations for the dynamics
of SGS fluctuations are investigated in this way. These equations were proved recently by various
simulations. Here, the FDF model is used analytically to improve simpler methods. Existing models
for the SGS stress tensor in velocity LES equations and the diffusion coefficient in scalar FDF
equations are generalized in this way. The advantages of these models compared to existing ones
are pointed out. These investigations provide further evidence for the suitability of the FDF model
considered and they provide its parameters. A theoretical value C0 = 19/12 is derived, which agrees
very well with the results of direct numerical simulation. This estimate implies the same value for
the universal Kolmogorov constant of the energy spectrum, which is consistent with the results of
many measurements. The other two model parameters can be obtained then by dynamic procedures.
Therefore, the closure problems of LES equations are overcome in this way such that adjustable
parameters are not involved.

Key words: filter density function, large eddy simulation, stochastic model for subgrid-scale turbu-
lence, subgrid-scale stress tensor, turbulent diffusion coefficient.

1. Introduction

The calculation of turbulent reacting flows by means of direct numerical simulation
(DNS) is found to be unfeasible for many relevant flows. The simplest way to
overcome this problem is the use of Reynolds-averaged Navier–Stokes (RANS) or
probability density function (PDF) equations [14, 33]. The latter methods gener-
alize RANS methods through the incorporation of the dynamics of fluctuations,
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which is relevant because it enables the exact treatment of the effects of sources
(chemical reaction rates). However, the use of RANS and PDF methods becomes
problematic if nonequilibrium flows have to be calculated. That are flows which
involve for instance large-scale flow structures or the binary mixing of scalars. To
simulate them one has to apply PDF or RANS models that are significantly more
complex than simple models applied usually [13]. This leads to a need for the
development of alternative methods.

Such an alternative method is given by large eddy simulation (LES). Large-
scale processes are resolved without approximations within this approach, which
enables predictions that are often found to be more accurate than those of RANS
equations [23, 29, 33, 37]. Nevertheless, the use of LES requires the modeling of
subgrid scale (SGS) processes. For this reason, the application of LES to reacting
flows is faced with the same problem as the use of RANS methods: such LES
equations are characterized by the appearance of unknown filtered reaction rates
for which accurate parametrizations are unavailable in general. A way to over-
come this problem is the use of the PDF methodology to extend LES equations
to equations for instantaneous velocities and scalars. This was suggested by Givi
[9] and applied first by Madnia and Givi [22]. Pope [31] introduced the concept of
a filter density function (FDF) which is essentially the PDF of SGS variables. He
showed that the use of this methodology offers for reacting flow simulations the
same advantage as the use of PDF methods: chemical reactions appear in a closed
form. Gao and O’Brien [5] developed a transport equation for the scalar FDF and
offered suggestions for modeling of the unclosed terms in this equation.

One way to use FDF methods is their application to flow simulations. Basically,
this was done recently by adopting hybrid FDF methods where the velocity field is
calculated by means of conventional LES equations and the scalar transport by a
FDF transport equation [2, 15, 34, 45]. Such methods apply algebraic approxima-
tions to close the SGS scalar flux in terms of scalar gradients (see the explanations
given in the Appendix B). A more general approach consists in the stochastic sim-
ulation of both velocity and scalar fields. Such calculations are feasible as shown
by Gicquel et al. [8] who performed the first FDF simulations of velocity fields
(scalars were not involved). Nevertheless, it turned out that the effort related to the
use of velocity-scalar FDF methods is very high. The simulation of velocity fields
is six times less expensive than DNS, but it requires 15–30 times more effort than
LES methods [8].

Another way to use FDF methods for velocities and scalars is their application
to the construction of simpler (hybrid) FDF methods, which are more efficient.
This question will be addressed here. First, this is done to improve existing ve-
locity LES and scalar FDF methods by assuring the consistency of these methods.
This means for instance that the same model for instantaneous velocities is used to
calculate (within the frame of a hybrid method) filtered velocities and the transport
of scalars in physical space, or different contributions to algebraic expressions for
the SGS stress tensor. The application of such consistent methods was found to be
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of remarkable relevance to the use of PDF methods [24, 25, 44], so that the same
may be expected with regard to the use of FDF methods. The second reason for
performing this analysis is the possibility to assess FDF models for velocities and
scalars through the comparison of their implications with well-investigated phe-
nomenological models. This complements their assessment by means of specific
flow simulations. It enables more general insight into the suitability of models and
the choice of model parameters (e.g., for the case that backscatter effects have to
be involved).

The paper is organized as follows. Existing models for velocities and scalars
will be combined to a model for the joint velocity-scalar FDF in Section 2. The
consideration of this model may be seen as the analysis of a limiting case: the
implications of the most simple model for the dynamics of SGS fluctuations are
investigated in this way. This model will be used in Section 3 to derive closed LES
equations for the velocity field. The reduction of the velocity-scalar FDF model
to a scalar model, which can be applied in conjunction with the velocity LES
model, will be performed in Section 4. The findings obtained will be summarized
in Section 5.

2. The Closure of LES Equations

The LES equations will be presented in Section 2.1. Their closure requires their
extension to a stochastic model. This will be presented in Section 2.2. Section 2.3
shows how this stochastic model can be reduced to consistent LES equations for the
velocity field and scalar FDF transport equations. The realization of this reduction
is then the concern of Sections 3 and 4.

2.1. THE LES EQUATIONS

The mass density-weighted filtered value of any function Q of velocities U(x, t) =
(U1, U2, U3) and scalars (the mass fractions of N species and temperature)
�(x, t) = (�1, . . . ,�N+1) will be defined by

Q̄ = 〈ρ〉−1〈ρQ〉. (2.1)

Here, ρ(x, t) is written for the mass density, and the bracket refers to a spatial
filtering,

〈ρ(x, t)Q(x, t)〉 =
∫

dr ρ(x − r, t) Q(x − r, t) G(r). (2.2)

The filter function G is assumed to be homogeneous. We assume that
∫

drG(r) = 1
and G(r) = G(−r). Moreover, only positive filter functions [41] are considered for
which all the moments

∫
drrmG(r) exist for m ≥ 0 [2].

The filtering of the basic equations results in the following LES equations for
the filtered mass density 〈ρ〉, velocities Ūi and scalars �̄α ,
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∂〈ρ〉
∂t

+ ∂〈ρ〉Ūk

∂xk

= 0, (2.3a)

∂Ūi

∂t
+ Ūk

∂Ūi

∂xk

+ 〈ρ〉−1 ∂〈ρ〉ukui

∂xk

= 2〈ρ〉−1 ∂

∂xk

〈ρ〉ν
(

S̄ik − 1

3
S̄nnδik

)
− 〈ρ〉−1 ∂〈p〉

∂xi

+ Fi, (2.3b)

∂�̄α

∂t
+ Ūk

∂�̄α

∂xk

+ 〈ρ〉−1 ∂〈ρ〉ukφα

∂xk

= 〈ρ〉−1 ∂

∂xk

〈ρ〉ν(α)

∂�̄α

∂xk

+ S̄α. (2.3c)

Repeated indices imply summation with the exception of subscripts in parentheses.
Fi is any external force (the acceleration due to gravity), p = p(ρ,�) the pressure
that is defined via the thermal equation of state, and Sα denotes a known source
rate. Sik = 1/2[∂Ui/∂xk +∂Uk/∂xi] is the rate-of-strain tensor and ν the kinematic
viscosity, which is considered to be constant for simplicity. ν(α) is the molecular or
thermal diffusivity of the scalar �α . To derive the first term on the right-hand side of
Equation (2.3b), we assumed that ∂Ui/∂xk = ∂Ūi/∂xk. A corresponding relation is
assumed regarding the derivation of the first term on the right-hand side of (2.3c).
The expressions ukui and ukφα on the left-hand sides of (2.3b–2.3c) are called
the SGS stress tensor and SGS scalar flux. Within the frame of RANS and PDF
methods, one often considers ui and φα to be the fluctuations of Ui and �α . This
is not done here but ukui and ukφα (and corresponding expressions that involve ui

and φα) are seen as symbols, which are defined by the following expanded forms:

ukui = UkUi − ŪkŪi, ukφα = Uk�α − Ūk�̄α. (2.4)

The purpose of defining ukui and ukφα in this way is to avoid the appearance of

double-filtering operations ¯̄Uk and ¯̄�α because Ūk �= ¯̄Uk and �̄α �= ¯̄�α in general
[33].

The problem that has to be solved to apply Equations (2.3a–2.3c) to turbulent
reacting flow simulations is to provide closures for the unknowns ukui , ukφα and
S̄α. To calculate these terms, one has to assess the effects of fluctuations on UkUi ,
Uk�α and S̄α , which requires a model for both the dynamics of resolved variables
Ūi , �̄α and fluctuations around these variables. Such a model for the dynamics of
instantaneous velocities and scalars will be presented next.

2.2. THE STOCHASTIC MODEL

The model for instantaneous velocities U ∗
i (i = 1, 3) and scalars �∗

α (α = 1, N+1)
is considered within the Lagrangian framework, where particle positions x∗

i are
involved as independent variables,

d

dt
x∗

i = U ∗
i , (2.5a)
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d

dt
U ∗

i = �̄i + F̄i − 1

τL

(U ∗
i − Ūi) + √

C0εr

dWi

dt
, (2.5b)

d

dt
�∗

α = �̄α + Sα − 1

τϕ

(�∗
α − �̄α) + Gαm(U ∗

m − Ūm). (2.5c)

�̄i plus F̄i and �̄α plus S̄α determine the dynamics of resolved velocities Ūi and
scalars �̄α , as may be seen by filtering these equations. According to (2.3b–2.3c)
one finds [13]

�̄i = 2〈ρ〉−1 ∂

∂xk

〈ρ〉ν
(

S̄ik − 1

3
S̄nnδik

)
− 〈ρ〉−1 ∂〈p〉

∂xi

,

�̄α = 〈ρ〉−1 ∂

∂xk

〈ρ〉ν(α)

∂�̄α

∂xk

. (2.6)

The body force in the velocity equation (2.5b) is assumed to be independent of
velocities and scalars, Fi = F̄i . This simplifies the explanations given in Section 4
because F̄i does not affect the calculation of the SGS stress tensor. The Boussinesq
approximation (see section 4.1 in Heinz [13]) is not covered in this way. There is
no need for doing this because compressibility effects can be taken into account
as shown in Section 3. No assumption is made regarding the source term Sα in the
scalar equation (2.5c).

The remaining terms on the right-hand sides of (2.5b–2.5c) model the dynamics
of velocity and scalar fluctuations. Velocity fluctuations are assumed to be gen-
erated by the last term in (2.5b). dWi/dt is a Gaussian process with vanishing
means, 〈dWi/dt〉 = 0, and uncorrelated values at different times, 〈dWi/dt (t) ·
dWj/dt ′(t ′)〉 = δij δ(t−t ′). The symbol δij is the Kronecker delta and δ(t−t ′) the
delta function. The coefficient of dWi/dt has the same structure as applied in PDF
methods [33]. The SGS dissipation rate of turbulent kinetic energy εr will be de-
fined in Section 3.1, and C0 is a constant that has to be estimated. A corresponding
stochastic source term in the scalar equation (2.5c) is not considered. Such a term
is needed within the frame of PDF methods to simulate the loss of information
about the initial PDF in time [13]. However, there is no need to consider such a
term in FDF methods because most of the scalar spectrum is resolved. The effect
of noise on the scalar dynamics is involved in (2.5c) via the term related to velocity
fluctuations. The appearance of this term is a consequence of assuming a locally
isotropic dissipation of the scalar field. Accordingly, Gαm is determined by [13]

Gαm = 1

τϕ

φαui V −1
im . (2.7)

V −1 refers to the inverse velocity variance matrix V which has elements Vij =
uiuj . The third terms on the right-hand sides of (2.5b–2.5c) involve the most rele-
vant assumptions. They model the relaxation of velocity and scalar fluctuations. It
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is assumed here that velocity and scalar fluctuations relax only in interaction with
their own means, where τL and τϕ are characteristic relaxation times that have to
be estimated.

Equations (2.5a–2.5c) for the dynamics of SGS fluctuations were validated
through simulations of various two-dimensional jets and mixing layers and a three-
dimensional temporally developing mixing layer. The good performance of the
velocity equation (2.5b) (without body force) was proved by Gicquel et al. [8]. The
performance of the scalar equation (2.5c) combined with a conventional LES equa-
tion for the velocity field was investigated by Colucci et al. [2], Jaberi et al. [15]
and Zhou and Pereira [45]. The term that involves velocity fluctuations in (2.5c)
had to be neglected in these simulations because velocity fluctuations were not
incorporated into the stochastic model. The consideration of the equations (2.5a–
2.5c) can also be justified with the argument that their analysis is equivalent to the
consideration of a limiting case: the equations (2.5a–2.5c) represent the simplest
possible model for the dynamics of SGS fluctuations that can be applied.

It is worth emphasizing that the solution of (2.5a–2.5c) overcomes the clo-
sure problems related to the LES equations (2.3a–2.3c). Equations (2.5a–2.5c) are
closed for specified τL, τϕ and C0 (which will be determined in Sections 3 and 4),
and the expressions (2.6) assure that the transport of filtered quantities is calculated
according to (2.3a–2.3c). However, the solution of (2.5a–2.5c) is very expensive.
Thus, for reasons given in the introduction these equations will be reduced to sim-
pler methods. The basic scheme of this reduction to be performed in Sections 3 and
4 will be outlined next.

2.3. THE CLOSURE OF LES EQUATIONS

The stochastic model presented above determines the joint velocity-scalar FDF that
is defined by

F(v, θ , x, t) = δ(U(x, t) − v)δ(�(x, t) − θ). (2.8)

Its transport equation can be derived from Equations (2.5a–2.5c) by means of
standard methods. It reads [6, 33, 35]

∂

∂t
〈ρ〉F + ∂

∂xi

〈ρ〉viF

= − ∂

∂vi

〈ρ〉
[
�̄i − 1

τL

(vi − Ūi) + F̄i

]
F + ∂2

∂vj∂vj

〈ρ〉C0εr

2
F

− ∂

∂θα

〈ρ〉
[
�̄α − 1

τϕ

(θα − �̄α) + Gαm(vm − Ūm) + Sα

]
F. (2.9)

By multiplying (2.9) with vivj and integrating it over the velocity-scalar space,
one may derive the following equation for the SGS stress tensor uiuj ,
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∂uiuj

∂t
+ Ūk

∂uiuj

∂xk

+ 〈ρ〉−1 ∂〈ρ〉ukuiuj

∂xk

+ ukuj

∂Ūi

∂xk

+ ukui

∂Ūj

∂xk

= − 2

τL

uiuj + C0εrδij . (2.10)

In an analogous manner as the SGS stress tensor, the term ukuiuj is defined by

ukuiuj = UkUiUj − ŪkŪiŪj − Ūkuiuj − Ūiukuj − Ūjukui, (2.11)

where the first part of (2.4) has to be applied on the right-hand side. Equation (2.10)
will be reduced in Section 3 to an algebraic model for the SGS stress tensor uiuj

in order to close the velocity LES equation (2.3b).
In the framework of a model that provides only filtered velocities Ūi and not in-

stantaneous velocities, (2.9) is not the appropriate FDF equation. Rather one has to
reduce (2.9) to a closed equation for the scalar FDF Fϕ(θ, x, t) = δ(�(x, t) − θ).
The transport equation for Fϕ can be obtained by integrating (2.9) over the velocity
space. This results in

∂

∂t
〈ρ〉Fϕ = − ∂

∂xi

〈ρ〉(Ūi + ui | θ)Fϕ

− ∂

∂θα

〈ρ〉
[
	̄α − 1

τϕ

(θα − 
̄α) + Gαmum | θ + Sα

]
Fϕ. (2.12)

The closure of Equation (2.12) requires the determination of the scalar-conditioned
convective flux

ui | θ = F−1
ϕ Uiδ(� − θ) − Ūi, (2.13)

which is defined by the right-hand side. This quantity will be calculated in Sec-
tion 4. The reduction of the velocity-scalar FDF transport equation (2.9) to closed
equations (2.3b) and (2.12) is called a hybrid method.

The completion of this method to closed LES equations for velocities and
scalars requires closure models for uiφα and S̄α, which appear as unknowns in
(2.3c). The hybrid method solves this problem regarding to uiφα . We may multiply
(2.13) by Fϕθα and perform the integration over the scalar space. This results in
uiφα provided the scalar-conditioned convective flux is known. A closure model
for the filtered source rate S̄α in (2.3c) requires the knowledge of an analytical
scalar FDF. Then, S̄α can be obtained by integration,

S̄α =
∫

dθSα(θ)Fϕ(θ, x, t). (2.14)

The conditions for the existence of such an explicit expression for the scalar FDF
Fϕ will be pointed out in Section 4.
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3. The Closure of the Equation for Filtered Velocities

Equation (2.10) for the SGS stress tensor will be reformulated in Section 3.1. The
general algebraic solution to this equation is given in Section 3.2. In Section 3.3,
this solution will be simplified to models for the SGS stress tensor which are
linear and quadratic in the resolved shear tensor S̄ik. The relevance of quadratic
contributions to the SGS stress tensor will be studied in Section 3.4 by means of
a scaling analysis. Section 3.5 deals with the calculation of parameters that appear
in the SGS stress tensor models by means of theoretical arguments. The validity of
these findings will be investigated in Section 3.6 by comparisons with DNS data.

3.1. TRANSPORT EQUATION FOR THE SGS STRESS TENSOR

It is convenient for the following developments to split the SGS stress tensor uiuj

into the anisotropic residual stress tensor

τij = uiuj − 2

3
krδij (3.1)

and its isotropic part 2kr/3δij , which is determined by the residual kinetic energy
kr = ujuj/2. Equation (2.10) provides transport equations for τij and kr which
read

∂τij

∂t
+ Ūk

∂τij

∂xk

+ 〈ρ〉−1 ∂〈ρ〉uk(uiuj − ulul δij /3)

∂xk

= −∂Ūi

∂xk

τkj − ∂Ūj

∂xk

τki − 4

3
kr S̄ij − 2

τL

τij − 2

3
Prδij , (3.2a)

∂kr

∂t
+ Ūk

∂kr

∂xk

+ 1

2
〈ρ〉−1 ∂〈ρ〉ukulul

∂xk

= Pr − εr . (3.2b)

Pr = −uiuj S̄ji is the production rate of residual kinetic energy, and the dissipation
rate εr is given by εr = 2kr/[(1+1.5C0)τL]. The model (3.2a–3.2b) determines the
SGS stress tensor provided that τL and C0 are given, and the ukuiuj expressions are
closed. The latter can be achieved by means of the transport equation for ukuiuj ,
which follows from (2.9).

3.2. GENERAL ALGEBRAIC EXPRESSION FOR THE SGS STRESS TENSOR

To derive an algebraic expression for the SGS stress tensor we neglect the left-hand
sides of Equations (3.2a–3.2b) in comparison to the terms on the right-hand sides.
This results in

B∗
ik

(
S∗

kj − �∗
kj + 1

2
δkj

)
+ B∗

jk

(
S∗

ki − �∗
ki + 1

2
δki

)

= −S∗
ij + 2

3
B∗

klS
∗
lkδij , (3.3a)
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B∗
klS

∗
lk = −3

4

(
1 − 1

1 + τLS̄nn/3

C0

C0 + 2/3

)
, (3.3b)

where the abbreviations

B∗
ij = 3

4

τij

kr

, S∗
ij = τL

2

1

1 + sτLS̄nn/3

(
S̄ij − 1

3
S̄nnδij

)
,

�∗
ij = τL

2

1

1 + τLS̄nn/3
�ij (3.4)

are used. Here, �ij = 1/2[∂Ui/∂xj −∂Uj/∂xi] denotes the rate-of-rotation tensor.
Relation (3.3b) follows from the definition Pr = −uiuj S̄ji in conjunction with
Pr = εr = 2kr/[(1 + 1.5C0)τL], which is implied by (3.2b).

There are different ways to solve (3.3a) exactly (see [35, p. 155]), but the pre-
sentation of its solution by means of an integrity basis is most convenient because
it allows explicit comparisons with other methods. For that, we restrict the devel-
opment to the consideration of an incompressible flow. This allows the use of a
technique that was developed by Pope [30] and applied by Gatski and Speziale
[7]. Nevertheless, the explanations given below show that the incorporation of
compressibility effects is straightforward. The general solution of (3.3a) may be
written as

B∗ =
9∑

λ=1

G(λ)T (λ). (3.5)

The integrity basis T (λ) and coefficients G(λ) are given in Table I. In the relations
for the coefficients G(λ) one finds the following irreducible invariants of S∗ and
�∗,

η1 = {S∗2}, η2 = {�∗2}, η3 = {S∗3},
η4 = {S∗�∗2}, η5 = {S∗2�∗2}. (3.6)

The denominator D in the expressions for G(λ) is a function of these invariants,

D = 3 − 3.5η1 + η2
1 − 7.5η2 − 8η1η2 + 3η2

2 − η3 + 1.5η1η3

− 2η2η3 + 21η4 + 24η5 + 2η1η4 − 6η2η4. (3.7)

An important property of the algebraic model obtained is that the relation (3.3b),
which represents the algebraic kr -equation (3.2b), provides an equation of sixth-
order for τL,

D

C0 + 2/3
= η1(6 − 3η1 − 21η2 + 4η3 + 12η4)

− 2η3(6 − 2η3 − 12η4) + 36η2
4 + 36η5, (3.8)
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Table I. The integrity basis and coefficients that appear in the relation (3.5). {·} denotes the trace and
I being the unity tensor. The invariants η1–η5 are given by (3.6) and D by (3.7).

T (1) = S∗ G(1) = −(6 − 3η1 − 21η2 − 2η3 + 30η4)/(2D)

T (2) = S∗�∗ − �∗S∗ G(2) = −(3 + 3η1 − 6η2 + 2η3 + 6η4)/D

T (3) = S∗2 − {S∗2}I/3 G(3) = (6 − 3η1 − 12η2 − 2η3 − 6η4)/D

T (4) = �∗2 − {�∗2}I/3 G(4) = −3(3η1 + 2η3 + 6η4)/D

T (5) = �∗S∗2 − S∗2�∗ G(5) = −9/D

T (6) = �∗2S∗ + S∗�∗2 − 2{S∗�∗2}I/3 G(6) = −9/D

T (7) = �∗S∗�∗2 − �∗2S∗�∗ G(7) = 9/D

T (8) = S∗�∗S∗2 − S∗2�∗S∗ G(8) = 9/D

T (9) = �∗2S∗2 + S∗2�∗2 − 2{S∗2�∗2}I/3 G(9) = 18/D

whereas kr is unconstraint in that algebraic approximation. We have to define τL

as a function of kr in order to transform (3.8) into an equation for kr . This is done
by assuming τL = �/k

1/2
r , where a length scale � is introduced. Further, we scale

� by � = �∗�, where �∗ is a number and � the filter width. Hence, we find the
SGS stress tensor in dependence on the parameters C0 and �∗. The relation of the
algebraic model (3.5) to models applied usually will be considered next.

3.3. LINEAR AND QUADRATIC ALGEBRAIC SGS STRESS TENSOR MODELS

First, we consider the simplest version of (3.5) where only shear of first-order is
taken into account. In this first approximation we find B∗

(1) = −S∗. This may be
written in terms of τij as

τ
(1)
ij = −2νr S̄ij , (3.9)

where the residual eddy viscosity νr = krτL/3 is introduced. Relation (3.9) may
also be obtained by neglecting the production in (3.3a), i.e., the first-, second-,
fourth- and fifth-term on the left-hand side, and the last term on the right-hand
side. Equation (3.8) provides then

k(1)
r = 1 + 1.5 C0

6
�2

∗�
2 |S̄|2, (3.10)

where |S̄| =
√

2S̄klS̄lk. This expression for kr may be proved by equating εr with
the production Pr that follows from the use of (3.9). The use of (3.10) in (3.9)
provides then

τ
(1)
ij = −2 cS�

2 |S̄| S̄ij , (3.11)

where the parameter cS is introduced, which is given by

cS =
√

1 + 1.5 C0

54
�2∗ �∗. (3.12)
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The comparison of (3.11) with the Smagorinsky model reveals that cS corre-
sponds to the Smagorinsky coefficient. cS can be calculated by adopting a dynamic
procedure that is given by the expression (A.4) in Appendix A.

This dynamic Smagorinsky model is capable of describing backscatter, which
refers to the appearance of locally negative values of the production Pr =
−τ

(1)
ij S̄j i = cS�

2|S̄|3 [20, 23, 29]. A requirement for the inclusion of backscatter
is the consideration of locally negative values of �∗, which has significant conse-
quences regarding the approach presented here: it corresponds to the consideration
of locally negative time scales τL = �∗�/k

1/2
r . The latter extends significantly

concepts used previously for stochastic turbulence simulations, but it is physically
plausible. The appearance of linear velocity terms with negative frequencies can
be interpreted as stochastic forcing in addition to the last term in (2.5b). Obviously,
the necessary condition for the acceptability of such terms is that the mean of τL is
always positive.

In the next order of approximation, we consider shear-contributions up to
second-order in (3.5), which results in B∗

(2) = −S∗ − (S∗�∗ − �∗S∗) + 2(S∗2 −
{S∗2}I/3), or,

τ
(2)
ij = −2νr S̄ij − νrτL(S̄ik�kj − �ikS̄kj )

+ 2νrτL

(
S̄ikS̄kj − 1

3
S̄nkS̄knδij

)
. (3.13)

This expression follows from (3.3a) if B∗ is replaced in the production terms by
−S∗ according to the first approximation. Equation (3.8) (or the equality of εr with
the production Pr that follows from the use of (3.13)) now results in the following
expression for kr ,

k(2)
r = 1 + 1.5 C0

6
κ2�2

∗�
2 |S̄|2. (3.14)

Here we introduced the positive variable κ that is given as the solution of a third-
order equation,

0 = κ3 − κ + s∗. (3.15)

The last term in (3.15) is given by s∗ = λs, where λ = √
27/(8 + 12C0) and

s = (�∗/|�∗|)IIIS/(−IIS)3/2 are introduced. s is similar to the generalized skewness
function used by Kosović [17] and defined in terms of the invariants IIS = −|S̄|2/4
and IIIS = {S̄3}/3 [21]. The variation of κ is illustrated in Figure 1 which shows
all the positive solutions of (3.15). Their existence requires that s∗ ≤ 2/

√
27. The

dashed curve for κ ≤ 1/
√

3 is found to be unphysical because it is inconsistent
with κ = 1 at s∗ = 0. The solid curve is given by the relation κ = 2 cos(ϕ/3)/

√
3,

where ϕ is defined through cos(ϕ) = −1.5
√

3s∗.
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Figure 1. κ in dependence on s∗ according to Equation (3.15).

To compare (3.13) with other findings we rewrite it by means of the definitions
of S̄ij and �̄ij

τ
(2)
ij = −2κcS�

2|S̄|S̄ij + �2∗�2

3

[
∂Ūi

∂xk

∂Ūj

∂xk

− δij

3

∂Ūl

∂xk

∂Ūl

∂xk

+ 1

2

(
∂Ūi

∂xk

∂Ūk

∂xj

+ ∂Ūj

∂xk

∂Ūk

∂xi

)
− δij

3

∂Ūl

∂xk

∂Ūk

∂xl

]
. (3.16)

It is worth emphasizing that the justification for the expression (3.16) obtained for
the SGS stress tensor arises from the fact that it is implied by the stochastic model
(2.5a–2.5c). The available support for (2.5a–2.5c) was described in Section 2.2.
Further, it was pointed out that the consideration of (2.5a–2.5c) corresponds to the
consideration of the simplest possible model for the physics of SGS fluctuations.
Consequently, (3.16) represents the simplest model for the SGS stress tensor if
one includes shear up to second-order. The advantage of (3.16) compared to ex-
isting models of this type is given through its consistency. First, this concerns the
consistent consideration of quadratic shear terms. The model of Clark et al. [1],
for instance, is generalized due to the appearance of the last two terms inside the
bracket (and the pre-factor, which is calculated here in dependence on �∗ whereas
Clark’s model assumes a fixed value �∗ = 0.5). Second, this concerns the consistent
calculation of the coefficients of linear and quadratic terms. It is of interest to note
that the model (3.16) has the same structure as the model applied by Kosović [17].
However, the latter model applies coefficients of quadratic contributions which are
estimated by a heuristic argument and vanish under conditions where backscatter
is negligible. In contrast to this, the coefficients of (3.16) are explained (for both
the case that backscatter is relevant or not) as functions of the two parameters C0

and �∗ of the velocity model (2.5b). For C0, a theoretical value will be derived
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in Section 3.5. The remaining parameter �∗ can be estimated then by means of
the dynamic procedure (A.1) presented in Appendix A. This makes it possible to
perform self-consistent flow simulations.

3.4. SCALING ANALYSIS

An important question concerns the relevance of quadratic shear contributions in
the expression (3.13) for the SGS stress tensor. To address this question, we apply
(in analogy to the assessment of the relevance of nonlinear shear contributions to
the stress tensor in the basic equations) a scaling analysis. We scale τij in terms of
a characteristic velocity scale U0 and L0 which characterizes the spatial scale of
the flow considered. The rescaled expression (3.13) then reads

τ+
ij = −irKnr S̄+

ij

+ Kn2
r

{
S̄+

ikS̄
+
kj − 1

3
{S̄+S̄+}δij − 1

2
(S̄+

ik�
+
kj − �

+
ikS̄

+
kj )

}
. (3.17)

The plus refers to scaled quantities of order unity. This means the scaled anisotropic
residual SGS stress tensor is given by τ+

ij = τ
(2)
ij /U 2

0 , the scaled rate-of-strain ten-

sor by S̄+
ik = S̄ikL0/U0, and the scaled rate-of-rotation tensor by �

+
kj = �kjL0/U0.

Further, two dimensionless numbers are used in (3.17), the SGS Knudsen number
Knr and turbulence intensity ir . These parameters are given by

Knr =
√

2

3

�

L0
, ir = 1

U0

√
2kr

3
=

√
1 + 1.5C0

6
κ |S̄|+ |Knr | . (3.18)

The consideration of the factor
√

2/3 in Knr simplifies the writing of (3.17) and
the following discussion. The last term for ir follows from the use of (3.14). The
expression (3.17) confirms previous conclusions about the significance of quadratic
shear contributions [17, 18, 43]. ir and Knr are of the same order of magnitude in
general so that the quadratic terms in (3.17) cannot be neglected in comparison to
the linear term.�

Nevertheless, it is essential to note that the relevance of quadratic shear con-
tributions to flow simulations depends significantly on the value of Knr . One may
differentiate three cases in dependence on the setting of Knr (which can be chosen
through the numerical resolution of the flow). The first case is given for very small

� This finding is significantly different to the result that follows from the consideration of the
same problem at the molecular level. In correspondence to (3.17), one may derive an expression for
the stress tensor in the basic equations from the molecular dynamics. This expression is given by
replacing Knr by 2

√
γ Kn and ir by 1/(

√
γ Ma) in (3.17). Here, Kn is the Knudsen number, Ma

the Mach number and γ the ratio of the constant-pressure to constant-volume specific heats. These
relations explain the difference of the significance of quadratic shear contributions in basic equations
and filtered equations. One often has the case that 1/Ma is much larger than Kn, whereas ir and Knr

are found to be of the same order of magnitude in general.



166 S. HEINZ

values of Knr (less than about 0.004 for the conditions considered by Gicquel et al.
[8]): the contribution of the SGS stress tensor model is about 2×10−5 times smaller
than other contributions in (2.3b), i.e., it is irrelevant. The second case is given for
small values of Knr (near 0.03 regarding the studies of Gicquel et al. [8]): the
details of the SGS stress tensor model are of minor relevance to flow simulations
in this case so that the neglect of quadratic shear contributions can be compensated
by dynamic adjustments of �∗. The third case is given if Knr becomes larger than
about 0.03. The details of the SGS stress tensor model become then essential, this
means quadratic shear contributions have to be involved, in particular, regarding to
simulations of significantly anisotropic flows.

3.5. THEORETICAL CALCULATION OF PARAMETERS

Another question related to the analysis of (3.13) concerns the calculation of the
model parameters C0 and �∗. This will be addressed first with reference to C0.
For that, let us have a closer look at the calculation of the standardized SGS kinetic
energy κ via (3.15). The variation of s∗ = λs shown in Figure 1 has to be explained
through its s-dependence because λ is considered as a constant. In particular, we
have the constraint 2/

√
27 = smax∗ = λsmax, where smax∗ and smax are the maxi-

mal values of s∗ and s. To calculate smax, we may assume that �∗ is positive and
consider the possible range of values of s. The invariants IIIS and IIS are the same
in every coordinate system, i.e., we may consider S̄ij in principal axes where the
off-diagonal elements are zero. Due to the assumed S̄nn = 0, S̄ij is then a function
of two independent components. A simple analysis of IIIS/(−IIS)3/2 as function of
these two variables shows that [21]

− 2√
27

≤ s ≤ 2√
27

. (3.19)

By adopting (3.19) in 2/
√

27 = λsmax, we find λ = √
27/(8 + 12C0) = 1, which

corresponds to

C0 = 19

12
. (3.20)

This value has to be seen as the asymptotic value of C0 regarding the simulation
of high-Reynolds number turbulence by means of FDF methods. It is of interest to
note that the result C0≈1.58 obtained here agrees well with corresponding values
used for C0 within the frame of PDF methods. One often applies C0 values in be-
tween 1 and 3 to simulate inhomogeneous and anisotropic flows at high-Reynolds
numbers [3, 10, 11].

The non-dimensional length scale �∗ may be calculated as a function of fluctu-
ating velocities and velocity gradients (filtered at different levels) if the dynamic
procedure (A.1) given in Appendix A is applied for its calculation. In this case, �∗
varies with different realizations of the turbulent flow considered. An alternative
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Figure 2. A range of idealized PDF shapes of the non-dimensional length scale �∗ in sample
space �̂. The corresponding mean values, 〈�∗〉 = 1/2, 1/3 and 1/6, are shown with reference
to their PDF.

to this approach is the use of a mean value for �∗ [8], which corresponds to the
application of a constant cS in LES. The estimation of such an optimal value for �∗
requires an assessment of possible variations of �∗. This question will be addressed
now. �∗ may be seen as a standardized fluctuating eddy length. According to Kol-
mogorov’s theory, one should expect a distribution of eddy lengths with a higher
probability for the appearance of small eddies. In particular, the eddy lengths PDF
should approach to zero for values of �∗ near unity. This assumption results in the
PDF given with the mean �∗ = 1/3 in Figure 2. This figure also presents two
further PDFs in order to illustrate the range of variations of the eddy lengths PDF.
The upper limiting PDF shape is given through the assumption of a uniform eddy
lengths PDF. Therefore, Figure 2 suggests the following range of �∗ variations that
may be expected,

�∗ = 1

3

(
1 ± 1

2

)
. (3.21)

One way to prove the suitability of these estimates for C0 and �∗ is to have a
look at the implications for the Smagorinsky constant cS . The use of (3.20) and
(3.21) in (3.12) implies c

1/2
S = 0.17 ± 0.08, which agrees well with values applied

usually [33]. The calculation of cS provided here enables also the assessment of
the relation between C0 with the Kolmogorov constant CK that determines the
energy spectrum. For that, we set according to (3.21) �∗ = 2(8/19)3/4/π in (3.12)
and adopt Lilly’s classical result c

1/2
S = π−1[2/(3CK)]3/4 [19]. This leads to the

relation

CK = 19

12

(
27

8 + 12C0

)1/3

. (3.22)
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Figure 3. The calculation of C0 and �∗ (as functions of the normalized time t) by means of
the DNS data reported by Gicquel et al. [8]. The values C0 = 19/12 and �∗ = 0.33 obtained
in Section 3.5 by theoretical arguments are shown for a comparison.

By adopting (3.20), we find that the bracket factor in (3.22) is unity. This im-
plies that C0 and CK are equal, CK = C0 = 19/12 ≈ 1.58. This result
for CK agrees very well with results of measurements, which provide CK =
55/18(0.53 ± 0.055) = 1.62 ± 0.17 [40].

3.6. COMPARISON WITH DNS DATA

Next, we compare (3.20) and (3.21) for C0 and �∗ with available DNS data. This
can be done by means of the results of Gicquel et al. [8]. In terms of their notation,
C0 and �∗ are given by C0 = 2(C̃1 −1)/3 and �∗ = 2/(C̃1C̃ε). The values obtained
for these parameters are presented in Figure 3.

The C0 curve reveals two different stages. For t < 50, the flow evolves from
an initially smooth laminar state to a three-dimensional turbulent state before the
action of the small scales becomes significant [8]. Values of C0 around 6 at t ≈ 50
are consistent with experience obtained within the frame of PDF methods for flows
of low complexity as stationary homogeneous isotropic turbulence [32, 38, 39]. For
t > 50, the typical flow structures of the mixing layer considered develop [8]. C0

approaches asymptotically to C0 = 19/12, this means the theoretical finding (3.20)
is well supported by these DNS results. The �∗ curve is approximately constant for
t > 50 and found in a very good agreement with the theoretical estimate �∗ = 1/3.

It is worth emphasizing that these a priori DNS calculations of C0 and �∗ are
well supported by corresponding a posteriori results of Gicquel et al. [8], where
the effects of C0 and �∗ variations on flow simulations were investigated. These
findings reveal that the use of values near C0 = 2.1 and �∗ = 0.5 results in
satisfactory predictions [8]. In particular, it was found that �∗ should not be taken
larger than �∗ = 0.5, which agrees very well with the implications of (3.21).
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4. The Closure of the Equation for Filtered Scalars

We turn to the calculation of scalar transport. According to the explanations given
in Section 2.3, this requires the closure of the convective flux ui | θ in the scalar
FDF equation (2.12). This will be done in Section 4.1 and further discussed in
Section 4.2. Section 4.3 deals with a discussion of the parametrization of the scalar
mixing frequency τ−1

ϕ , which has to be provided to close (2.12).

4.1. THE SCALAR-CONDITIONED CONVECTIVE FLUX

As noted in Section 2.3, in the framework of a model that provides only filtered
velocities Ūi and not instantaneous velocities, (2.9) is not the appropriate FDF
equation. Rather one has to reduce the joint velocity-scalar FDF equation (2.9)
to the scalar FDF transport equation (2.12). This equation is unclosed due to the
appearance of the scalar-conditioned convective flux ui | θ . The calculation of this
quantity from the underlying velocity-scalar FDF transport equation is performed
in Appendix B. This results in

ui | θ Fϕ = −Kik

∂Fϕ

∂xk

(4.1)

if counter-gradient terms are neglected, see the explanations given in Appendix B.
The diffusion coefficient Kij in (4.1) is given through

Kij = τLγ −1
inunuj , (4.2)

where γ −1 is the inverse matrix of γ which has elements γij = δij + τL∂Ūi/∂xj .
The diffusion coefficient Kij will be considered in more detail in Section 4.2. The
use of (4.1) in (2.12) results in the following scalar FDF equation

∂

∂t
〈ρ〉Fϕ = − ∂

∂xi

〈ρ〉
{
ŪiFϕ − Kim

∂Fϕ

∂xm

}

− ∂

∂θα

〈ρ〉
{[

�̄α − 1

τϕ

(θα − �̄α) + Sα

]
Fϕ − GαnKnm

∂Fϕ

∂xm

}
. (4.3)

Gαm is given by (2.7), and the parametrization of the mixing frequency τ−1
ϕ will be

addressed below.
The solution of (4.3) permits to calculate the scalar transport in consistency with

the transport equations for filtered scalars,

∂�̄α

∂t
+ Ūk

∂�̄α

∂xk

= 〈ρ〉−1 ∂

∂xk

〈ρ〉(ν(α)δkm + Kkm)
∂�̄α

∂xm

+ S̄α, (4.4)

which follow from (4.3) through multiplication with θα and integration over the
scalar space. The extension of (4.4) through (4.3) is a requirement to involve the
effects of source rates Sα on �̄α without further approximations. A simpler ap-
proach than the use of (4.3) to obtain the scalar FDF Fϕ is the assumed-shape FDF
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approach where an analytical form for Fϕ is provided to calculate S̄α in (4.4) via
(2.14). Usually, one assumes that Fϕ only depends on �̄α and the scalar variances
Vαβ = φαφβ . The �̄α are then calculated according to (4.4), and the Vαβ are para-
metrized [42] or calculated by their transport equation. This approach is simple
and relatively effective, but its range of applicability is limited. This is shown in
Appendix C. It is pointed out there that the assumption of an assumed shape for
Fϕ is justified if there are no velocity-scalar fluctuations, i.e., no production mech-
anism for scalar fluctuations. This assumption cannot be considered to be justified
in general. Further, it is worth noting that the application of this approach requires
the specification of the shape of the FDF Fϕ . This poses a non-trivial problem: one
has to provide a FDF-shape that covers both the initial and final stage of the FDF
evolution. For these reasons, the solution of (4.3) represents a much more flexible
method compared to the assumed-shape FDF approach.

4.2. THE DIFFUSION COEFFICIENT

Next, we will consider the properties of Kij in more detail. By adopting (4.2) com-
bined with the Smagorinsky model (3.11) for the SGS stress tensor, the diffusion
coefficient Kij is found to satisfy

(δin + τLS̄in + τL�̄in)Knj = 2νr(δij − τLS̄ij ). (4.5)

Here, τL = �∗�/k
1/2
r and the residual eddy viscosity νr = krτL/3. By adopting

(3.10) one finds then

νr = cS �2 |S̄|. (4.6)

Therefore, in contrast to the usual assumption of an isotropic Kij [2, 15, 45] one
finds an anisotropic relation for it even when the simplest model for the SGS stress
tensor is applied.

Relation (4.5) can be simplified in the case of small shear. In zeroth, first and
second order of approximation, one finds

K
(0)
ij = νr

Sct

δij , K
(1)
ij = νr

Sct

(δij − τLS̄ij ),

K
(2)
ij = νr

Sct

(δin − τLS̄in − τL�̄in)(δnj − τLS̄nj ). (4.7)

Here, the turbulent Schmidt number Sct is given by

Sct = 1

2
, (4.8)

which follows as a consequence of (4.5). This theoretical value (4.8) for Sct agrees
very well with values Sct = 0.55 ± 0.15 applied in scalar FDF methods [15].

We turn to the question about the relevance of shear contributions to the diffu-
sion coefficient Kij . For that, we apply the same scaling analysis as in Section 3.4.
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By adopting again U0 and L0 as characteristic velocity and length scales, we obtain
from (4.5) the relation

(irδin + Knr S̄
+
in + Knr�̄

+
in)K

+
nj = irKnr (irδij − Knr S̄

+
ij ), (4.9)

where the plus refers to scaled quantities (K+
nj = Knj/U0L0). The conclusion that

can be drawn from (4.9) regarding the relevance of shear contributions is the same
as obtained for τij : such contributions are important in general. This is confirmed
by studies of the anisotropy of Kij performed by Rogers et al. [36] and Kaltenbach
et al. [16]. These investigations show that Kij is strongly anisotropic and asym-
metric even for homogeneous turbulence. For unstratified shear flow one finds for
instance for the diagonal elements of the diffusion coefficient that K11/K22 = 2.9
and K33/K22 = 0.53, and the nonzero off-diagonal elements are characterized by
K13/K22 = −1.2 and K31/K22 = −0.65 [16].

4.3. THE SCALAR MIXING FREQUENCY

The effect of parametrizations of the mixing frequency τ−1
ϕ can be seen at best

by means of the scalar variance transport equation for an inert scalar (referred to
without subscript). This equation reads according to (4.3)

∂φ2

∂t
+ Ūk

∂φ2

∂xk

+ 〈ρ〉−1 ∂〈ρ〉ukφ
2

∂xk

= −2
1 − R

τϕ

φ2 − 2ukφ
∂�̄

∂xk

. (4.10)

Here, we used the abbreviation R = rkrk , where rk is the correlation coefficient

of velocity and scalar fluctuations, rk = V −1/2
kmumφ/φ2

1/2
. A simple analysis

reveals the range of R variations, 0 ≤ R < 1. The case R = 1 would correspond
to a perfect correlation of the scalar considered with the velocity field. This case
cannot be realized provided the intensity of the stochastic source term (C0) in the
velocity equation is positive definite.

The closure of (4.10) requires the calculation of velocity-scalar correlations.
This can be achieved by means of (4.1) combined (in the first order of approxima-
tion) with K

(0)
ij of (4.7) and νr = krτL/3 = �2∗�2/(3τL). One obtains

ukφ = −2
�2∗�2

3τL

∂�̄

∂xk

, ukφ2 = −2
�2∗�2

3τL

∂φ2

∂xk

. (4.11)

The assumption of an algebraic expression for the scalar variance was found to be
well appropriate for the modeling of small-scale mixing processes by Heinz and
Roekaerts [12]. Therefore, we neglect (in consistency with the treatment of the
dynamics of kr in Section 3) all the gradients of φ2 on the left-hand side of (4.10).
This implies

φ2 = 2

3
�2

∗
τϕ

(1 − R)τL

�2 ∂�̄

∂xm

∂�̄

∂xm
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= 2

3
�2

∗

(
1 + τϕ

τL

)
�2 ∂�̄

∂xm

∂�̄

∂xm

= 2

3
�2

ϕ∗�
2 ∂�̄

∂xm

∂�̄

∂xm

. (4.12)

The first expression for φ2 follows from (4.10) combined with (4.11). The second
expression is obtained by calculating R = (1+τϕ/τL)−1 according to its definition,
where Vij is considered to be isotropic. The last expression introduces the parame-
ter �ϕ∗ by the relation �2

ϕ∗ = �2∗(1 + τϕ/τL), which assures that φ2 is calculated
as a positive variable. The relation (4.12) is often used to provide the scalar SGS
variance within the context of assumed-shape methods [4, 27, 42]. �ϕ∗ was then
calculated dynamically [42] or taken to be �ϕ∗ = 0.5 [4].

The definition of �2
ϕ∗ can be used to obtain the following expression for the

mixing frequency,

1

τϕ

= �2∗
�2

ϕ∗ − �2∗

1

τL

. (4.13)

The dependence of τ−1
ϕ on �∗ corresponds to the expectation: the intensity of scalar

mixing grows with the characteristic eddy length �∗. �ϕ∗ is a characteristic measure
for the length over which the scalar field changes. The relation (4.13) provides for
it the constraint �ϕ∗ > �∗. This means that the characteristic length of the scalar
field has to be larger than the characteristic eddy length, which is required for the
onset of scalar mixing (scalar fields that are smaller than eddies flow with them but
are not dispersed). It is worth noting that the condition �ϕ∗ > �∗ is implied by the
appearance of Gαm in (2.5c), which provides additional support for its considera-
tion. (4.13) shows that the mixing frequency τ−1

ϕ becomes smaller with growing
�ϕ∗. This is the expected trend because τ−1

ϕ has to vanish for �ϕ∗ 
 �∗. These
explanations indicate that the variability of �ϕ∗ is at least so high as that of �∗. This
is confirmed by the findings of Colucci et al. [2] and Jaberi et al. [15], which reveal
the need to apply different values for the constants used to parametrize τ−1

ϕ for
various flows. In addition to this, the relation (4.13) shows that the consideration
of backscatter regarding τL also implies its consideration with regard to τϕ .

By adopting the relation between τL and the dissipation time scale τ = kr/εr of
turbulence,

1

τL

= 1 + 1.5C0

2τ
, (4.14)

which follows from the definition of εr = 2kr/[(1 + 1.5C0)τL], we may rewrite
(4.13) into the form of the standard model for parametrizations of the scalar mixing
frequency τ−1

ϕ [33],

1

τϕ

= Cϕ

2τ
. (4.15)

Cϕ is a constant that is given according to (4.13) by

Cϕ = (1 + 1.5C0)
�2∗

�2
ϕ∗ − �2∗

. (4.16)
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Figure 4. The calculation of Cϕ in dependence on Reλ according to the DNS data of Overholt
and Pope [26]. The error bars denote the accuracy of these data. The solid curve gives the
prediction of the parametrization (4.17) combined with Cϕ(∞) = 2.5.

This result reveals that Cϕ cannot be considered to be flow-independent because �ϕ∗
has to be expected to vary with the scalar field considered. Thus, the consideration
of scalar fields with significantly different characteristic length scales results in the
need to apply different values for Cϕ .

The results of DNS calculations of Cϕ are given in Figure 4, which presents
the findings of Overholt and Pope’s [26] investigations of passive scalar mixing in
homogeneous isotropic stationary turbulence with imposed constant mean scalar
gradient. The data presented are the temporal average values of Cϕ obtained for the
stationary portion of each simulation. The Cϕ value at the Taylor-scale Reynolds
number Reλ = 185 was not considered because it is strongly influenced by the
forcing energy input [26]. The solid curve in Figure 4 represents a parametrization
of the dependence of Cϕ on Reλ,

Cϕ = Cϕ(∞)

1 + 1.7 C2
ϕ(∞)Re−1

λ

. (4.17)

The structure of this formula is chosen according to the corresponding parame-
trization of C0 suggested by Sawford [38]. Further support for such a variation
of Cϕ with Reλ is provided by recent results of Heinz and Roekaerts [12]. The
parameters in (4.17) were estimated such that the predictions of (4.17) agree with
the DNS data. This leads to the asymptotic value Cϕ(∞) = 2.5 of Cϕ. The use
of this value (combined with C0 = 19/12 and �∗ = 1/3) in (4.16) implies then
�ϕ∗ = 0.5, which agrees with the assumption of Forkel and Janicka [4].
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5. Summary and Further Discussion

The model (2.5a–2.5c) for the stochastic dynamics of velocities and scalars is used
to improve existing LES equations for velocities and stochastic equations for the
transport of scalars. The findings obtained will be summarized in Section 5.1.
These investigations also enable conclusions regarding the modeling of the sto-
chastics of SGS variables. They provide for instance insight into the variation of
the parameters C0, �∗ and �ϕ∗ of the stochastic model (2.5a–2.5c). These results
will be pointed out in Section 5.2. The difference between PDF and FDF models
for turbulent flows will be summarized briefly.

5.1. THE CLOSURE OF LES EQUATIONS

The model (2.5a–2.5c) was reduced in Sections 3 and 4 to a closed LES equation
for the velocity field and a scalar FDF equation (a further reduction of this FDF
equation to a closed LES equation requires strong assumptions that are often not
satisfied, see the detailed explanations given in Appendix C). One obtains in this
way generalizations of presently applied models for the anisotropic residual stress
tensor τij and diffusion coefficient Kij . Evidence for these new models is provided
by the fact that they are implied by the underlying model (2.5a–2.5c), which is
supported by the results of Colucci et al. [2], Jaberi et al. [15], Zhou and Pereira
[45] and Gicquel et al. [8]. In addition to this, the consideration of the model (2.5a–
2.5c) may be seen as the analysis of a limiting case: the implications of the most
simple model for the dynamics of SGS fluctuations are investigated in this way.

The algebraic models for τij and Kij presented here were compared to existing
models for these quantities in Sections 3.3 and 4.2, respectively. One advantage
of the new models for τij and Kij is given by their consistency. This means that
different contributions to the algebraic expression (3.13) for τij are calculated from
the same model for the dynamics of instantaneous velocities, which is not the case
in other methods (see Section 3.3). Further, this means that the same model for
the instantaneous velocity field is used to calculate within the frame of a hybrid
method the filtered velocity field and transport of scalars in physical space. This
leads for instance to the theoretical estimate Sct = 0.5 for the ratio of SGS eddy
viscosities for the transport of momentum and scalars, and it enables the use of the
same model for the SGS stress tensor in equations for velocities and scalars (see
Section 4.2). The application of such consistent methods is known to be relevant
in PDF methods [24, 25, 44]. Another advantage compared to existing methods
is the possibility to assess the significance of quadratic shear contributions to τij

and linear (and higher-order) shear contributions to Kij . This was pointed out in
Sections 3.4 and 4.2 by means of a scaling analysis. It was shown that the relevance
of such contributions depends essentially on the SGS Knudsen number Knr that is
controlled through the numerical resolution of the flow.
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5.2. THE MODELING OF THE DYNAMICS OF SGS FLUCTUATIONS

The model parameters C0, �∗ and �ϕ∗ are essential ingredients of the stochastic
model (2.5a–2.5c) for the dynamics of SGS fluctuations. Previously, they were
estimated by means of simulations of one type of a three-dimensional flow: a
temporally developing mixing layer with a Reynolds number Re = 50–400 [2,
8, 15]. Here, the variation of C0, �∗ and �ϕ∗ was calculated analytically. For C0,
the theoretical value C0 = 19/12 ≈ 1.58 was derived. This value agrees very
well with the results of C0 calculations by DNS data (see Section 3.6). It implies
a value CK = C0 = 19/12 for the universal Kolmogorov constant that determines
the energy spectrum (see Section 3.5). The latter result is in accord with the result
CK = 1.62±0.17 of measurements [40]. It is worth emphasizing that the derivation
of this theoretical value for C0 simplifies the task to adjust the model parameters to
a flow considered. It enables self-consistent flow simulations through adopting the
dynamic procedure (A.1) for the estimation of �∗ and a corresponding calculation
of �ϕ∗. An alternative to this approach is to use a mean value for �∗ [8], which
corresponds to the application of a constant cS in LES. The estimation of such a
value led to �∗ = 1/3 ± 50%. It was shown that the mean �∗ = 1/3 agrees very
well with the results of DNS (see Section 3.6). The consideration of �ϕ∗ led to
the estimate �ϕ∗ = 1/2. Nevertheless, significant variations of this value (by more
than 50%) have to be expected in dependence on the scalar field considered, see
Section 4.3.

The results reported here do not give any hint for the need to extend (2.5a–
2.5c) with terms involving interactions between the dynamics of different velocity
components. As shown above, the model (2.5a–2.5c) implies models for the SGS
stress tensor and diffusion coefficient that are more complex than presently applied
standard models. In addition to this, the consideration of an anisotropic expression
for the frequency of the velocity relaxation instead of τ−1

L implies the need to
introduce additional model parameters. This complicates the task to find optimal
values. Thus, the structure of FDF equations is found to be much simpler than
that of PDF equations for nonequilibrium flows [13]. On the other hand, the dy-
namic calculation of the relaxation frequencies τ−1

L and τ−1
ϕ in (2.5b–2.5c) (via

dynamic procedures for the calculation of �∗ and �ϕ∗) corresponds to a significant
modification of the simple (generation-relaxation) mechanism used previously for
stochastic modeling, see the explanations given in Section 3.3. Nevertheless, the
application of such (dynamic) FDF methods without adjustable parameters enables
objective assessments of relevant turbulent flows which cannot be calculated by
DNS.

Appendix A: The Dynamic Calculation of �∗

The formula for the calculation of �∗ via a dynamic procedure can be obtained by
extending the corresponding calculation of cS for the Smagorinsky model [33] to
the case that τij is given through (3.13). One obtains in this way
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√
�2∗ �∗ =




c3 + c4

c1 − c2
≤ 0 if c3 ≤ −c4,

c3 − c4

c1 + c2
≥ 0 if c4 ≤ c3,

(A.1)

where the following parameters are introduced:

c1 = κ2

16λ2
AijAji + BijBji, c2 = κ

2λ
Aij Bji,

c3 = κ

4λ
LijAji, c4 = LijBji, (A.2)

The matrices in these expressions are defined through

Lij = ˜̄UiŪj − ˜̄Ui
˜̄Uj − 1

3
( ˜̄UnŪn − ˜̄Un

˜̄Un)δij ,

Aij = 2�̄2 |̃S̄|S̄ij − 2 ˜̄�2| ˜̄S| ˜̄Sij ,

Bij = �̄2

3

{
2˜̄SikS̄kj − 2

3
˜̄SnkS̄knδij − ˜̄Sik�̄kj + ˜̄�ikS̄kj

}

−
˜̄�2

3

{
2 ˜̄Sik

˜̄Skj − 2

3
˜̄Snk

˜̄Sknδij − ˜̄Sik
˜̄�kj + ˜̄�ik

˜̄Skj

}
. (A.3)

The tilde refers to the double-filtering operation, and �̄ (which is used instead of

� in Sections 3 and 4) and ˜̄� refer to the grid and test filter width, respectively
[33]. κ and λ are defined in Section 3.3. One may prove that (A.1) provides a
unique determination of �∗ for all realizable cases. c4 has to be positive and the
case −c4 ≤ c3 ≤ c4 is unrealizable.

The neglect of shear contributions of second-order (which corresponds to the
assumption that τij is given by the Smagorinsky model (3.9) instead of (3.13)) re-
covers the known formula for the dynamic calculation of the Smagorinsky constant
cS , √

1 + 1.5C0

54

√
�2∗ �∗ = cs = LijAji

AmnAnm

. (A.4)

Appendix B: The Scalar-Conditioned Convective Flux

The velocity-scalar FDF transport equation (2.9) can be used to calculate the
scalar-conditioned convective flux. One obtains (without adopting any further
assumption)

ui | θ Fϕ = D′′
i,(1)Fϕ + D′′

i,(2)Fϕ − Kik

∂Fϕ

∂xk

. (B.1)
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Kij = τLγ −1
inunuj is a diffusion coefficient, where γ −1 refers to the inverse

matrix of γ which has elements γij = δij + τL∂Ūi/∂xj . The coefficients of the
first two terms on the right-hand side of (B.1), D′′

i,(1) and D′′
i,(2) represent fluctuating

drift terms that vanish in the mean. They are given by

D′′
i,(1) = −τLγ −1

im

1

Fϕ

[
∂

∂t
um | θ Fϕ + Ūk

∂

∂xk

um | θ Fϕ

]
, (B.2a)

D′′
i,(2) = −τLγ −1

im

1

Fϕ

∂

∂θα

[
�̄α − 1

τϕ

(θα − 	̄α) + Sα

]
um | θ Fϕ

− τLγ −1
im

1

Fϕ

∂

∂θα

Gαkumuk | θ Fϕ

+ τLγ −1
im

1

〈ρ〉Fϕ

∂

∂xj

〈ρ〉(umuj − umuj | θ)Fϕ. (B.2b)

Contributions due to D′′
i,(1) can be neglected in accord with the neglect of such

terms in the transport equation for the SGS stress tensor, see Section 3.2. To see
the effects of D′′

i,(2), we consider it (in consistency with the scalar equation (2.5c))
as a linear function of scalar fluctuations,

D′′
i,(2) = τLγ −1

im

[
S ′′

ν um − 〈ρ〉−1 ∂〈ρ〉umukφν

∂xk

]
V −1

νµ(θµ − 	̄µ). (B.3)

V −1
νµ refers to the inverse matrix of V which has elements Vαβ = φαφβ . Expres-

sion (B.3) assures that the effect of D′′
i,(2) on the SGS scalar flux, which is given

according to (B.1) by

uiφα = D′′
i,(1)φα + D′′

i,(2)φα − Kik

∂	̄α

∂xk

, (B.4)

is the same as that obtained by applying (B.2b) in (B.4). The first term inside the
bracket of (B.3) may arise from chemical reactions. According to (B.4), its contri-
bution to the SGS scalar flux uiφα is given by τLγ −1

imS ′′
αum. The consideration of

the usual structure of Sα reveals that this term involves the dependence of uiφα on
the scalar fluxes of all the other species. Such cross-diffusion contributions are seen
to be of negligible relevance in PDF methods so that their neglect in FDF methods
appears to be well justified. The second term inside the bracket of (B.3) is related to
turbulent diffusion. Such contributions are also neglected usually. Therefore, D′′

i,(2)

appears to be of the same minor relevance as D′′
i,(1) under many conditions.
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Appendix C: The Reduction of the Scalar FDF Equation to an
Assumed-Shape FDF Method

To show the conditions for the applicability of the assumed-shape approach, we
will reduce the scalar FDF transport equation (4.3) to a FDF with analytical shape.
For this, it is convenient to consider (4.3) in terms of the equations for stochastic
realizations,

d

dt
x∗

i = Ūi + 1

〈ρ〉
∂〈ρ〉Kij

∂xj

+ (2K)1/2
ij

dWj

dt
, (C.1a)

d

dt
�∗

α = �̄α − 1

τϕ

(�∗
α − �̄α) + 1

〈ρ〉
∂〈ρ〉GαmKmj

∂xj

+ Sα + Gαm(2K)1/2
mj

dWj

dt
. (C.1b)

In these expressions, the square root applies to the matrix K, this means one has to
use the element ij of the matrix (2K)1/2 in (C.1a) and not the square root of matrix
elements.

Next, we split the problem to calculate the statistics of �∗
α into the problem to

calculate filtered scalars �̄α and variances Vαβ = φαφβ , and the problem to calcu-
late the statistics of standardized variables �̂∗

α = V −1/2
αµ(�∗

µ − �̄µ). According
to (C.1b), the dynamics of the latter quantities read

d

dt
�̂∗

α = −1

2
V −1/2

αµ

(
dVµν

dt
+ 2

τϕ

Vµν

)
V −1/2

νβ�̂∗
β

+ Ŝ ′′
α + V −1/2

αµGµn(2K)1/2
nm

dWm

dt
, (C.2)

where Ŝ ′′
α = V −1/2

αµS ′′
µ refers to the rescaled fluctuation of Sα. For it we use the

assumption

Ŝ ′′
α = −τ−1

ϕ Ds
αβ�̂∗

β, (C.3)

where Ds
αβ = (Dαβ +Dβα)/2 is the symmetric component of generalized Damköh-

ler numbers that are defined through Dαβ = −τϕŜ ′′
αφ̂β . The assumption (C.3) is

fully consistent with the effect of S ′′
α on the scalar variances Vαβ . This may be seen

by considering the variance transport equations

∂Vαβ

∂t
+ Ūk

∂Vαβ

∂xk

+ 〈ρ〉−1 ∂〈ρ〉ukφαφβ

∂xk

+ ukφβ

∂�̄α

∂xk

+ ukφα

∂�̄β

∂xk

= − 2

τϕ

Vαβ + Gαmumφβ + Gβmumφα + S ′′
αφβ + S ′′

βφα, (C.4)
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which follow from Equation (4.3). The use of (C.3) combined with (C.4) in (C.2)
then results in

d

dt
�̂∗

α = 1

2
V −1/2

αµ

(
1

〈ρ〉
∂〈ρ〉ukφµφβ

∂xk

+ ukφβ

∂�̄µ

∂xk

+ ukφµ

∂�̄β

∂xk

− Gµmumφβ − Gβmumφµ

)
V −1/2

βν�̂
∗
ν

+ V −1/2
αµGµn(2K)1/2

nm

dWm

dt
, (C.5)

where the relation d�̄α/dt = d�α/dt is applied. Equation (C.5) reveals that the
standardized variables �̂∗

α are unchanged (d�̂∗
α/dt = 0) if there is no velocity-

scalar correlation. The FDF of standardized variables is then known: it is equal
to the initial FDF. It is worth noting that the joint initial FDF has to be provided
as the product of marginal FDFs because there is no correlation between different

standardized variables, φ̂αφ̂β = δαβ .
The calculation of the FDF via its transport equation is reduced in this case

of vanishing velocity-scalar correlations to the calculation of filtered scalars and
variances. We may write Equation (4.4) as

∂�̄α

∂t
+ Ūk

∂�̄α

∂xk

= 〈ρ〉−1 ∂

∂xk

〈ρ〉(ν(α)δkm + Kkm)
∂�̄α

∂xm

+ V 1/2
αµ

¯̂
Sµ, (C.6)

where the V 1/2
αβ satisfy according to (C.4)

∂V 1/2
αβ

∂t
+ Ūk

∂V 1/2
αβ

∂xk

= − 1

τϕ

{δαµ + Ds
αµ}V 1/2

µβ. (C.7)

Equations (C.6) and (C.7) are closed because ¯̂
Sµ and Ds

αβ can be obtained easily
if the FDF of the standardized variables is specified. Equation (C.7) reveals that
only scalar fluctuations that arise from the initial conditions enter (C.6): there is no
production mechanism for fluctuations if velocity-scalar correlations vanish. The
scalar fluctuations then decay according to Equation (C.7).
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