This is a table of all feasible parameter sets for 4-class Q-bipartite, not Q-antipodal association schemes up to 10,000 vertices. The definition of feasible is a parameter set satisfying integral eigenvalue multiplicities and pijk, the Krein conditions, the absolute bound, and the handshaking lemma.

The columns are as follows:
Parameters = a link to a file with all parameters,
∃ = ! if unique, n! if exactly n exist, " " if one example is known, + if more than one is known, - if it does not exist
v = the number of vertices
m1 = the multiplicity of the 1st eigenspace in the Q-polynomial ordering
Krein array = the formally dual notion of a Distance-Regular graph intersection array
multiplicities = the list of eigenvalues multiplicities in the Q-polynomial ordering
valencies = the list of valencies in the standard ordering with respect to the Q-polynomial ordering
2nd Q- lists whether another Q-polynomial ordering exists, note this other ordering will also have its own row in the table as well, unless it is identical.
P - lists whether there are one or two P-orderings
DRG - if the scheme is generated by one or two distance-regular graph, gives an intersection array for one of them. See [BCN] and [VKT] in the references for more details on distance-regular graphs
Quotient - The parameters of the (v,k,lambda,mu)-SRG that would be the quotient of the putative scheme. For more information on strongly-regular graphs, see the table of Andries Brouwer here.
Hyp - Denotes whether the putative scheme could arise as the extended Q-bipartite double of a 3-class primitive Q-polynomial scheme. The 3-class scheme would arise as a certain subscheme with half of the vertices of the original, one from each antipodal class. FS stands for this being feasible. It is possible for the Q-bipartite scheme to exist, have the subscheme be feasible, but not exist.
Comments- constructions, nonexistence results or other related comments.

Acknowledgements: The construction of this table was supported in part by NSF grant DMS-1400281.
Special thanks to the following for suggestions/pointing out errors: William J. Martin

Reference List

Parameters v m1 Krein Array multiplicities valencies 2nd Q P DRG Quotient Hyp Comments
<42,6> - 42 6 {6,5,27/7,12/5; 1,15/7,18/5,6} 1,6,14,15,6 1,10,20,10,1 - 01234 {10,6,3,1;1,3,6,10} <21,10,3,6> BCN Thm 4.4.11
<70,7> ! 70 7 {7,6,49/10,7/2; 1,21/10,7/2,7} 1,7,20,28,14 1,16,36,16,1 - 01234 {16,9,4,1;1,4,9,16} <35,16,6,8> FS J(8,4)
<72,6> + 72 6 {6,5,9/2,3; 1,3/2,3,6} 1,6,20,30,15 1,20,30,20,1 - - <36,15,6,6> E6, Doubly Subtended Subquadrangles of GQ(3,9), Latin Square Type
<126,7> + 126 7 {7,6,49/9,35/8; 1,14/9,21/8,7} 1,7,27,56,35 1,32,60,32,1 - - <63,30,13,15> E7
<128,8> ! 128 8 {8,7,6,5; 1,2,3,8} 1,8,28,56,35 1,28,70,28,1 - 01234 {28,15,6,1;1,6,15,28} <64,28,12,12> FS Halved 8-cube, Latin Square Type
<132,11> + 132 11 {11,10,242/27,11/5; 1,55/27,44/5,11} 1,11,54,55,11 1,45,40,45,1 - - <66,20,10,4> FS Witt 5-(12,6,1)
<200,12> ? 200 12 {12,11,256/25,36/11; 1,44/25,96/11,12} 1,12,75,88,24 1,66,66,66,1 - - <100,33,14,9>
<240,8> + 240 8 {8,7,32/5,6; 1,8/5,2,8} 1,8,35,112,84 1,56,126,56,1 - - <120,56,28,24> E8
<240,15> + 240 15 {15,14,25/2,5; 1,5/2,10,15} 1,15,84,105,35 1,63,112,63,1 - - <120,56,28,24> FS NO+(8,2)
<240,18> + 240 18 {18,17,72/5,6; 1,18/5,12,18} 1,18,85,102,34 1,51,136,51,1 - - <120,51,18,24> FS Doubly Subtended Subquadrangles of GQ(4,16)
<252,21> - 252 21 {21,20,49/3,7; 1,14/3,14,21} 1,21,90,105,35 1,45,160,45,1 - 01234 {45,32,9,1;1,9,32,45} <126,45,12,18> Jurisic and Koolen
<260,13> ? 260 13 {13,12,169/15,13/3; 1,26/15,26/3,13} 1,13,90,117,39 1,81,96,81,1 - - <130,48,20,16>
<308,28> ? 308 28 {28,27,245/11,14/3; 1,63/11,70/3,28} 1,28,132,126,21 1,72,162,72,1 - - <154,72,26,40>
<324,36> - 324 36 {36,35,27,6; 1,9,30,36} 1,36,140,126,21 1,56,210,56,1 - 01234 {56,45,12,1;1,12,45,56} <162,56,10,24> BCN, Thm. 11.4.6
<378,21> ? 378 21 {21,20,147/8,7/2; 1,21/8,35/2,21} 1,21,160,168,28 1,128,120,128,1 - - <189,60,27,15>
<380,15> ? 380 15 {15,14,250/19,45/7; 1,35/19,60/7,15} 1,15,114,175,75 1,105,168,105,1 - - <190,84,38,36>
<392,21> ? 392 21 {21,20,35/2,9; 1,7/2,12,21} 1,21,120,175,75 1,75,240,75,1 - - <196,75,26,30>
<462,21> ? 462 21 {21,20,196/11,49/5; 1,35/11,56/5,21} 1,21,132,210,98 1,90,280,90,1 - - <231,90,33,36>
<486,45> ? 486 45 {45,44,36,5; 1,9,40,45} 1,45,220,198,22 1,110,264,110,1 - - <243,110,37,60>
<512,16> + 512 16 {16,15,128/9,8; 1,16/9,8,16} 1,16,135,240,120 1,135,240,135,1 - - <256,120,56,56> Lattice OBW16, Latin Square Type
<558,31> ? 558 31 {31,30,961/36,31/4; 1,155/36,93/4,31} 1,31,216,248,62 1,128,300,128,1 - - <279,128,52,64> FS
<560,28> ? 560 28 {28,27,49/2,7; 1,7/2,21,28} 1,28,216,252,63 1,144,270,144,1 - - <280,135,70,60> FS
<572,26> ? 572 26 {26,25,507/22,13/2; 1,65/22,39/2,26} 1,26,220,260,65 1,160,250,160,1 - - <286,125,60,50> FS
<576,36> ? 576 36 {36,35,243/8,9; 1,45/8,27,36} 1,36,224,252,63 1,112,350,112,1 - - <288,112,36,48> FS
<578,17> ? 578 17 {17,16,136/9,9; 1,17/9,8,17} 1,17,144,272,144 1,144,288,144,1 - - <289,144,71,72> Latin Square Type
<594,9> ? 594 9 {9,8,81/11,63/8; 1,18/11,9/8,9} 1,9,44,288,252 1,128,336,128,1 - - <297,128,64,48>
<600,24> ? 600 24 {24,23,108/5,6; 1,12/5,18,24} 1,24,230,276,69 1,184,230,184,1 - - <300,115,50,40>
<600,40> + 600 40 {40,39,100/3,10; 1,20/3,30,40} 1,40,234,260,65 1,104,390,104,1 - - <300,104,28,40> Doubly Subtended Subquadrangles of GQ(5,25)
<644,46> ? 644 46 {46,45,529/14,23/2; 1,115/14,69/2,46} 1,46,252,276,69 1,96,450,96,1 - 01234 {96,75,16,1;1,16,75,96} <322,96,20,32> FS
<648,18> ? 648 18 {18,17,16,10; 1,2,8,18} 1,18,153,306,170 1,153,340,153,1 - - <324,153,72,72> FS Latin Square Type
<660,22> ? 660 22 {22,21,121/6,11/2; 1,11/6,33/2,22} 1,22,252,308,77 1,224,210,224,1 - - <330,105,40,30>
<672,21> ? 672 21 {21,20,147/8,35/3; 1,21/8,28/3,21} 1,21,160,315,175 1,135,400,135,1 - - <336,135,54,54>
<686,28> ? 686 28 {28,27,25,8; 1,3,20,28} 1,28,252,315,90 1,180,324,180,1 - - <343,162,81,72>
<688,43> ? 688 43 {43,42,1849/50,43/7; 1,301/50,258/7,43} 1,43,300,301,43 1,175,336,175,1 - - <344,168,92,72> FS
<702,36> ? 702 36 {36,35,405/13,72/7; 1,63/13,180/7,36} 1,36,260,315,90 1,140,420,140,1 - - <351,140,49,60>
<722,19> ? 722 19 {19,18,152/9,11; 1,19/9,8,19} 1,19,162,342,198 1,162,396,162,1 - - <361,162,73,72> Latin Square Type
<756,27> ? 756 27 {27,26,162/7,15; 1,27/7,12,27} 1,27,182,351,195 1,117,520,117,1 - 01234 {117,80,18,1;1,18,80,117} <378,117,36,36> FS
<756,27>a ? 756 27 {27,26,4374/175,27/13; 1,351/175,324/13,27} 1,27,350,351,27 1,325,104,325,1 - - <378,52,26,4> FS
<784,35> ? 784 35 {35,34,63/2,5; 1,7/2,30,35} 1,35,340,357,51 1,255,272,255,1 - - <392,136,60,40> FS
<784,70> ? 784 70 {70,69,56,10; 1,14,60,70} 1,70,345,322,46 1,115,552,115,1 - 01234 {115,96,20,1;1,20,96,115} <392,115,18,40> FS
<800,20> ? 800 20 {20,19,160/9,12; 1,20/9,8,20} 1,20,171,380,228 1,171,456,171,1 - - <400,171,74,72> FS Latin Square Type
<812,21> ? 812 21 {21,20,539/29,63/5; 1,70/29,42/5,21} 1,21,174,385,231 1,165,480,165,1 - - <406,165,68,66>
<816,34> ? 816 34 {34,33,1445/48,119/11; 1,187/48,255/11,34} 1,34,288,374,119 1,176,462,176,1 - - <408,176,70,80>
<882,21> ? 882 21 {21,20,56/3,13; 1,7/3,8,21} 1,21,180,420,260 1,180,520,180,1 - - <441,180,75,72> Latin Square Type
<968,22> ? 968 22 {22,21,176/9,14; 1,22/9,8,22} 1,22,189,462,294 1,189,588,189,1 - - <484,189,76,72> FS Latin Square Type
<990,66> ? 990 66 {66,65,847/15,88/13; 1,143/15,770/13,66} 1,66,450,429,44 1,234,520,234,1 - - <495,234,93,126>
<1014,78> ? 1014 78 {78,77,65,8; 1,13,70,78} 1,78,462,429,44 1,198,616,198,1 - - <507,198,57,90>
<1054,31> ? 1054 31 {31,30,961/34,93/8; 1,93/34,155/8,31} 1,31,340,496,186 1,256,540,256,1 - - <527,256,120,128> FS
<1056,32> ? 1056 32 {32,31,320/11,12; 1,32/11,20,32} 1,32,341,496,186 1,248,558,248,1 - - <528,248,112,120>
<1058,23> ? 1058 23 {23,22,184/9,15; 1,23/9,8,23} 1,23,198,506,330 1,198,660,198,1 - - <529,198,77,72> Latin Square Type
<1064,19> ? 1064 19 {19,18,361/21,38/3; 1,38/21,19/3,19} 1,19,189,513,342 1,243,576,243,1 - - <532,243,114,108>
<1064,28> ? 1064 28 {28,27,490/19,21/2; 1,42/19,35/2,28} 1,28,342,504,189 1,288,486,288,1 - - <532,243,114,108> FS
<1080,36> ? 1080 36 {36,35,162/5,27/2; 1,18/5,45/2,36} 1,36,350,504,189 1,224,630,224,1 - - <540,224,88,96> FS
<1080,45> ? 1080 45 {45,44,81/2,9; 1,9/2,36,45} 1,45,440,495,99 1,275,528,275,1 - - <540,264,138,120>
<1080,50> ? 1080 50 {50,49,400/9,10; 1,50/9,40,50} 1,50,441,490,98 1,245,588,245,1 - - <540,245,100,120> FS
<1092,21> ? 1092 21 {21,20,245/13,14; 1,28/13,7,21} 1,21,195,525,350 1,225,640,225,1 - - <546,225,96,90>
<1092,26> ? 1092 26 {26,25,169/7,39/4; 1,13/7,65/4,26} 1,26,350,520,195 1,320,450,320,1 - - <546,225,96,90>
<1100,55> ? 1100 55 {55,54,242/5,11; 1,33/5,44,55} 1,55,450,495,99 1,225,648,225,1 - - <550,225,80,100> FS
<1120,40> ? 1120 40 {40,39,250/7,15; 1,30/7,25,40} 1,40,364,520,195 1,208,702,208,1 - - <560,208,72,80> FS
<1120,40>a ? 1120 40 {40,39,256/7,8; 1,24/7,32,40} 1,40,455,520,104 1,325,468,325,1 - - <560,234,108,90> FS
<1152,24> ? 1152 24 {24,23,64/3,16; 1,8/3,8,24} 1,24,207,552,368 1,207,736,207,1 - - <576,207,78,72> FS Latin Square Type
<1184,37> ? 1184 37 {37,36,1369/40,37/5; 1,111/40,148/5,37} 1,37,480,555,111 1,375,432,375,1 - - <592,216,90,72>
<1196,46> ? 1196 46 {46,45,529/13,69/4; 1,69/13,115/4,46} 1,46,390,552,207 1,192,810,192,1 - - <598,192,56,64> FS
<1224,27> ? 1224 27 {27,26,405/17,18; 1,54/17,9,27} 1,27,221,585,390 1,195,832,195,1 - - <612,195,66,60> FS
<1250,25> ? 1250 25 {25,24,200/9,17; 1,25/9,8,25} 1,25,216,600,408 1,216,816,216,1 - - <625,216,79,72> Latin Square Type
<1260,35> ? 1260 35 {35,34,98/3,7; 1,7/3,28,35} 1,35,510,595,119 1,425,408,425,1 - - <630,204,78,60> FS
<1260,75> ? 1260 75 {75,74,450/7,15; 1,75/7,60,75} 1,75,518,555,111 1,185,888,185,1 - - <630,185,40,60> FS Doubly Subtended Subquadrangles of GQ(6,36)?
<1276,29> - 1276 29 {29,28,841/33,58/3; 1,116/33,29/3,29} 1,29,231,609,406 1,189,896,189,1 - 01234 {189,128,27,1;1,27,128,189} <638,189,60,54> Jurisic and Koolen
<1278,71> ? 1278 71 {71,70,5041/81,71/8; 1,710/81,497/8,71} 1,71,567,568,71 1,288,700,288,1 - - <639,288,112,144>
<1280,64> ? 1280 64 {64,63,512/9,8; 1,64/9,56,64} 1,64,567,576,72 1,324,630,324,1 - - <640,315,170,140>
<1330,57> ? 1330 57 {57,56,361/7,57/8; 1,38/7,399/8,57} 1,57,588,608,76 1,384,560,384,1 - - <665,280,135,105>
<1344,56> 1344 56 {56,55,49,21; 1,7,35,56} 1,56,440,616,231 1,176,990,176,1 - 01234 {176,135,24,1;1,24,135,176} <672,176,40,48> FS Meixner 2-cover, Qbip-double of Moscow-Soicher
<1344,56>a ? 1344 56 {56,55,1372/27,7; 1,140/27,49,56} 1,56,594,616,77 1,396,550,396,1 - - <672,275,130,100> FS
<1352,26> ? 1352 26 {26,25,208/9,18; 1,26/9,8,26} 1,26,225,650,450 1,225,900,225,1 - - <676,225,80,72> FS Latin Square Type
<1352,91> ? 1352 91 {91,90,78,7; 1,13,84,91} 1,91,630,585,45 1,315,720,315,1 - - <676,315,122,168> FS
<1360,85> - 1360 85 {85,84,289/4,17; 1,51/4,68,85} 1,85,560,595,119 1,175,1008,175,1 - 01234 {175,144,25,1;1,25,144,175} <680,175,30,50> Jurisic and Koolen
<1372,21> ? 1372 21 {21,20,19,15; 1,2,6,21} 1,21,210,665,475 1,285,800,285,1 - - <686,285,124,114>
<1380,105> ? 1380 105 {105,104,2025/23,105/13; 1,390/23,1260/13,105} 1,105,644,585,45 1,273,832,273,1 - - <690,273,80,126>
<1408,96> ? 1408 96 {96,95,896/11,12; 1,160/11,84,96} 1,96,627,608,76 1,228,950,228,1 - - <704,228,52,84>
<1458,27> ? 1458 27 {27,26,24,19; 1,3,8,27} 1,27,234,702,494 1,234,988,234,1 - - <729,234,81,72> Latin Square Type
<1458,36> ? 1458 36 {36,35,33,16; 1,3,20,36} 1,36,420,693,308 1,308,840,308,1 - - <729,308,127,132>
<1462,51> ? 1462 51 {51,50,2023/43,51/8; 1,170/43,357/8,51} 1,51,645,680,85 1,480,500,480,1 - - <731,250,105,75>
<1482,38> ? 1482 38 {38,37,12635/351,76/37; 1,703/351,1330/37,38} 1,38,702,703,38 1,666,148,666,1 - - <741,74,37,4>
<1512,21> ? 1512 21 {21,20,343/18,77/5; 1,35/18,28/5,21} 1,21,216,735,539 1,315,880,315,1 - - <756,315,138,126>
<1536,40> ? 1536 40 {40,39,112/3,10; 1,8/3,30,40} 1,40,585,728,182 1,455,624,455,1 - - <768,312,136,120> FS
<1536,60> ? 1536 60 {60,59,54,15; 1,6,45,60} 1,60,590,708,177 1,295,944,295,1 - - <768,295,102,120> FS
<1568,28> ? 1568 28 {28,27,224/9,20; 1,28/9,8,28} 1,28,243,756,540 1,243,1080,243,1 - - <784,243,82,72> FS Latin Square Type
<1584,36> ? 1584 36 {36,35,729/22,117/7; 1,63/22,135/7,36} 1,36,440,756,351 1,336,910,336,1 - - <792,336,140,144> FS
<1600,48> ? 1600 48 {48,47,224/5,6; 1,16/5,42,48} 1,48,705,752,94 1,564,470,564,1 - - <800,235,90,60>
<1600,120> ? 1600 120 {120,119,100,15; 1,20,105,120} 1,120,714,680,85 1,204,1190,204,1 - 01234 {204,175,30,1;1,30,175,204} <800,204,28,60> FS
<1674,45> ? 1674 45 {45,44,1296/31,135/11; 1,99/31,360/11,45} 1,45,620,792,216 1,440,792,440,1 - - <837,396,195,180>
<1682,29> ? 1682 29 {29,28,232/9,21; 1,29/9,8,29} 1,29,252,812,588 1,252,1176,252,1 - - <841,252,83,72> Latin Square Type
<1694,55> ? 1694 55 {55,54,352/7,15; 1,33/7,40,55} 1,55,630,792,216 1,360,972,360,1 - - <847,360,143,160>
<1798,31> ? 1798 31 {31,30,6727/232,31/2; 1,465/232,31/2,31} 1,31,464,868,434 1,448,900,448,1 - - <899,448,222,224>
<1800,30> ? 1800 30 {30,29,80/3,22; 1,10/3,8,30} 1,30,261,870,638 1,261,1276,261,1 - 01234 {261,176,36,1;1,36,176,261} <900,261,84,72> FS Latin Square Type
<1800,30>a ? 1800 30 {30,29,225/8,15; 1,15/8,15,30} 1,30,464,870,435 1,464,870,464,1 - - <900,435,210,210> Latin Square Type
<1836,36> ? 1836 36 {36,35,567/17,18; 1,45/17,18,36} 1,36,476,882,441 1,392,1050,392,1 - - <918,392,166,168>
<1846,71> ? 1846 71 {71,70,5041/78,71/6; 1,497/78,355/6,71} 1,71,780,852,142 1,432,980,432,1 - - <923,432,186,216> FS
<1848,66> ? 1848 66 {66,65,121/2,11; 1,11/2,55,66} 1,66,780,858,143 1,468,910,468,1 - - <924,455,238,210>
<1850,37> ? 1850 37 {37,36,1369/40,37/2; 1,111/40,37/2,37} 1,37,480,888,444 1,384,1080,384,1 - - <925,384,158,160>
<1862,21> ? 1862 21 {21,20,364/19,81/5; 1,35/19,24/5,21} 1,21,228,910,702 1,390,1080,390,1 - - <931,390,173,156>
<1872,52> ? 1872 52 {52,51,10816/225,260/17; 1,884/225,624/17,52} 1,52,675,884,260 1,425,1020,425,1 - - <936,425,184,200> FS
<1872,78> ? 1872 78 {78,77,845/12,13; 1,91/12,65,78} 1,78,792,858,143 1,396,1078,396,1 - - <936,396,150,180>
<1890,81> ? 1890 81 {81,80,729/10,27/2; 1,81/10,135/2,81} 1,81,800,864,144 1,384,1120,384,1 - - <945,384,138,168> FS
<1932,21> ? 1932 21 {21,20,441/23,49/3; 1,42/23,14/3,21} 1,21,230,945,735 1,405,1120,405,1 - - <966,405,180,162>
<1938,57> ? 1938 57 {57,56,1805/34,19/2; 1,133/34,95/2,57} 1,57,816,912,152 1,576,784,576,1 - - <969,392,175,147> FS
<1960,56> ? 1960 56 {56,55,252/5,26; 1,28/5,30,56} 1,56,550,924,429 1,264,1430,264,1 - - <980,264,68,72>
<1980,44> ? 1980 44 {44,43,121/3,22; 1,11/3,22,44} 1,44,516,946,473 1,344,1290,344,1 - - <990,344,118,120>
<2016,54> ? 2016 54 {54,53,405/8,9; 1,27/8,45,54} 1,54,848,954,159 1,636,742,636,1 - - <1008,371,154,126>
<2024,46> ? 2024 46 {46,45,3703/88,23; 1,345/88,23,46} 1,46,528,966,483 1,336,1350,336,1 - - <1012,336,110,112>
<2046,31> ? 2046 31 {31,30,961/33,527/32; 1,62/33,465/32,31} 1,31,495,992,527 1,512,1020,512,1 - - <1023,510,253,255>
<2046,99> ? 2046 99 {99,98,5445/62,33/2; 1,693/62,165/2,99} 1,99,868,924,154 1,336,1372,336,1 - - <1023,336,90,120> FS
<2048,32> + 2048 32 {32,31,30,17; 1,2,15,32} 1,32,496,992,527 1,496,1054,496,1 - - <1024,496,240,240> FS Dual Extended Kasami, Latin Square Type
<2058,49> ? 2058 49 {49,48,686/15,77/5; 1,49/15,168/5,49} 1,49,720,980,308 1,500,1056,500,1 - - <1029,500,235,250>
<2060,50> ? 2060 50 {50,49,4800/103,110/7; 1,350/103,240/7,50} 1,50,721,980,308 1,490,1078,490,1 - - <1030,490,225,240>
<2120,106> ? 2120 106 {106,105,2809/30,53/3; 1,371/30,265/3,106} 1,106,900,954,159 1,324,1470,324,1 - - <1060,324,78,108>
<2142,51> ? 2142 51 {51,50,2601/56,51/2; 1,255/56,51/2,51} 1,51,560,1020,510 1,320,1500,320,1 - - <1071,320,94,96>
<2142,51>a ? 2142 51 {51,50,289/6,17/2; 1,17/6,85/2,51} 1,51,900,1020,170 1,720,700,720,1 - - <1071,350,133,105> FS
<2150,43> ? 2150 43 {43,42,1849/45,43/8; 1,86/45,301/8,43} 1,43,945,1032,129 1,864,420,864,1 - - <1075,210,65,35>
<2160,27> ? 2160 27 {27,26,243/10,21; 1,27/10,6,27} 1,27,260,1053,819 1,351,1456,351,1 - - <1080,351,126,108> FS
<2180,109> ? 2180 109 {109,108,23762/245,109/9; 1,2943/245,872/9,109} 1,109,980,981,109 1,441,1296,441,1 - - <1090,441,152,196> FS
<2200,50> ? 2200 50 {50,49,3125/66,25/3; 1,175/66,125/3,50} 1,50,924,1050,175 1,756,686,756,1 - - <1100,343,126,98>
<2256,141> - 2256 141 {141,140,2209/18,47/7; 1,329/18,940/7,141} 1,141,1080,987,47 1,567,1120,567,1 - - <1128,560,316,240> FS No 2-graph
<2268,45> ? 2268 45 {45,44,297/7,15; 1,18/7,30,45} 1,45,770,1089,363 1,605,1056,605,1 - - <1134,528,252,240>
<2280,120> ? 2280 120 {120,119,2025/19,150/17; 1,255/19,1890/17,120} 1,120,1064,1020,75 1,544,1190,544,1 - - <1140,544,228,288> FS
<2288,55> ? 2288 55 {55,54,1331/26,55/3; 1,99/26,110/3,55} 1,55,780,1089,363 1,495,1296,495,1 - - <1144,495,206,220> FS
<2312,34> ? 2312 34 {34,33,255/8,19; 1,17/8,15,34} 1,34,528,1122,627 1,528,1254,528,1 - - <1156,528,242,240> Latin Square Type
<2312,85> ? 2312 85 {85,84,153/2,25; 1,17/2,60,85} 1,85,840,1071,315 1,315,1680,315,1 - - <1156,315,74,90>
<2312,136> ? 2312 136 {136,135,119,10; 1,17,126,136} 1,136,1080,1020,75 1,480,1350,480,1 - - <1156,480,164,224> FS
<2320,58> ? 2320 58 {58,57,841/16,29; 1,87/16,29,58} 1,58,608,1102,551 1,304,1710,304,1 - - <1160,304,78,80>
<2352,126> + 2352 126 {126,125,441/4,21; 1,63/4,105,126} 1,126,1000,1050,175 1,300,1750,300,1 - - <1176,300,54,84> Doubly Subtended Subquadrangles of GQ(7,49)
<2352,126>a ? 2352 126 {126,125,112,6; 1,14,120,126} 1,126,1125,1050,50 1,675,1000,675,1 - - <1176,500,256,180> FS
<2394,27> ? 2394 27 {27,26,3240/133,279/13; 1,351/133,72/13,27} 1,27,266,1170,930 1,390,1612,390,1 - - <1197,390,141,120>
<2420,66> ? 2420 66 {66,65,308/5,27/2; 1,22/5,105/2,66} 1,66,975,1144,234 1,624,1170,624,1 - - <1210,585,296,270>
<2444,78> ? 2444 78 {78,77,3380/47,351/22; 1,286/47,1365/22,78} 1,78,987,1144,234 1,528,1386,528,1 - - <1222,528,212,240>
<2466,36> ? 2466 36 {36,35,4617/137,144/7; 1,315/137,108/7,36} 1,36,548,1197,684 1,532,1400,532,1 - - <1233,532,231,228>
<2484,69> ? 2484 69 {69,68,1587/25,23; 1,138/25,46,69} 1,69,850,1173,391 1,425,1632,425,1 - - <1242,425,136,150>
<2538,141> ? 2538 141 {141,140,2209/18,47/2; 1,329/18,235/2,141} 1,141,1080,1128,188 1,288,1960,288,1 - 01234 {288,245,36,1;1,36,245,288} <1269,288,42,72> FS
<2550,85> ? 2550 85 {85,84,1156/15,187/7; 1,119/15,408/7,85} 1,85,900,1190,374 1,350,1848,350,1 - - <1275,350,85,100>
<2576,23> + 2576 23 {23,22,2645/126,207/11; 1,253/126,46/11,23} 1,23,252,1265,1035 1,495,1584,495,1 - - <1288,495,206,180> FS Weight 12 words in Extended Binary Golay Code
<2576,46> ? 2576 46 {46,45,529/12,23/3; 1,23/12,115/3,46} 1,46,1080,1242,207 1,972,630,972,1 - - <1288,315,98,70>
<2576,56> ? 2576 56 {56,55,10976/207,126/11; 1,616/207,490/11,56} 1,56,1035,1232,252 1,792,990,792,1 - - <1288,495,206,180>
<2592,36> ? 2592 36 {36,35,135/4,21; 1,9/4,15,36} 1,36,560,1260,735 1,560,1470,560,1 - - <1296,560,244,240> FS Latin Square Type
<2652,51> ? 2652 51 {51,50,31212/637,51/25; 1,1275/637,1224/25,51} 1,51,1274,1275,51 1,1225,200,1225,1 - - <1326,100,50,4> FS
<2662,121> ? 2662 121 {121,120,5324/49,77/5; 1,605/49,528/5,121} 1,121,1176,1210,154 1,490,1680,490,1 - - <1331,490,153,196>
<2706,66> ? 2706 66 {66,65,2541/41,44/3; 1,165/41,154/3,66} 1,66,1066,1287,286 1,702,1300,702,1 - - <1353,650,325,300>
<2730,78> ? 2730 78 {78,77,507/7,52/3; 1,39/7,182/3,78} 1,78,1078,1287,286 1,594,1540,594,1 - - <1365,594,243,270>
<2750,25> ? 2750 25 {25,24,250/11,185/9; 1,25/11,40/9,25} 1,25,264,1350,1110 1,486,1776,486,1 - - <1375,486,189,162>
<2756,52> ? 2756 52 {52,51,2535/53,494/17; 1,221/53,390/17,52} 1,52,636,1326,741 1,408,1938,408,1 - - <1378,408,122,120>
<2816,22> + 2816 22 {22,21,121/6,55/3; 1,11/6,11/3,22} 1,22,252,1386,1155 1,567,1680,567,1 - - <1408,567,246,216> 2nd Derived Design of Leech Lattice
<2816,64> ? 2816 64 {64,63,640/11,34; 1,64/11,30,64} 1,64,693,1344,714 1,336,2142,336,1 - 01234 {336,255,40,1;1,40,255,336} <1408,336,80,80> FS
<2852,46> ? 2852 46 {46,45,2645/62,161/6; 1,207/62,115/6,46} 1,46,620,1380,805 1,480,1890,480,1 - - <1426,480,164,160> FS
<2862,53> ? 2862 53 {53,52,11236/225,265/13; 1,689/225,424/13,53} 1,53,900,1378,530 1,650,1560,650,1 - - <1431,650,289,300>
<2888,38> ? 2888 38 {38,37,285/8,23; 1,19/8,15,38} 1,38,592,1406,851 1,592,1702,592,1 - - <1444,592,246,240> Latin Square Type
<2890,85> ? 2890 85 {85,84,1275/16,25/4; 1,85/16,315/4,85} 1,85,1344,1360,100 1,1024,840,1024,1 - - <1445,420,163,105> FS
<2890,153> ? 2890 153 {153,152,136,9; 1,17,144,153} 1,153,1368,1292,76 1,684,1520,684,1 - - <1445,684,283,360>
<2912,91> ? 2912 91 {91,90,8281/100,91/3; 1,819/100,182/3,91} 1,91,1000,1365,455 1,375,2160,375,1 - - <1456,375,86,100> FS
<2912,91>a ? 2912 91 {91,90,169/2,13; 1,13/2,78,91} 1,91,1260,1365,195 1,735,1440,735,1 - - <1456,720,376,336> FS
<2912,98> ? 2912 98 {98,97,1176/13,14; 1,98/13,84,98} 1,98,1261,1358,194 1,679,1552,679,1 - - <1456,679,294,336> FS
<2916,63> ? 2916 63 {63,62,60,7; 1,3,56,63} 1,63,1302,1395,155 1,1085,744,1085,1 - - <1458,372,126,84> FS
<2916,189> ? 2916 189 {189,188,162,21; 1,27,168,189} 1,189,1316,1269,141 1,329,2256,329,1 - 01234 {329,288,42,1;1,42,288,329} <1458,329,40,84> FS
<2926,171> ? 2926 171 {171,170,11552/77,171/17; 1,1615/77,2736/17,171} 1,171,1386,1292,76 1,612,1700,612,1 - - <1463,612,211,288>
<2940,105> ? 2940 105 {105,104,675/7,15; 1,60/7,90,105} 1,105,1274,1365,195 1,637,1664,637,1 - - <1470,637,252,294>
<2940,105>a ? 2940 105 {105,104,875/9,5; 1,70/9,100,105} 1,105,1404,1365,65 1,1053,832,1053,1 - - <1470,416,172,96>
<2970,54> ? 2970 54 {54,53,567/11,12; 1,27/11,42,54} 1,54,1166,1431,318 1,954,1060,954,1 - - <1485,530,205,180>
<3040,50> ? 3040 50 {50,49,900/19,20; 1,50/19,30,50} 1,50,931,1470,588 1,735,1568,735,1 - - <1520,735,350,360> FS
<3042,65> ? 3042 65 {65,64,182/3,25; 1,13/3,40,65} 1,65,960,1456,560 1,560,1920,560,1 - - <1521,560,199,210>
<3060,34> ? 3060 34 {34,33,289/9,85/4; 1,17/9,51/4,34} 1,34,594,1496,935 1,704,1650,704,1 - - <1530,704,328,320>
<3060,45> ? 3060 45 {45,44,729/17,18; 1,36/17,27,45} 1,45,935,1485,594 1,825,1408,825,1 - - <1530,704,328,320>
<3074,106> ? 3074 106 {106,105,2809/29,212/9; 1,265/29,742/9,106} 1,106,1218,1431,318 1,486,2100,486,1 - - <1537,486,135,162>
<3080,55> ? 3080 55 {55,54,363/7,22; 1,22/7,33,55} 1,55,945,1485,594 1,675,1728,675,1 - - <1540,675,290,300> FS
<3080,77> ? 3080 77 {77,76,17787/250,539/19; 1,1463/250,924/19,77} 1,77,1000,1463,539 1,475,2128,475,1 - - <1540,475,138,150>
<3080,77>a ? 3080 77 {77,76,363/5,11; 1,22/5,66,77} 1,77,1330,1463,209 1,931,1216,931,1 - - <1540,608,264,224> FS
<3096,36> ? 3096 36 {36,35,1458/43,45/2; 1,90/43,27/2,36} 1,36,602,1512,945 1,672,1750,672,1 - - <1548,672,296,288> FS
<3096,43> ? 3096 43 {43,42,1849/45,86/5; 1,86/45,129/5,43} 1,43,945,1505,602 1,875,1344,875,1 - - <1548,672,296,288>
<3172,61> ? 3172 61 {61,60,3721/65,122/5; 1,244/65,183/5,61} 1,61,975,1525,610 1,625,1920,625,1 - - <1586,625,240,250>
<3174,184> ? 3174 184 {184,183,161,16; 1,23,168,184} 1,184,1464,1403,122 1,488,2196,488,1 - - <1587,488,109,168>
<3192,133> ? 3192 133 {133,132,361/3,19; 1,38/3,114,133} 1,133,1386,1463,209 1,539,2112,539,1 - - <1596,539,154,196> FS
<3200,40> ? 3200 40 {40,39,75/2,25; 1,5/2,15,40} 1,40,624,1560,975 1,624,1950,624,1 - - <1600,624,248,240> FS Latin Square Type
<3212,73> ? 3212 73 {73,72,5329/77,73/7; 1,292/77,438/7,73} 1,73,1386,1533,219 1,1029,1152,1029,1 - - <1606,576,232,192>
<3250,50> ? 3250 50 {50,49,625/13,100/9; 1,25/13,350/9,50} 1,50,1274,1575,350 1,1134,980,1134,1 - - <1625,490,165,140>
<3300,120> ? 3300 120 {120,119,1215/11,12; 1,105/11,108,120} 1,120,1496,1530,153 1,816,1666,816,1 - - <1650,816,374,432>
<3332,136> ? 3332 136 {136,135,867/7,68/5; 1,85/7,612/5,136} 1,136,1512,1530,153 1,720,1890,720,1 - - <1666,720,278,336>
<3348,36> ? 3348 36 {36,35,1053/31,162/7; 1,63/31,90/7,36} 1,36,620,1638,1053 1,728,1890,728,1 - - <1674,728,322,312>
<3360,70> ? 3360 70 {70,69,196/3,28; 1,14/3,42,70} 1,70,1035,1610,644 1,575,2208,575,1 - - <1680,575,190,200> FS
<3360,70>a ? 3360 70 {70,69,200/3,10; 1,10/3,60,70} 1,70,1449,1610,230 1,1127,1104,1127,1 - - <1680,552,208,168> FS
<3360,147> ? 3360 147 {147,146,1323/10,21; 1,147/10,126,147} 1,147,1460,1533,219 1,511,2336,511,1 - - <1680,511,126,168> FS
<3392,106> ? 3392 106 {106,105,25281/256,53/5; 1,1855/256,477/5,106} 1,106,1536,1590,159 1,960,1470,960,1 - - <1696,735,350,294>
<3402,126> ? 3402 126 {126,125,343/3,28; 1,35/3,98,126} 1,126,1350,1575,350 1,450,2500,450,1 - - <1701,450,99,126>
<3404,46> ? 3404 46 {46,45,1587/37,115/4; 1,115/37,69/4,46} 1,46,666,1656,1035 1,576,2250,576,1 - - <1702,576,200,192> FS
<3432,99> ? 3432 99 {99,98,1210/13,33/7; 1,77/13,660/7,99} 1,99,1638,1617,77 1,1323,784,1323,1 - - <1716,392,148,72> FS
<3480,75> ? 3480 75 {75,74,2025/29,30; 1,150/29,45,75} 1,75,1073,1665,666 1,555,2368,555,1 - - <1740,555,170,180> FS
<3498,77> ? 3498 77 {77,76,3872/53,231/19; 1,209/53,1232/19,77} 1,77,1484,1672,264 1,1064,1368,1064,1 - - <1749,684,291,252>
<3500,100> ? 3500 100 {100,99,375/4,10; 1,25/4,90,100} 1,100,1584,1650,165 1,1056,1386,1056,1 - - <1750,693,308,252>
<3528,42> ? 3528 42 {42,41,315/8,27; 1,21/8,15,42} 1,42,656,1722,1107 1,656,2214,656,1 - - <1764,656,250,240> Latin Square Type
<3564,27> ? 3564 27 {27,26,270/11,23; 1,27/11,4,27} 1,27,286,1755,1495 1,585,2392,585,1 - - <1782,585,216,180> FS
<3564,66> ? 3564 66 {66,65,121/2,77/2; 1,11/2,55/2,66} 1,66,780,1716,1001 1,416,2730,416,1 - 01234 {416,315,48,1;1,48,315,416} <1782,416,100,96> FS
<3584,64> ? 3584 64 {64,63,1280/21,52/3; 1,64/21,140/3,64} 1,64,1323,1728,468 1,972,1638,972,1 - - <1792,819,386,364> FS
<3610,133> ? 3610 133 {133,132,608/5,21; 1,57/5,112,133} 1,133,1540,1672,264 1,616,2376,616,1 - - <1805,616,183,224>
<3618,81> ? 3618 81 {81,80,5103/67,351/16; 1,324/67,945/16,81} 1,81,1340,1728,468 1,768,2080,768,1 - - <1809,768,312,336>
<3640,52> ? 3640 52 {52,51,338/7,65/2; 1,26/7,39/2,52} 1,52,714,1768,1105 1,544,2550,544,1 - - <1820,544,168,160> FS
<3726,36> ? 3726 36 {36,35,783/23,24; 1,45/23,12,36} 1,36,644,1827,1218 1,812,2100,812,1 - - <1863,812,361,348>
<3740,85> ? 3740 85 {85,84,867/11,34; 1,68/11,51,85} 1,85,1155,1785,714 1,525,2688,525,1 - - <1870,525,140,150>
<3762,57> ? 3762 57 {57,56,1805/33,247/16; 1,76/33,665/16,57} 1,57,1386,1824,494 1,1152,1456,1152,1 - - <1881,728,295,273>
<3800,190> ? 3800 190 {190,189,5415/32,19; 1,665/32,171,190} 1,190,1728,1710,171 1,576,2646,576,1 - - <1900,576,134,192>
<3808,56> ? 3808 56 {56,55,882/17,35; 1,70/17,21,56} 1,56,748,1848,1155 1,528,2750,528,1 - - <1904,528,152,144> FS
<3822,91> ? 3822 91 {91,90,8281/96,91/10; 1,455/96,819/10,91} 1,91,1728,1820,182 1,1280,1260,1280,1 - - <1911,630,245,189>
<3840,96> ? 3840 96 {96,95,448/5,26; 1,32/5,70,96} 1,96,1425,1824,494 1,684,2470,684,1 - - <1920,684,228,252> FS
<3872,44> ? 3872 44 {44,43,165/4,29; 1,11/4,15,44} 1,44,688,1892,1247 1,688,2494,688,1 - - <1936,688,252,240> FS Latin Square Type
<3872,55> ? 3872 55 {55,54,209/4,25; 1,11/4,30,55} 1,55,1080,1881,855 1,855,2160,855,1 - - <1936,855,374,380> FS
<3952,26> ? 3952 26 {26,25,1352/57,338/15; 1,130/57,52/15,26} 1,26,285,1950,1690 1,675,2600,675,1 - - <1976,675,258,216> FS
<4026,61> ? 4026 61 {61,60,3721/66,305/8; 1,305/66,183/8,61} 1,61,792,1952,1220 1,512,3000,512,1 - - <2013,512,136,128> FS
<4032,63> ? 4032 63 {63,62,243/4,9; 1,9/4,54,63} 1,63,1736,1953,279 1,1519,992,1519,1 - - <2016,496,152,112> FS
<4032,144> ? 4032 144 {144,143,23328/175,90/13; 1,1872/175,1782/13,144} 1,144,1925,1872,90 1,1300,1430,1300,1 - - <2016,715,314,220>
<4032,196> + 4032 196 {196,195,1568/9,28; 1,196/9,168,196} 1,196,1755,1820,260 1,455,3120,455,1 - - <2016,455,70,112> FS Doubly Subtended Subquadrangles of GQ(8,64)
<4050,162> - 4050 162 {162,161,729/5,36; 1,81/5,126,162} 1,162,1610,1863,414 1,414,3220,414,1 - 01234 {414,350,45,1;1,45,350,414} <2025,414,63,90> Jurisic and Koolen
<4070,55> ? 4070 55 {55,54,1936/37,77/3; 1,99/37,88/3,55} 1,55,1110,1980,924 1,900,2268,900,1 - - <2035,900,395,400>
<4096,24> + 4096 24 {24,23,22,21; 1,2,3,24} 1,24,276,2024,1771 1,759,2576,759,1 - - <2048,759,310,264> FS Dual of Coset Graph of Extended Binary Golay Code
<4104,36> ? 4104 36 {36,35,648/19,99/4; 1,36/19,45/4,36} 1,36,665,2016,1386 1,896,2310,896,1 - - <2052,896,400,384>
<4120,30> ? 4120 30 {30,29,2800/103,750/29; 1,290/103,120/29,30} 1,30,309,2030,1750 1,609,2900,609,1 - - <2060,609,208,168> FS
<4160,64> ? 4160 64 {64,63,768/13,40; 1,64/13,24,64} 1,64,819,2016,1260 1,504,3150,504,1 - - <2080,504,128,120>
<4160,100> ? 4160 100 {100,99,1200/13,40; 1,100/13,60,100} 1,100,1287,1980,792 1,495,3168,495,1 - - <2080,495,110,120> FS
<4216,85> ? 4216 85 {85,84,4913/62,255/7; 1,357/62,340/7,85} 1,85,1240,2023,867 1,595,3024,595,1 - - <2108,595,162,170>
<4232,46> ? 4232 46 {46,45,345/8,31; 1,23/8,15,46} 1,46,720,2070,1395 1,720,2790,720,1 - - <2116,720,254,240> Latin Square Type
<4240,40> ? 4240 40 {40,39,2000/53,55/2; 1,120/53,25/2,40} 1,40,689,2080,1430 1,832,2574,832,1 - - <2120,832,336,320> FS
<4250,85> ? 4250 85 {85,84,1445/18,51/2; 1,85/18,119/2,85} 1,85,1512,2040,612 1,864,2520,864,1 - - <2125,864,338,360> FS
<4250,85>a ? 4250 85 {85,84,2601/32,17/2; 1,119/32,153/2,85} 1,85,1920,2040,204 1,1536,1176,1536,1 - - <2125,588,203,147>
<4250,119> ? 4250 119 {119,118,13872/125,1309/59; 1,1003/125,5712/59,119} 1,119,1750,2006,374 1,826,2596,826,1 - - <2125,826,297,336>
<4318,127> ? 4318 127 {127,126,16129/136,127/8; 1,1143/136,889/8,127} 1,127,1904,2032,254 1,1024,2268,1024,1 - - <2159,1024,456,512> FS
<4320,120> ? 4320 120 {120,119,225/2,15; 1,15/2,105,120} 1,120,1904,2040,255 1,1088,2142,1088,1 - - <2160,1071,558,504> FS
<4340,217> ? 4340 217 {217,216,961/5,31; 1,124/5,186,217} 1,217,1890,1953,279 1,441,3456,441,1 - 01234 {441,384,49,1;1,49,384,441} <2170,441,56,98>
<4352,136> ? 4352 136 {136,135,2023/16,17; 1,153/16,119,136} 1,136,1920,2040,255 1,960,2430,960,1 - - <2176,960,392,448> FS
<4368,112> ? 4368 112 {112,111,1372/13,14; 1,84/13,98,112} 1,112,1924,2072,259 1,1184,1998,1184,1 - - <2184,999,486,432> FS
<4370,190> ? 4370 190 {190,189,3971/23,76/7; 1,399/23,1254/7,190} 1,190,2070,1995,114 1,1050,2268,1050,1 - - <2185,1050,455,550>
<4392,61> ? 4392 61 {61,60,3721/63,61/7; 1,122/63,366/7,61} 1,61,1890,2135,305 1,1715,960,1715,1 - - <2196,480,136,96>
<4410,210> ? 4410 210 {210,209,189,12; 1,21,198,210} 1,210,2090,1995,114 1,950,2508,950,1 - - <2205,950,355,450>
<4424,56> ? 4424 56 {56,55,4116/79,406/11; 1,308/79,210/11,56} 1,56,790,2156,1421 1,616,3190,616,1 - - <2212,616,180,168>
<4440,148> ? 4440 148 {148,147,1369/10,37/2; 1,111/10,259/2,148} 1,148,1960,2072,259 1,896,2646,896,1 - - <2220,896,328,384> FS
<4452,106> ? 4452 106 {106,105,2809/28,53/4; 1,159/28,371/4,106} 1,106,1960,2120,265 1,1280,1890,1280,1 - - <2226,945,432,378> FS
<4464,24> ? 4464 24 {24,23,2048/93,488/23; 1,184/93,64/23,24} 1,24,279,2208,1952 1,828,2806,828,1 - - <2232,828,339,288>
<4472,91> ? 4472 91 {91,90,3718/43,91/5; 1,195/43,364/5,91} 1,91,1806,2145,429 1,1155,2160,1155,1 - - <2236,1080,540,504> FS
<4500,105> ? 4500 105 {105,104,99,21; 1,6,84,105} 1,105,1820,2145,429 1,1001,2496,1001,1 - - <2250,1001,424,462>
<4508,46> ? 4508 46 {46,45,2116/49,253/8; 1,138/49,115/8,46} 1,46,735,2208,1518 1,768,2970,768,1 - - <2254,768,272,256> FS
<4526,73> ? 4526 73 {73,72,10658/155,511/15; 1,657/155,584/15,73} 1,73,1240,2190,1022 1,750,3024,750,1 - - <2263,750,245,250>
<4558,86> ? 4558 86 {86,85,12943/159,1376/51; 1,731/159,3010/51,86} 1,86,1590,2193,688 1,918,2720,918,1 - - <2279,918,357,378>
<4560,160> ? 4560 160 {160,159,2800/19,20; 1,240/19,140,160} 1,160,2014,2120,265 1,848,2862,848,1 - - <2280,848,280,336>
<4590,75> ? 4590 75 {75,74,1200/17,35; 1,75/17,40,75} 1,75,1258,2220,1036 1,740,3108,740,1 - - <2295,740,235,240>
<4600,23> + 4600 23 {23,22,529/25,184/9; 1,46/25,23/9,23} 1,23,275,2277,2024 1,891,2816,891,1 - - <2300,891,378,324> Derived Design of Leech Lattice
<4600,100> ? 4600 100 {100,99,4375/46,25/2; 1,225/46,175/2,100} 1,100,2024,2200,275 1,1408,1782,1408,1 - - <2300,891,378,324> FS
<4600,115> ? 4600 115 {115,114,529/5,46; 1,46/5,69,115} 1,115,1425,2185,874 1,475,3648,475,1 - 01234 {475,384,50,1;1,50,384,475} <2300,475,90,100> FS
<4600,115>a ? 4600 115 {115,114,5290/49,23; 1,345/49,92,115} 1,115,1862,2185,437 1,931,2736,931,1 - - <2300,931,354,392> FS
<4608,48> ? 4608 48 {48,47,45,33; 1,3,15,48} 1,48,752,2256,1551 1,752,3102,752,1 - - <2304,752,256,240> FS Latin Square Type
<4608,48>a ? 4608 48 {48,47,1152/25,24; 1,48/25,24,48} 1,48,1175,2256,1128 1,1175,2256,1175,1 - - <2304,1128,552,552> Latin Square Type
<4648,70> ? 4648 70 {70,69,5488/83,770/23; 1,322/83,840/23,70} 1,70,1245,2254,1078 1,805,3036,805,1 - - <2324,805,276,280> FS
<4700,175> ? 4700 175 {175,174,7500/47,875/29; 1,725/47,4200/29,175} 1,175,1974,2175,375 1,609,3480,609,1 - - <2350,609,128,168> FS
<4708,66> ? 4708 66 {66,65,6776/107,561/26; 1,286/107,1155/26,66} 1,66,1605,2288,748 1,1248,2210,1248,1 - - <2354,1105,528,510>
<4732,78> ? 4732 78 {78,77,520/7,51/2; 1,26/7,105/2,78} 1,78,1617,2288,748 1,1056,2618,1056,1 - - <2366,1056,460,480>
<4752,96> ? 4752 96 {96,95,1008/11,12; 1,48/11,84,96} 1,96,2090,2280,285 1,1520,1710,1520,1 - - <2376,855,342,288>
<4752,126> ? 4752 126 {126,125,1296/11,126/5; 1,90/11,504/5,126} 1,126,1925,2250,450 1,875,3000,875,1 - - <2376,875,298,336> FS
<4752,176> ? 4752 176 {176,175,484/3,22; 1,44/3,154,176} 1,176,2100,2200,275 1,800,3150,800,1 - - <2376,800,232,288> FS
<4758,117> ? 4758 117 {117,116,6760/61,273/29; 1,377/61,3120/29,117} 1,117,2196,2262,182 1,1566,1624,1566,1 - - <2379,812,325,252>
<4760,40> ? 4760 40 {40,39,4500/119,370/13; 1,260/119,150/13,40} 1,40,714,2340,1665 1,936,2886,936,1 - - <2380,936,380,360>
<4794,141> ? 4794 141 {141,140,2209/17,611/16; 1,188/17,1645/16,141} 1,141,1785,2256,611 1,576,3640,576,1 - - <2397,576,120,144>
<4802,49> ? 4802 49 {49,48,1176/25,25; 1,49/25,24,49} 1,49,1200,2352,1200 1,1200,2400,1200,1 - - <2401,1200,599,600> Latin Square Type
<4840,165> ? 4840 165 {165,164,1375/9,15; 1,110/9,150,165} 1,165,2214,2255,205 1,1107,2624,1107,1 - - <2420,1107,466,540> FS
<4864,144> ? 4864 144 {144,143,2560/19,144/11; 1,176/19,1440/11,144} 1,144,2223,2288,208 1,1287,2288,1287,1 - - <2432,1144,576,504> FS
<4900,280> ? 4900 280 {280,279,245,28; 1,35,252,280} 1,280,2232,2170,217 1,496,3906,496,1 - 01234 {496,441,56,1;1,56,441,496} <2450,496,54,112>
<4940,190> ? 4940 190 {190,189,9025/52,95/4; 1,855/52,665/4,190} 1,190,2184,2280,285 1,768,3402,768,1 - - <2470,768,200,256> FS
<4968,27> ? 4968 27 {27,26,567/23,24; 1,54/23,3,27} 1,27,299,2457,2184 1,819,3328,819,1 - - <2484,819,306,252>
<4968,92> ? 4968 92 {92,91,21160/243,391/13; 1,1196/243,805/13,92} 1,92,1701,2392,782 1,936,3094,936,1 - - <2484,936,340,360>
<4968,92>a ? 4968 92 {92,91,529/6,23/2; 1,23/6,161/2,92} 1,92,2184,2392,299 1,1664,1638,1664,1 - - <2484,819,306,252> FS
<5000,50> ? 5000 50 {50,49,375/8,35; 1,25/8,15,50} 1,50,784,2450,1715 1,784,3430,784,1 - - <2500,784,258,240> Latin Square Type
<5000,50>a ? 5000 50 {50,49,48,26; 1,2,24,50} 1,50,1225,2450,1274 1,1225,2548,1225,1 - - <2500,1225,600,600> FS Latin Square Type
<5040,56> ? 5040 56 {56,55,784/15,77/2; 1,56/15,35/2,56} 1,56,825,2464,1694 1,704,3630,704,1 - - <2520,704,208,192> FS
<5046,261> ? 5046 261 {261,260,232,21; 1,29,240,261} 1,261,2340,2262,182 1,702,3640,702,1 - - <2523,702,141,216>
<5060,55> ? 5060 55 {55,54,1210/23,143/5; 1,55/23,132/5,55} 1,55,1242,2475,1287 1,1125,2808,1125,1 - - <2530,1125,500,500> FS
<5096,91> ? 5096 91 {91,90,2366/27,13/3; 1,91/27,260/3,91} 1,91,2430,2457,117 1,2187,720,2187,1 - - <2548,360,116,40> FS
<5112,71> ? 5112 71 {71,70,10082/147,71/5; 1,355/147,284/5,71} 1,71,2058,2485,497 1,1715,1680,1715,1 - - <2556,840,300,264> FS
<5200,70> ? 5200 70 {70,69,880/13,14; 1,30/13,56,70} 1,70,2093,2530,506 1,1771,1656,1771,1 - - <2600,828,288,252> FS
<5200,208> ? 5200 208 {208,207,4732/25,26; 1,468/25,182,208} 1,208,2300,2392,299 1,736,3726,736,1 - - <2600,736,168,224> FS
<5202,51> ? 5202 51 {51,50,1224/25,27; 1,51/25,24,51} 1,51,1250,2550,1350 1,1250,2700,1250,1 - - <2601,1250,601,600> Latin Square Type
<5280,30> ? 5280 30 {30,29,300/11,80/3; 1,30/11,10/3,30} 1,30,319,2610,2320 1,783,3712,783,1 - - <2640,783,270,216>
<5280,88> ? 5280 88 {88,87,847/10,11; 1,33/10,77,88} 1,88,2320,2552,319 1,1856,1566,1856,1 - - <2640,783,270,216> FS
<5292,231> ? 5292 231 {231,230,210,11; 1,21,220,231} 1,231,2530,2415,115 1,1265,2760,1265,1 - - <2646,1265,544,660> FS
<5304,221> ? 5304 221 {221,220,48841/243,221/11; 1,4862/243,2210/11,221} 1,221,2430,2431,221 1,891,3520,891,1 - - <2652,891,250,324> FS
<5324,121> ? 5324 121 {121,120,9317/81,11; 1,484/81,110,121} 1,121,2430,2541,231 1,1701,1920,1701,1 - - <2662,960,392,320>
<5336,253> ? 5336 253 {253,252,13225/58,253/21; 1,1449/58,5060/21,253} 1,253,2552,2415,115 1,1155,3024,1155,1 - - <2668,1155,434,550>
<5346,81> ? 5346 81 {81,80,1701/22,57/2; 1,81/22,105/2,81} 1,81,1760,2592,912 1,1152,3040,1152,1 - - <2673,1152,486,504> FS
<5408,52> ? 5408 52 {52,51,195/4,37; 1,13/4,15,52} 1,52,816,2652,1887 1,816,3774,816,1 - - <2704,816,260,240> FS Latin Square Type
<5408,52>a ? 5408 52 {52,51,1248/25,28; 1,52/25,24,52} 1,52,1275,2652,1428 1,1275,2856,1275,1 - - <2704,1275,602,600> FS Latin Square Type
<5436,27> ? 5436 27 {27,26,3726/151,315/13; 1,351/151,36/13,27} 1,27,302,2691,2415 1,897,3640,897,1 - - <2718,897,336,276>
<5476,148> ? 5476 148 {148,147,555/4,22; 1,37/4,126,148} 1,148,2352,2590,385 1,1120,3234,1120,1 - - <2738,1120,426,480>
<5476,222> ? 5476 222 {222,221,407/2,15/2; 1,37/2,429/2,222} 1,222,2652,2516,85 1,1632,2210,1632,1 - - <2738,1105,528,390> FS
<5480,100> ? 5480 100 {100,99,12800/137,140/3; 1,900/137,160/3,100} 1,100,1507,2640,1232 1,660,4158,660,1 - - <2740,660,155,160>
<5504,64> ? 5504 64 {64,63,2560/43,44; 1,192/43,20,64} 1,64,903,2688,1848 1,672,4158,672,1 - - <2752,672,176,160> FS
<5566,66> ? 5566 66 {66,65,1463/23,24; 1,55/23,42,66} 1,66,1794,2717,988 1,1482,2600,1482,1 - - <2783,1300,615,600>
<5568,232> ? 5568 232 {232,231,841/4,29; 1,87/4,203,232} 1,232,2464,2552,319 1,704,4158,704,1 - - <2784,704,136,192> FS
<5590,78> ? 5590 78 {78,77,3211/43,312/11; 1,143/43,546/11,78} 1,78,1806,2717,988 1,1254,3080,1254,1 - - <2795,1254,553,570>
<5610,85> ? 5610 85 {85,84,7225/88,85/8; 1,255/88,595/8,85} 1,85,2464,2720,340 1,2048,1512,2048,1 - - <2805,756,243,189> FS
<5618,53> ? 5618 53 {53,52,1272/25,29; 1,53/25,24,53} 1,53,1300,2756,1508 1,1300,3016,1300,1 - - <2809,1300,603,600> Latin Square Type
<5618,106> ? 5618 106 {106,105,901/9,36; 1,53/9,70,106} 1,106,1890,2703,918 1,918,3780,918,1 - - <2809,918,287,306>
<5618,265> ? 5618 265 {265,264,477/2,35/2; 1,53/2,495/2,265} 1,265,2640,2544,168 1,960,3696,960,1 - - <2809,960,266,360> FS
<5632,176> ? 5632 176 {176,175,484/3,143/3; 1,44/3,385/3,176} 1,176,2100,2640,715 1,540,4550,540,1 - 01234 {540,455,54,1;1,54,455,540} <2816,540,84,108> FS
<5642,91> ? 5642 91 {91,90,2704/31,65/3; 1,117/31,208/3,91} 1,91,2170,2730,650 1,1470,2700,1470,1 - - <2821,1350,663,630>
<5670,105> ? 5670 105 {105,104,98,49; 1,7,56,105} 1,105,1560,2730,1274 1,650,4368,650,1 - - <2835,650,145,150>
<5670,105>a ? 5670 105 {105,104,100,25; 1,5,80,105} 1,105,2184,2730,650 1,1274,3120,1274,1 - - <2835,1274,553,588>
<5700,38> ? 5700 38 {38,37,361/10,57/2; 1,19/10,19/2,38} 1,38,740,2812,2109 1,1184,3330,1184,1 - - <2850,1184,508,480>
<5700,75> ? 5700 75 {75,74,1350/19,39; 1,75/19,36,75} 1,75,1406,2775,1443 1,925,3848,925,1 - - <2850,925,300,300> FS
<5792,181> ? 5792 181 {181,180,32761/196,181/5; 1,2715/196,724/5,181} 1,181,2352,2715,543 1,735,4320,735,1 - - <2896,735,158,196> FS
<5800,40> ? 5800 40 {40,39,1100/29,30; 1,60/29,10,40} 1,40,754,2860,2145 1,1144,3510,1144,1 - - <2900,1144,468,440>
<5822,71> ? 5822 71 {71,70,25205/369,213/8; 1,994/369,355/8,71} 1,71,1845,2840,1065 1,1440,2940,1440,1 - - <2911,1440,704,720>
<5832,54> ? 5832 54 {54,53,405/8,39; 1,27/8,15,54} 1,54,848,2862,2067 1,848,4134,848,1 - - <2916,848,262,240> Latin Square Type
<5832,54>a ? 5832 54 {54,53,1296/25,30; 1,54/25,24,54} 1,54,1325,2862,1590 1,1325,3180,1325,1 - - <2916,1325,604,600> FS Latin Square Type
<5852,55> ? 5852 55 {55,54,7018/133,275/9; 1,297/133,220/9,55} 1,55,1330,2871,1595 1,1305,3240,1305,1 - - <2926,1305,584,580> FS
<5852,76> ? 5852 76 {76,75,3249/44,38/5; 1,95/44,342/5,76} 1,76,2640,2850,285 1,2400,1050,2400,1 - - <2926,525,140,84>
<5888,64> ? 5888 64 {64,63,12800/207,24; 1,448/207,40,64} 1,64,1863,2880,1080 1,1620,2646,1620,1 - - <2944,1323,602,588>
<5920,111> ? 5920 111 {111,110,9583/90,111/11; 1,407/90,1110/11,111} 1,111,2700,2849,259 1,2079,1760,2079,1 - - <2960,880,312,240> FS
<5936,106> ? 5936 106 {106,105,2809/28,1007/27; 1,159/28,1855/27,106} 1,106,1960,2862,1007 1,972,3990,972,1 - - <2968,972,306,324>
<5978,61> ? 5978 61 {61,60,3721/63,183/8; 1,122/63,305/8,61} 1,61,1890,2928,1098 1,1728,2520,1728,1 - - <2989,1260,539,525>
<6016,94> ? 6016 94 {94,93,2209/25,47; 1,141/25,47,94} 1,94,1550,2914,1457 1,775,4464,775,1 - - <3008,775,198,200> FS
<6050,55> ? 6050 55 {55,54,264/5,31; 1,11/5,24,55} 1,55,1350,2970,1674 1,1350,3348,1350,1 - - <3025,1350,605,600> Latin Square Type
<6068,82> ? 6068 82 {82,81,11767/148,41/4; 1,369/148,287/4,82} 1,82,2664,2952,369 1,2304,1458,2304,1 - - <3034,729,216,162> FS
<6120,85> ? 6120 85 {85,84,1445/18,221/5; 1,85/18,204/5,85} 1,85,1512,2975,1547 1,875,4368,875,1 - - <3060,875,250,250>
<6120,153> ? 6120 153 {153,152,289/2,17; 1,17/2,136,153} 1,153,2736,2907,323 1,1539,3040,1539,1 - - <3060,1520,790,720>
<6120,162> ? 6120 162 {162,161,2592/17,18; 1,162/17,144,162} 1,162,2737,2898,322 1,1449,3220,1449,1 - - <3060,1449,648,720> FS
<6144,84> ? 6144 84 {84,83,81,21; 1,3,63,84} 1,84,2324,2988,747 1,1743,2656,1743,1 - - <3072,1328,592,560> FS
<6144,112> ? 6144 112 {112,111,320/3,28; 1,16/3,84,112} 1,112,2331,2960,740 1,1295,3552,1295,1 - - <3072,1295,526,560> FS
<6148,29> ? 6148 29 {29,28,4205/159,551/21; 1,406/159,58/21,29} 1,29,318,3045,2755 1,945,4256,945,1 - - <3074,945,336,270>
<6156,171> ? 6156 171 {171,170,1444/9,19; 1,95/9,152,171} 1,171,2754,2907,323 1,1377,3400,1377,1 - - <3078,1377,576,648> FS
<6164,46> ? 6164 46 {46,45,5819/134,69/2; 1,345/134,23/2,46} 1,46,804,3036,2277 1,1056,4050,1056,1 - - <3082,1056,380,352> FS
<6204,141> ? 6204 141 {141,140,4418/33,47/3; 1,235/33,376/3,141} 1,141,2772,2961,329 1,1701,2800,1701,1 - - <3102,1400,670,600> FS
<6272,56> ? 6272 56 {56,55,105/2,41; 1,7/2,15,56} 1,56,880,3080,2255 1,880,4510,880,1 - - <3136,880,264,240> FS Latin Square Type
<6272,56>a ? 6272 56 {56,55,1344/25,32; 1,56/25,24,56} 1,56,1375,3080,1760 1,1375,3520,1375,1 - - <3136,1375,606,600> FS Latin Square Type
<6272,96> ? 6272 96 {96,95,640/7,36; 1,32/7,60,96} 1,96,1995,3040,1140 1,1140,3990,1140,1 - - <3136,1140,404,420>
<6278,73> ? 6278 73 {73,72,21316/301,365/21; 1,657/301,1168/21,73} 1,73,2408,3066,730 1,2058,2160,2058,1 - - <3139,1080,393,360>
<6300,135> ? 6300 135 {135,134,900/7,15; 1,45/7,120,135} 1,135,2814,3015,335 1,1809,2680,1809,1 - - <3150,1340,610,540> FS
<6300,189> ? 6300 189 {189,188,882/5,21; 1,63/5,168,189} 1,189,2820,2961,329 1,1269,3760,1269,1 - - <3150,1269,468,540> FS
<6320,79> ? 6320 79 {79,78,18723/250,553/13; 1,1027/250,474/13,79} 1,79,1500,3081,1659 1,975,4368,975,1 - - <3160,975,302,300> FS
<6348,115> ? 6348 115 {115,114,322/3,55; 1,23/3,60,115} 1,115,1710,3059,1463 1,665,5016,665,1 - - <3174,665,136,140> FS
<6358,85> ? 6358 85 {85,84,884/11,45; 1,51/11,40,85} 1,85,1540,3094,1638 1,910,4536,910,1 - - <3179,910,261,260>
<6370,49> ? 6370 49 {49,48,2401/52,147/4; 1,147/52,49/4,49} 1,49,832,3136,2352 1,1024,4320,1024,1 - - <3185,1024,348,320> FS
<6422,91> ? 6422 91 {91,90,1664/19,119/5; 1,65/19,336/5,91} 1,91,2394,3120,816 1,1680,3060,1680,1 - - <3211,1530,745,714>
<6426,147> ? 6426 147 {147,146,2352/17,35; 1,147/17,112,147} 1,147,2482,3066,730 1,1022,4380,1022,1 - - <3213,1022,301,336>
<6432,201> ? 6432 201 {201,200,4489/24,67/3; 1,335/24,536/3,201} 1,201,2880,3015,335 1,1215,4000,1215,1 - - <3216,1215,414,486>
<6450,105> ? 6450 105 {105,104,4320/43,357/13; 1,195/43,1008/13,105} 1,105,2408,3120,816 1,1456,3536,1456,1 - - <3225,1456,639,672>
<6480,80> ? 6480 80 {80,79,700/9,10; 1,20/9,70,80} 1,80,2844,3160,395 1,2528,1422,2528,1 - - <3240,711,198,144> FS
<6480,288> + 6480 288 {288,287,1296/5,36; 1,144/5,252,288} 1,288,2870,2952,369 1,656,5166,656,1 - - <3240,656,88,144> Doubly Subtended Subquadrangles of GQ(9,81)
<6498,57> ? 6498 57 {57,56,1368/25,33; 1,57/25,24,57} 1,57,1400,3192,1848 1,1400,3696,1400,1 - - <3249,1400,607,600> Latin Square Type
<6552,126> ? 6552 126 {126,125,1568/13,14; 1,70/13,112,126} 1,126,2925,3150,350 1,2025,2500,2025,1 - - <3276,1250,520,450> FS
<6624,216> ? 6624 216 {216,215,4608/23,24; 1,360/23,192,216} 1,216,2967,3096,344 1,1161,4300,1161,1 - - <3312,1161,360,432> FS
<6728,58> ? 6728 58 {58,57,435/8,43; 1,29/8,15,58} 1,58,912,3306,2451 1,912,4902,912,1 - - <3364,912,266,240> Latin Square Type
<6728,58>a ? 6728 58 {58,57,1392/25,34; 1,58/25,24,58} 1,58,1425,3306,1938 1,1425,3876,1425,1 - - <3364,1425,608,600> FS Latin Square Type
<6734,111> ? 6734 111 {111,110,1369/13,333/8; 1,74/13,555/8,111} 1,111,2145,3256,1221 1,1056,4620,1056,1 - - <3367,1056,320,336>
<6760,156> ? 6760 156 {156,155,728/5,51; 1,52/5,105,156} 1,156,2325,3224,1054 1,744,5270,744,1 - - <3380,744,148,168>
<6764,190> ? 6764 190 {190,189,15884/89,95/6; 1,1026/89,1045/6,190} 1,190,3115,3192,266 1,1680,3402,1680,1 - - <3382,1680,788,880>
<6776,121> ? 6776 121 {121,120,14641/126,121/9; 1,605/126,968/9,121} 1,121,3024,3267,363 1,2187,2400,2187,1 - - <3388,1200,470,400>
<6800,100> ? 6800 100 {100,99,1600/17,52; 1,100/17,48,100} 1,100,1683,3300,1716 1,825,5148,825,1 - - <3400,825,200,200> FS
<6800,100>a ? 6800 100 {100,99,80000/833,300/11; 1,3300/833,800/11,100} 1,100,2499,3300,900 1,1617,3564,1617,1 - - <3400,1617,752,784> FS
<6804,210> ? 6804 210 {210,209,196,35/2; 1,14,385/2,210} 1,210,3135,3192,266 1,1520,3762,1520,1 - - <3402,1520,628,720>
<6848,64> ? 6848 64 {64,63,6400/107,328/7; 1,448/107,120/7,64} 1,64,963,3360,2460 1,840,5166,840,1 - - <3424,840,224,200>
<6880,172> ? 6880 172 {172,171,12943/80,559/19; 1,817/80,2709/19,172} 1,172,2880,3268,559 1,1216,4446,1216,1 - - <3440,1216,396,448> FS
<6888,56> ? 6888 56 {56,55,2156/41,42; 1,140/41,14,56} 1,56,902,3388,2541 1,968,4950,968,1 - - <3444,968,292,264>
<6952,316> ? 6952 316 {316,315,6241/22,79/2; 1,711/22,553/2,316} 1,316,3080,3160,395 1,640,5670,640,1 - 01234 {640,567,64,1;1,64,567,640} <3476,640,72,128> FS
<6958,71> ? 6958 71 {71,70,10082/147,355/12; 1,355/147,497/12,71} 1,71,2058,3408,1420 1,1728,3500,1728,1 - - <3479,1728,852,864>
<6960,72> ? 6960 72 {72,71,2016/29,30; 1,72/29,42,72} 1,72,2059,3408,1420 1,1704,3550,1704,1 - - <3480,1704,828,840>
<6962,59> ? 6962 59 {59,58,1416/25,35; 1,59/25,24,59} 1,59,1450,3422,2030 1,1450,4060,1450,1 - - <3481,1450,609,600> Latin Square Type
<6972,83> ? 6972 83 {83,82,137780/1701,83/41; 1,3403/1701,3320/41,83} 1,83,3402,3403,83 1,3321,328,3321,1 - - <3486,164,82,4> FS
<6992,76> ? 6992 76 {76,75,5054/69,95/3; 1,190/69,133/3,76} 1,76,2070,3420,1425 1,1620,3750,1620,1 - - <3496,1620,744,756> FS
<6996,53> ? 6996 53 {53,52,2809/55,159/5; 1,106/55,106/5,53} 1,53,1430,3445,2067 1,1625,3744,1625,1 - - <3498,1625,760,750>
<6996,66> ? 6996 66 {66,65,3388/53,55/2; 1,110/53,77/2,66} 1,66,2067,3432,1430 1,1872,3250,1872,1 - - <3498,1625,760,750>
<7020,78> ? 7020 78 {78,77,676/9,65/2; 1,26/9,91/2,78} 1,78,2079,3432,1430 1,1584,3850,1584,1 - - <3510,1584,708,720>
<7020,78>a ? 7020 78 {78,77,1521/20,39/4; 1,39/20,273/4,78} 1,78,3080,3432,429 1,2816,1386,2816,1 - - <3510,693,180,126>
<7020,117> ? 7020 117 {117,116,338/3,13; 1,13/3,104,117} 1,117,3132,3393,377 1,2349,2320,2349,1 - - <3510,1160,430,360> FS
<7020,243> ? 7020 243 {243,242,2916/13,27; 1,243/13,216,243} 1,243,3146,3267,363 1,1089,4840,1089,1 - - <3510,1089,288,360> FS
<7040,55> ? 7040 55 {55,54,847/16,33; 1,33/16,22,55} 1,55,1440,3465,2079 1,1575,3888,1575,1 - - <3520,1575,710,700> FS
<7040,64> ? 7040 64 {64,63,2048/33,80/3; 1,64/33,112/3,64} 1,64,2079,3456,1440 1,1944,3150,1944,1 - - <3520,1575,710,700>
<7040,120> ? 7040 120 {120,119,1250/11,45; 1,70/11,75,120} 1,120,2244,3400,1275 1,1020,4998,1020,1 - - <3520,1020,284,300> FS
<7074,81> ? 7074 81 {81,80,10206/131,135/4; 1,405/131,189/4,81} 1,81,2096,3456,1440 1,1536,4000,1536,1 - - <3537,1536,660,672>
<7200,60> ? 7200 60 {60,59,225/4,45; 1,15/4,15,60} 1,60,944,3540,2655 1,944,5310,944,1 - - <3600,944,268,240> FS Latin Square Type
<7200,60>a ? 7200 60 {60,59,288/5,36; 1,12/5,24,60} 1,60,1475,3540,2124 1,1475,4248,1475,1 - - <3600,1475,610,600> FS Latin Square Type
<7210,103> ? 7210 103 {103,102,84872/875,927/17; 1,5253/875,824/17,103} 1,103,1750,3502,1854 1,850,5508,850,1 - - <3605,850,201,200>
<7220,190> ? 7220 190 {190,189,1425/8,65/2; 1,95/8,315/2,190} 1,190,3024,3420,585 1,1152,4914,1152,1 - - <3610,1152,332,384> FS
<7260,77> ? 7260 77 {77,76,374/5,21; 1,11/5,56,77} 1,77,2660,3553,969 1,2261,2736,2261,1 - - <3630,1368,534,504> FS
<7308,261> ? 7308 261 {261,260,1682/7,29; 1,145/7,232,261} 1,261,3276,3393,377 1,1053,5200,1053,1 - - <3654,1053,252,324> FS
<7310,43> ? 7310 43 {43,42,5547/136,473/14; 1,301/136,129/14,43} 1,43,816,3612,2838 1,1344,4620,1344,1 - - <3655,1344,518,480>
<7360,92> ? 7360 92 {92,91,529/6,115/3; 1,23/6,161/3,92} 1,92,2184,3588,1495 1,1404,4550,1404,1 - - <3680,1404,528,540>
<7372,133> ? 7372 133 {133,132,12274/97,399/11; 1,627/97,1064/11,133} 1,133,2716,3553,969 1,1309,4752,1309,1 - - <3686,1309,444,476> FS
<7442,61> ? 7442 61 {61,60,1464/25,37; 1,61/25,24,61} 1,61,1500,3660,2220 1,1500,4440,1500,1 - - <3721,1500,611,600> Latin Square Type
<7448,154> ? 7448 154 {154,153,2800/19,22/3; 1,126/19,440/3,154} 1,154,3553,3570,170 1,2805,1836,2805,1 - - <3724,918,312,198> FS
<7452,276> ? 7452 276 {276,275,6877/27,322/25; 1,575/27,6578/25,276} 1,276,3564,3450,161 1,1800,3850,1800,1 - - <3726,1800,798,936>
<7482,301> ? 7482 301 {301,300,24037/87,301/40; 1,2150/87,11739/40,301} 1,301,3654,3440,86 1,2240,3000,2240,1 - - <3741,1500,715,525>
<7488,96> ? 7488 96 {96,95,3584/39,40; 1,160/39,56,96} 1,96,2223,3648,1520 1,1368,4750,1368,1 - - <3744,1368,492,504>
<7500,300> ? 7500 300 {300,299,275,14; 1,25,286,300} 1,300,3588,3450,161 1,1656,4186,1656,1 - - <3750,1656,654,792>
<7504,67> ? 7504 67 {67,66,4489/70,201/5; 1,201/70,134/5,67} 1,67,1540,3685,2211 1,1375,4752,1375,1 - - <3752,1375,510,500> FS
<7548,85> ? 7548 85 {85,84,8959/111,340/7; 1,476/111,255/7,85} 1,85,1665,3689,2108 1,1085,5376,1085,1 - - <3774,1085,316,310>
<7548,111> ? 7548 111 {111,110,5476/51,37/3; 1,185/51,296/3,111} 1,111,3366,3663,407 1,2673,2200,2673,1 - - <3774,1100,370,300> FS
<7590,99> ? 7590 99 {99,98,2178/23,165/4; 1,99/23,231/4,99} 1,99,2254,3696,1540 1,1344,4900,1344,1 - - <3795,1344,468,480>
<7616,136> ? 7616 136 {136,135,1156/9,51; 1,68/9,85,136} 1,136,2430,3672,1377 1,972,5670,972,1 - - <3808,972,236,252> FS
<7688,62> ? 7688 62 {62,61,465/8,47; 1,31/8,15,62} 1,62,976,3782,2867 1,976,5734,976,1 - - <3844,976,270,240> Latin Square Type
<7688,62>a ? 7688 62 {62,61,1488/25,38; 1,62/25,24,62} 1,62,1525,3782,2318 1,1525,4636,1525,1 - - <3844,1525,612,600> FS Latin Square Type
<7688,217> ? 7688 217 {217,216,403/2,49; 1,31/2,168,217} 1,217,3024,3627,819 1,819,6048,819,1 - - <3844,819,146,182>
<7744,99> ? 7744 99 {99,98,385/4,9; 1,11/4,90,99} 1,99,3528,3773,343 1,3087,1568,3087,1 - - <3872,784,216,144> FS
<7744,396> ? 7744 396 {396,395,352,36; 1,44,360,396} 1,396,3555,3476,316 1,711,6320,711,1 - 01234 {711,640,72,1;1,72,640,711} <3872,711,70,144> FS
<7748,298> ? 7748 298 {298,297,88804/325,149/6; 1,8046/325,1639/6,298} 1,298,3575,3576,298 1,1200,5346,1200,1 - - <3874,1200,308,400>
<7776,27> ? 7776 27 {27,26,99/4,25; 1,9/4,2,27} 1,27,312,3861,3575 1,1287,5200,1287,1 - - <3888,1287,486,396>
<7776,144> ? 7776 144 {144,143,3456/25,12; 1,144/25,132,144} 1,144,3575,3744,312 1,2600,2574,2600,1 - - <3888,1287,486,396>
<7776,162> ? 7776 162 {162,161,1215/8,57; 1,81/8,105,162} 1,162,2576,3726,1311 1,828,6118,828,1 - - <3888,828,162,180>
<7802,141> ? 7802 141 {141,140,11045/83,423/8; 1,658/83,705/8,141} 1,141,2490,3760,1410 1,960,5880,960,1 - - <3901,960,224,240>
<7820,46> ? 7820 46 {46,45,3703/85,437/12; 1,207/85,115/12,46} 1,46,850,3864,3059 1,1344,5130,1344,1 - - <3910,1344,488,448> FS
<7844,106> ? 7844 106 {106,105,11236/111,265/6; 1,530/111,371/6,106} 1,106,2331,3816,1590 1,1296,5250,1296,1 - - <3922,1296,420,432>
<7854,66> ? 7854 66 {66,65,1089/17,88/3; 1,33/17,110/3,66} 1,66,2210,3861,1716 1,2106,3640,2106,1 - - <3927,1820,847,840>
<7878,78> ? 7878 78 {78,77,7605/101,104/3; 1,273/101,130/3,78} 1,78,2222,3861,1716 1,1782,4312,1782,1 - - <3939,1782,801,810>
<7906,134> ? 7906 134 {134,133,22445/177,2948/57; 1,1273/177,4690/57,134} 1,134,2478,3819,1474 1,1026,5852,1026,1 - - <3953,1026,255,270>
<7920,75> ? 7920 75 {75,74,1575/22,45; 1,75/22,30,75} 1,75,1628,3885,2331 1,1295,5328,1295,1 - - <3960,1295,430,420> FS
<7920,108> ? 7920 108 {108,107,1134/11,45; 1,54/11,63,108} 1,108,2354,3852,1605 1,1284,5350,1284,1 - - <3960,1284,408,420> FS
<7920,108>a ? 7920 108 {108,107,1152/11,12; 1,36/11,96,108} 1,108,3531,3852,428 1,2889,2140,2889,1 - - <3960,1070,340,270> FS
<7920,297> ? 7920 297 {297,296,1089/4,33; 1,99/4,264,297} 1,297,3552,3663,407 1,999,5920,999,1 - - <3960,999,198,270>
<7930,61> ? 7930 61 {61,60,3721/65,2989/64; 1,244/65,915/64,61} 1,61,975,3904,2989 1,1024,5880,1024,1 - - <3965,1024,288,256> FS
<7938,63> ? 7938 63 {63,62,1512/25,39; 1,63/25,24,63} 1,63,1550,3906,2418 1,1550,4836,1550,1 - - <3969,1550,613,600> Latin Square Type
<8000,125> ? 8000 125 {125,124,1875/16,65; 1,125/16,60,125} 1,125,1984,3875,2015 1,775,6448,775,1 - 01234 {775,624,75,1;1,75,624,775} <4000,775,150,150>
<8000,280> ? 8000 280 {280,279,260,7; 1,20,273,280} 1,280,3906,3720,93 1,2604,2790,2604,1 - - <4000,1395,610,420> FS
<8094,71> ? 8094 71 {71,70,5041/76,213/4; 1,355/76,71/4,71} 1,71,1064,3976,2982 1,896,6300,896,1 - 01234 {896,675,96,1;1,96,675,896} <4047,896,220,192> FS
<8120,100> ? 8120 100 {100,99,19200/203,620/11; 1,1100/203,480/11,100} 1,100,1827,3960,2232 1,990,6138,990,1 - - <4060,990,245,240>
<8190,90> ? 8190 90 {90,89,1125/13,40; 1,45/13,50,90} 1,90,2314,4005,1780 1,1602,4984,1602,1 - - <4095,1602,621,630>
<8192,64> ? 8192 64 {64,63,60,49; 1,4,15,64} 1,64,1008,4032,3087 1,1008,6174,1008,1 - - <4096,1008,272,240> FS Latin Square Type
<8192,64>a ? 8192 64 {64,63,1536/25,40; 1,64/25,24,64} 1,64,1575,4032,2520 1,1575,5040,1575,1 - - <4096,1575,614,600> FS Latin Square Type
<8192,176> ? 8192 176 {176,175,168,11; 1,8,165,176} 1,176,3850,3920,245 1,2695,2800,2695,1 - - <4096,1400,552,440> FS
<8192,352> ? 8192 352 {352,351,320,22; 1,32,330,352} 1,352,3861,3744,234 1,1287,5616,1287,1 - - <4096,1287,326,440> FS
<8228,55> ? 8228 55 {55,54,902/17,35; 1,33/17,20,55} 1,55,1530,4059,2583 1,1845,4536,1845,1 - - <4114,1845,836,820>
<8246,217> ? 8246 217 {217,216,3844/19,155/3; 1,279/19,496/3,217} 1,217,3192,3906,930 1,882,6480,882,1 - - <4123,882,161,196>
<8262,51> ? 8262 51 {51,50,289/6,323/8; 1,17/6,85/8,51} 1,51,900,4080,3230 1,1280,5700,1280,1 - - <4131,1280,424,384> FS
<8358,199> ? 8358 199 {199,198,39601/210,199/10; 1,2189/210,1791/10,199} 1,199,3780,3980,398 1,2000,4356,2000,1 - - <4179,2000,910,1000> FS
<8360,190> ? 8360 190 {190,189,361/2,19; 1,19/2,171,190} 1,190,3780,3990,399 1,2100,4158,2100,1 - - <4180,2079,1078,990>
<8372,91> ? 8372 91 {91,90,2028/23,143/5; 1,65/23,312/5,91} 1,91,2898,4095,1287 1,2205,3960,2205,1 - - <4186,1980,950,924> FS
<8400,40> ? 8400 40 {40,39,800/21,65/2; 1,40/21,15/2,40} 1,40,819,4160,3380 1,1664,5070,1664,1 - - <4200,1664,688,640>
<8400,105> ? 8400 105 {105,104,405/4,33; 1,15/4,72,105} 1,105,2912,4095,1287 1,1911,4576,1911,1 - - <4200,1911,854,882>
<8400,105>a ? 8400 105 {105,104,1225/12,35/3; 1,35/12,280/3,105} 1,105,3744,4095,455 1,3159,2080,3159,1 - - <4200,1040,310,240>
<8400,120> ? 8400 120 {120,119,800/7,50; 1,40/7,70,120} 1,120,2499,4080,1700 1,1224,5950,1224,1 - - <4200,1224,348,360>
<8400,120>a ? 8400 120 {120,119,810/7,51/2; 1,30/7,189/2,120} 1,120,3332,4080,867 1,2176,4046,2176,1 - - <4200,2023,998,952> FS
<8400,210> ? 8400 210 {210,209,3969/20,21; 1,231/20,189,210} 1,210,3800,3990,399 1,1900,4598,1900,1 - - <4200,1900,810,900>
<8432,31> ? 8432 31 {31,30,961/34,775/27; 1,93/34,62/27,31} 1,31,340,4185,3875 1,1215,6000,1215,1 - - <4216,1215,414,324>
<8432,136> ? 8432 136 {136,135,4046/31,289/10; 1,170/31,1071/10,136} 1,136,3348,4080,867 1,1920,4590,1920,1 - - <4216,1920,848,896> FS
<8432,136>a ? 8432 136 {136,135,101728/775,34/3; 1,3672/775,374/3,136} 1,136,3875,4080,340 1,3000,2430,3000,1 - - <4216,1215,414,324>
<8450,65> ? 8450 65 {65,64,312/5,41; 1,13/5,24,65} 1,65,1600,4160,2624 1,1600,5248,1600,1 - - <4225,1600,615,600> Latin Square Type
<8450,78> ? 8450 78 {78,77,377/5,36; 1,13/5,42,78} 1,78,2310,4147,1914 1,1914,4620,1914,1 - - <4225,1914,863,870>
<8470,88> ? 8470 88 {88,87,429/5,16; 1,11/5,72,88} 1,88,3480,4147,754 1,3016,2436,3016,1 - - <4235,1218,385,336>
<8470,175> ? 8470 175 {175,174,3675/22,35/2; 1,175/22,315/2,175} 1,175,3828,4060,406 1,2320,3828,2320,1 - - <4235,1914,913,825> FS
<8478,27> ? 8478 27 {27,26,3888/157,327/13; 1,351/157,24/13,27} 1,27,314,4212,3924 1,1404,5668,1404,1 - - <4239,1404,531,432>
<8500,85> ? 8500 85 {85,84,2023/25,51; 1,102/25,34,85} 1,85,1750,4165,2499 1,1225,6048,1225,1 - - <4250,1225,360,350>
<8500,85>a ? 8500 85 {85,84,578/7,187/7; 1,17/7,408/7,85} 1,85,2940,4165,1309 1,2401,3696,2401,1 - - <4250,1848,818,792> FS
<8556,92> ? 8556 92 {92,91,11109/124,230/13; 1,299/124,966/13,92} 1,92,3472,4186,805 1,2912,2730,2912,1 - - <4278,1365,468,420>
<8632,166> ? 8632 166 {166,165,20667/130,83/5; 1,913/130,747/5,166} 1,166,3900,4150,415 1,2500,3630,2500,1 - - <4316,1815,814,726>
<8652,126> ? 8652 126 {126,125,12348/103,105/2; 1,630/103,147/2,126} 1,126,2575,4200,1750 1,1200,6250,1200,1 - - <4326,1200,324,336>
<8692,106> ? 8692 106 {106,105,8427/82,901/40; 1,265/82,3339/40,106} 1,106,3444,4240,901 1,2560,3570,2560,1 - - <4346,1785,760,714> FS
<8712,66> ? 8712 66 {66,65,495/8,51; 1,33/8,15,66} 1,66,1040,4290,3315 1,1040,6630,1040,1 - - <4356,1040,274,240> Latin Square Type
<8712,66>a ? 8712 66 {66,65,1584/25,42; 1,66/25,24,66} 1,66,1625,4290,2730 1,1625,5460,1625,1 - - <4356,1625,616,600> FS Latin Square Type
<8712,121> ? 8712 121 {121,120,14641/126,1331/35; 1,605/126,2904/35,121} 1,121,3024,4235,1331 1,1715,5280,1715,1 - - <4356,1715,658,686>
<8736,78> ? 8736 78 {78,77,4225/56,403/11; 1,143/56,455/11,78} 1,78,2352,4290,2015 1,1980,4774,1980,1 - - <4368,1980,894,900>
<8750,325> ? 8750 325 {325,324,300,13; 1,25,312,325} 1,325,4212,4050,162 1,2106,4536,2106,1 - - <4375,2106,929,1092>
<8758,232> ? 8758 232 {232,231,32799/151,464/11; 1,2233/151,2088/11,232} 1,232,3624,4147,754 1,1144,6468,1144,1 - - <4379,1144,261,312>
<8760,146> ? 8760 146 {146,145,37303/270,1679/29; 1,2117/270,2555/29,146} 1,146,2700,4234,1679 1,1044,6670,1044,1 - - <4380,1044,238,252>
<8798,106> ? 8798 106 {106,105,8427/83,424/9; 1,371/83,530/9,106} 1,106,2490,4293,1908 1,1458,5880,1458,1 - - <4399,1458,477,486>
<8800,160> ? 8800 160 {160,159,1680/11,34; 1,80/11,126,160} 1,160,3498,4240,901 1,1696,5406,1696,1 - - <4400,1696,624,672> FS
<8800,250> ? 8800 250 {250,249,1875/8,25; 1,125/8,225,250} 1,250,3984,4150,415 1,1660,5478,1660,1 - - <4400,1660,570,660>
<8802,351> ? 8802 351 {351,350,52488/163,351/25; 1,4725/163,8424/25,351} 1,351,4238,4050,162 1,1950,4900,1950,1 - - <4401,1950,773,936>
<8836,141> ? 8836 141 {141,140,1222/9,21; 1,47/9,120,141} 1,141,3780,4277,637 1,2457,3920,2457,1 - - <4418,1960,906,840> FS
<8892,351> ? 8892 351 {351,350,6084/19,39; 1,585/19,312,351} 1,351,3990,4095,455 1,945,7000,945,1 - - <4446,945,144,216> FS
<8924,46> ? 8924 46 {46,45,4232/97,299/8; 1,230/97,69/8,46} 1,46,873,4416,3588 1,1536,5850,1536,1 - - <4462,1536,560,512> FS
<8978,67> ? 8978 67 {67,66,1608/25,43; 1,67/25,24,67} 1,67,1650,4422,2838 1,1650,5676,1650,1 - - <4489,1650,617,600> Latin Square Type
<8990,155> ? 8990 155 {155,154,8649/58,31/2; 1,341/58,279/2,155} 1,155,4060,4340,434 1,2800,3388,2800,1 - - <4495,1694,693,605> FS
<9000,100> ? 9000 100 {100,99,875/9,85/4; 1,25/9,315/4,100} 1,100,3564,4400,935 1,2816,3366,2816,1 - - <4500,1683,658,612> FS
<9010,265> ? 9010 265 {265,264,8427/34,53/2; 1,583/34,477/2,265} 1,265,4080,4240,424 1,1600,5808,1600,1 - - <4505,1600,510,600> FS
<9120,48> ? 9120 48 {48,47,864/19,39; 1,48/19,9,48} 1,48,893,4512,3666 1,1504,6110,1504,1 - - <4560,1504,528,480> FS
<9120,95> ? 9120 95 {95,94,361/4,57; 1,19/4,38,95} 1,95,1880,4465,2679 1,1175,6768,1175,1 - - <4560,1175,310,300> FS
<9152,91> ? 9152 91 {91,90,3887/44,91/3; 1,117/44,182/3,91} 1,91,3080,4485,1495 1,2415,4320,2415,1 - - <4576,2160,1032,1008> FS
<9152,176> ? 9152 176 {176,175,19360/117,66; 1,1232/117,110,176} 1,176,2925,4400,1650 1,900,7350,900,1 - - <4576,900,164,180>
<9152,176>a ? 9152 176 {176,175,2178/13,187/5; 1,110/13,693/5,176} 1,176,3640,4400,935 1,1600,5950,1600,1 - - <4576,1600,528,576> FS
<9180,105> ? 9180 105 {105,104,1725/17,35; 1,60/17,70,105} 1,105,3094,4485,1495 1,2093,4992,2093,1 - - <4590,2093,940,966>
<9240,150> ? 9240 150 {150,149,2025/14,15; 1,75/14,135,150} 1,150,4172,4470,447 1,2980,3278,2980,1 - - <4620,1639,638,550>
<9248,68> ? 9248 68 {68,67,255/4,53; 1,17/4,15,68} 1,68,1072,4556,3551 1,1072,7102,1072,1 - - <4624,1072,276,240> FS Latin Square Type
<9248,68>a ? 9248 68 {68,67,1632/25,44; 1,68/25,24,68} 1,68,1675,4556,2948 1,1675,5896,1675,1 - - <4624,1675,618,600> FS Latin Square Type
<9292,101> ? 9292 101 {101,100,20402/207,101/9; 1,505/207,808/9,101} 1,101,4140,4545,505 1,3645,2000,3645,1 - - <4646,1000,270,200> FS
<9306,141> ? 9306 141 {141,140,4418/33,235/4; 1,235/33,329/4,141} 1,141,2772,4512,1880 1,1152,7000,1152,1 - - <4653,1152,276,288>
<9310,105> ? 9310 105 {105,104,17500/171,165/13; 1,455/171,1200/13,105} 1,105,4104,4550,550 1,3510,2288,3510,1 - - <4655,1144,333,264>
<9312,96> ? 9312 96 {96,95,9072/97,102/5; 1,240/97,378/5,96} 1,96,3686,4560,969 1,3040,3230,3040,1 - - <4656,1615,590,544> FS
<9350,153> ? 9350 153 {153,152,8092/55,459/19; 1,323/55,2448/19,153} 1,153,3960,4522,714 1,2394,4560,2394,1 - - <4675,2280,1145,1080>
<9386,171> ? 9386 171 {171,170,2128/13,27; 1,95/13,144,171} 1,171,3978,4522,714 1,2142,5100,2142,1 - - <4693,2142,941,1008>
<9438,99> ? 9438 99 {99,98,2475/26,93/2; 1,99/26,105/2,99} 1,99,2548,4620,2170 1,1680,6076,1680,1 - - <4719,1680,594,600> FS
<9440,100> ? 9440 100 {100,99,5600/59,60; 1,300/59,40,100} 1,100,1947,4620,2772 1,1155,7128,1155,1 - - <4720,1155,290,280> FS
<9440,118> ? 9440 118 {118,117,27848/245,118/3; 1,1062/245,236/3,118} 1,118,3185,4602,1534 1,1911,5616,1911,1 - - <4720,1911,758,784> FS
<9464,286> ? 9464 286 {286,285,1872/7,22; 1,130/7,264,286} 1,286,4389,4446,342 1,1881,5700,1881,1 - - <4732,1881,680,792> FS
<9500,190> ? 9500 190 {190,189,361/2,323/8; 1,19/2,1197/8,190} 1,190,3780,4560,969 1,1536,6426,1536,1 - - <4750,1536,464,512> FS
<9522,69> ? 9522 69 {69,68,1656/25,45; 1,69/25,24,69} 1,69,1700,4692,3060 1,1700,6120,1700,1 - - <4761,1700,619,600> Latin Square Type
<9522,161> ? 9522 161 {161,160,460/3,49; 1,23/3,112,161} 1,161,3360,4600,1400 1,1400,6720,1400,1 - - <4761,1400,391,420>
<9536,64> ? 9536 64 {64,63,8960/149,152/3; 1,576/149,40/3,64} 1,64,1043,4704,3724 1,1176,7182,1176,1 - - <4768,1176,320,280>
<9536,298> ? 9536 298 {298,297,22201/80,149/5; 1,1639/80,1341/5,298} 1,298,4320,4470,447 1,1500,6534,1500,1 - - <4768,1500,410,500>
<9548,44> ? 9548 44 {44,43,9075/217,1562/43; 1,473/217,330/43,44} 1,44,868,4730,3905 1,1720,6106,1720,1 - - <4774,1720,654,600>
<9570,145> ? 9570 145 {145,144,841/6,29/2; 1,29/6,261/2,145} 1,145,4320,4640,464 1,3200,3168,3200,1 - - <4785,1584,583,495> FS
<9702,126> ? 9702 126 {126,125,1323/11,56; 1,63/11,70,126} 1,126,2750,4725,2100 1,1350,7000,1350,1 - - <4851,1350,369,378>
<9798,71> ? 9798 71 {71,70,85697/1242,71/2; 1,2485/1242,71/2,71} 1,71,2484,4828,2414 1,2448,4900,2448,1 - - <4899,2448,1222,1224> FS
<9800,70> ? 9800 70 {70,69,525/8,55; 1,35/8,15,70} 1,70,1104,4830,3795 1,1104,7590,1104,1 - - <4900,1104,278,240> Latin Square Type
<9800,70>a ? 9800 70 {70,69,336/5,46; 1,14/5,24,70} 1,70,1725,4830,3174 1,1725,6348,1725,1 - - <4900,1725,620,600> FS Latin Square Type
<9800,70>b ? 9800 70 {70,69,1225/18,35; 1,35/18,35,70} 1,70,2484,4830,2415 1,2484,4830,2484,1 - - <4900,2415,1190,1190> Latin Square Type
<9880,78> ? 9880 78 {78,77,2873/38,39; 1,91/38,39,78} 1,78,2508,4862,2431 1,2244,5390,2244,1 - - <4940,2244,1018,1020>
<9900,50> ? 9900 50 {50,49,3125/66,575/14; 1,175/66,125/14,50} 1,50,924,4900,4025 1,1568,6762,1568,1 - - <4950,1568,532,480> FS
<9900,99> ? 9900 99 {99,98,484/5,11; 1,11/5,88,99} 1,99,4410,4851,539 1,3969,1960,3969,1 - - <4950,980,250,180> FS
<9900,405> ? 9900 405 {405,404,4050/11,45; 1,405/11,360,405} 1,405,4444,4545,505 1,909,8080,909,1 - - <4950,909,108,180> FS Doubly Subtended Subquadrangles of GQ(10,100)?
<9920,248> ? 9920 248 {248,247,10571/45,279/19; 1,589/45,4433/19,248} 1,248,4680,4712,279 1,2736,4446,2736,1 - - <4960,2223,1070,936> FS
<9968,56> ? 9968 56 {56,55,4704/89,91/2; 1,280/89,21/2,56} 1,56,979,4928,4004 1,1408,7150,1408,1 - - <4984,1408,432,384> FS
<9984,24> ? 9984 24 {24,23,288/13,68/3; 1,24/13,4/3,24} 1,24,299,4968,4692 1,1863,6256,1863,1 - - <4992,1863,774,648>
<9984,32> ? 9984 32 {32,31,10240/351,928/31; 1,992/351,64/31,32} 1,32,351,4960,4640 1,1395,7192,1395,1 - - <4992,1395,466,360>
<9984,156> ? 9984 156 {156,155,1183/8,65; 1,65/8,91,156} 1,156,2976,4836,2015 1,1116,7750,1116,1 - - <4992,1116,240,252>
<9984,156>a ? 9984 156 {156,155,1352/9,26; 1,52/9,130,156} 1,156,4185,4836,806 1,2511,4960,2511,1 - - <4992,2480,1264,1200> FS
<9990,111> ? 9990 111 {111,110,9583/90,1147/22; 1,407/90,1295/22,111} 1,111,2700,4884,2294 1,1584,6820,1584,1 - - <4995,1584,498,504> FS