This is a table of all feasible parameter sets for 3-class primitive Q-polynomial association schemes up to 2800 vertices. The definition of feasible is a parameter set satisfying integral eigenvalue multiplicities and pijk, the Krein conditions, the absolute bound, and the handshaking lemma.

The columns are as follows:
Parameters = a link to a file with all parameters,
∃ = ! if unique, n! if exactly n exist, " " if one example is known, + if more than one is known, - if it does not exist
v = the number of vertices
m1 = the multiplicity of the 1st eigenspace in the Q-polynomial ordering
Krein array = the formally dual notion of a Distance-Regular graph intersection array
multiplicities = the list of eigenvalues multiplicities in the Q-polynomial ordering
valencies = the list of valencies in the standard ordering with respect to the Q-polynomial ordering
2nd Q- lists whether another Q-polynomial ordering exists, note this other ordering will also have its own row in the table as well, unless it is identical.
P - lists whether there are one or two P-orderings
DRG - if the scheme is generated by one or two distance-regular graph, gives an intersection array for one of them. See [BCN] and [VKT] in the references for more details on distance-regular graphs
SRG - if a relation of the scheme is strongly regular, gives its parameters (v,k,lambda,mu). For more information on strongly-regular graphs, see the table of Andries Brouwer here.
Ex - Denotes whether the putative scheme would have an extended Q-bipartite double. The Krein array of the double will be listed in the Parameters.
Comments- constructions, nonexistence results or other related comments.

Acknowledgements: The construction of this table was supported in part by NSF grant DMS-1400281.
Special thanks to the following for suggestions/pointing out errors: William J. Martin, Edwin van Dam, Janos Vidali

Reference List

Parameters v m1 Krein Array multiplicities valencies 2nd Q P DRG SRG Ex Comments
<27,6> ! 27 6 {6,4,2; 1,2,3} 1,6,12,8 1,6,12,8 - 0123 {6,4,2;1,2,3} - Hamming H(3,3)
<35,6> ! 35 6 {6,49/10,7/2; 1,21/10,7/2} 1,6,14,14 1,12,18,4 - 0123,0312 {12,6,2;1,4,9} <35,18,9,9> Y Johnson J(7,3)
<56,7> ! 56 7 {7,256/45,98/25; 1,448/225,14/5} 1,7,20,28 1,15,30,10 - 0123 {15,8,3;1,4,9} - Johnson J(8,3)
<64,7> ! 64 7 {7,6,5; 1,2,3} 1,7,21,35 1,21,35,7 0231 0123,0312 {21,10,3;1,6,15} <64,35,18,20> Y Halved 7-cube
<64,9> 2! 64 9 {9,6,3; 1,2,3} 1,9,27,27 1,9,27,27 - 0123 {9,6,3;1,2,3} <64,27,10,12> Hamming H(3,4), Doob
<64,21> ! 64 21 {21,10,3; 1,6,15} 1,21,35,7 1,7,21,35 0312 0123,0231 {7,6,5;1,2,3} <64,35,18,20> Folded 7-cube
<66,10> 66 10 {10,242/27,11/5; 1,55/27,44/5} 1,10,44,11 1,30,20,15 - - <66,20,10,4> Y M11, Witt 4-(11,5,1)
<84,8> ! 84 8 {8,45/7,64/15; 1,40/21,12/5} 1,8,27,48 1,18,45,20 - 0123 {18,10,4;1,4,9} - Johnson J(9,3)
<91,12> ? 91 12 {12,338/35,39/25; 1,312/175,39/5} 1,12,65,13 1,20,30,40 - - - Van Dam open case [VnD]
<96,19> - 96 19 {19,12,5; 1,4,15} 1,19,57,19 1,19,57,19 - 0123 {19,12,5;1,4,15} <96,57,36,30> 2 SRG, Coolsaet, Jurisic [CJ]
<99,14> ? 99 14 {14,108/11,15/4; 1,24/11,45/4} 1,14,63,21 1,28,42,28 - - <99,42,21,15> Van Dam open case [VnD]
<120,9> ! 120 9 {9,50/7,225/49; 1,90/49,15/7} 1,9,35,75 1,21,63,35 - 0123 {21,12,5;1,4,9} <120,63,30,36> Johnson J(10,3)
<120,14> 120 14 {14,25/2,5; 1,5/2,10} 1,14,70,35 1,42,56,21 - - <120,56,28,24> Y pairs of disjoint planes in Q+(5,2), rk 5
<120,17> - 120 17 {17,8,6; 1,2,12} 1,17,68,34 1,17,68,34 - 0123 {17,8,6;1,2,12} <120,68,40,36> Thm 1.16.3 with Thm 5.2.1 [BCN]
<120,17>a 120 17 {17,72/5,6; 1,18/5,12} 1,17,68,34 1,34,68,17 - - <120,68,40,36> Y Relative Hemisystems of GQ(4,16)
<120,32> - 120 32 {32,81/7,384/49; 1,288/49,144/7} 1,32,63,24 1,7,28,84 - 0123,0231 {7,4,6;1,1,2} <120,84,58,60> Prop. 4.1.6 [BCN]
<125,12> ! 125 12 {12,8,4; 1,2,3} 1,12,48,64 1,12,48,64 - 0123 {12,8,4;1,2,3} - Hamming H(3,5)
<135,35> ! 135 35 {35,81/4,75/16; 1,135/16,105/4} 1,35,84,15 1,14,56,64 - 0123 {14,12,8;1,3,7} <135,64,28,32> Dual Polar B3(2)
<154,33> - 154 33 {33,21,121/21; 1,99/14,77/3} 1,33,98,22 1,21,84,48 - 0123 {21,16,8;1,4,14} <154,48,12,16> Coolsaet [C]
<165,10> ! 165 10 {10,847/108,275/56; 1,385/216,55/28} 1,10,44,110 1,24,84,56 - 0123 {24,14,6;1,4,9} - Johnson J(11,3)
<216,15> ! 216 15 {15,10,5; 1,2,3} 1,15,75,125 1,15,75,125 - 0123 {15,10,5;1,2,3} - Hamming H(3,6)
<216,20> ? 216 20 {20,15,16/7; 1,12/7,20} 1,20,175,20 1,70,70,75 0321 - <216,75,18,30>
<216,35> - 216 35 {35,24,8; 1,6,28} 1,35,140,40 1,35,140,40 - 0123 {35,24,8;1,6,28} <216,140,94,84> 2 SRG, Jurisic, Vidali [JV]
<220,11> ! 220 11 {11,128/15,847/162; 1,704/405,11/6} 1,11,54,154 1,27,108,84 - 0123 {27,16,7;1,4,9} - Johnson J(12,3)
<225,24> ? 225 24 {24,20,36/11; 1,30/11,24} 1,24,176,24 1,88,88,48 0321 - <225,48,3,12>
<245,20> ? 245 20 {20,14,50/9; 1,35/18,10} 1,20,144,80 1,36,64,144 - - <245,64,18,16>
<250,40> - 250 40 {40,33,8; 1,8,30} 1,40,165,44 1,40,165,44 - 0123 {40,33,8;1,8,30} - Jurisic, Vidali [JV]
<256,25> ? 256 25 {25,24,3; 1,3,20} 1,25,200,30 1,80,100,75 - - -
<260,25> ? 260 25 {25,1352/63,260/49; 1,1300/441,130/7} 1,25,182,52 1,70,105,84 - - -
<279,30> ? 279 30 {30,961/36,31/4; 1,155/36,93/4} 1,30,186,62 1,80,150,48 - - <279,150,85,75> Y
<280,27> ? 280 27 {27,160/7,12/5; 1,96/35,20} 1,27,225,27 1,54,90,135 - - -
<280,27>a ? 280 27 {27,49/2,7; 1,7/2,21} 1,27,189,63 1,90,135,54 - - <280,135,70,60> Y
<286,12> ! 286 12 {12,507/55,416/75; 1,468/275,26/15} 1,12,65,208 1,30,135,120 - 0123 {30,18,8;1,4,9} - Johnson J(13,3)
<286,25> ? 286 25 {25,507/22,13/2; 1,65/22,39/2} 1,25,195,65 1,100,125,60 - - <286,125,60,50> Y
<288,35> ? 288 35 {35,243/8,9; 1,45/8,27} 1,35,189,63 1,70,175,42 - - <288,175,110,100> Y
<300,39> ? 300 39 {39,30,4; 1,5,36} 1,39,234,26 1,78,117,104 - - <300,117,60,36>
<319,28> ? 319 28 {28,2523/110,87/10; 1,174/55,203/10} 1,28,203,87 1,80,168,70 - - <319,168,92,84>
<322,45> ? 322 45 {45,529/14,23/2; 1,115/14,69/2} 1,45,207,69 1,60,225,36 - 0123 {60,45,8;1,12,50} <322,225,160,150> Y
<324,17> ? 324 17 {17,16,10; 1,2,8} 1,17,136,170 1,102,170,51 - - <324,170,88,90> Y
<324,19> ? 324 19 {19,128/9,10; 1,16/9,10} 1,19,152,152 1,76,171,76 - - <324,171,90,90>
<324,19>a ? 324 19 {19,16,8; 1,2,8} 1,19,152,152 1,57,152,114 - - <324,152,70,72>
<343,18> ! 343 18 {18,12,6; 1,2,3} 1,18,108,216 1,18,108,216 - 0123 {18,12,6;1,2,3} - Hamming H(3,7)
<343,36> ? 343 36 {36,30,4; 1,4,30} 1,36,270,36 1,90,108,144 - - -
<343,42> ? 343 42 {42,30,12; 1,6,28} 1,42,210,90 1,42,210,90 - 0123 {42,30,12;1,6,28} -
<344,42> ? 344 42 {42,1849/50,43/7; 1,301/50,258/7} 1,42,258,43 1,105,168,70 - - <344,168,92,72> Y
<351,26> ? 351 26 {26,162/7,507/49; 1,351/98,78/7} 1,26,168,156 1,42,224,84 - 0123 {42,32,9;1,6,24} <351,224,142,144>
<364,13> ! 364 13 {13,980/99,3549/605; 1,1820/1089,91/55} 1,13,77,273 1,33,165,165 - 0123 {33,20,9;1,4,9} - Johnson J(14,3)
<375,34> ? 375 34 {34,45/2,7/2; 1,5/2,63/2} 1,34,306,34 1,68,102,204 - - <375,102,45,21>
<377,28> ? 377 28 {28,841/39,29/3; 1,203/78,58/3} 1,28,232,116 1,84,196,96 - - <377,196,105,98>
<378,26> ? 378 26 {26,162/7,15; 1,27/7,12} 1,26,156,195 1,78,260,39 - 0123 {78,50,9;1,15,60} <378,260,178,180> Y
<378,26>a ? 378 26 {26,4374/175,27/13; 1,351/175,324/13} 1,26,324,27 1,195,52,130 - - <378,52,26,4> Y
<392,34> ? 392 34 {34,63/2,5; 1,7/2,30} 1,34,306,51 1,153,136,102 - - <392,136,60,40> Y
<392,69> ? 392 69 {69,56,10; 1,14,60} 1,69,276,46 1,69,276,46 - 0123 {69,56,10;1,14,60} <392,276,200,180> Y 2 SRG
<400,19> ? 400 19 {19,160/9,12; 1,20/9,8} 1,19,152,228 1,114,228,57 - - <400,228,128,132> Y
<430,42> ? 430 42 {42,1849/60,43/3; 1,301/60,86/3} 1,42,258,129 1,63,294,72 - 0123 {63,42,12;1,9,49} <430,294,203,196>
<441,20> ? 441 20 {20,378/25,12; 1,42/25,9} 1,20,180,240 1,100,240,100 - - <441,240,129,132>
<455,14> ! 455 14 {14,275/26,1225/198; 1,385/234,35/22} 1,14,90,350 1,36,198,220 - 0123 {36,22,10;1,4,9} - Johnson J(15,3)
<460,51> ? 460 51 {51,960/23,26/3; 1,144/23,130/3} 1,51,340,68 1,102,255,102 - - <460,255,150,130>
<460,54> ? 460 54 {54,900/23,55/9; 1,135/23,440/9} 1,54,360,45 1,81,216,162 - - <460,216,116,88>
<462,54> 462 54 {54,242/7,396/25; 1,1188/175,33} 1,54,275,132 1,36,225,200 - 0123 {36,25,16;1,4,18} - Folded J(12,6)
<484,21> ? 484 21 {21,176/9,14; 1,22/9,8} 1,21,168,294 1,126,294,63 - - <484,294,176,182> Y
<486,30> ? 486 30 {30,26,9; 1,3,12} 1,30,260,195 1,30,260,195 - 0123 {30,26,9;1,3,12} -
<486,30>a ? 486 30 {30,28,2; 1,2,24} 1,30,420,35 1,135,140,210 - - -
<495,38> ? 495 38 {38,360/11,13/2; 1,36/11,65/2} 1,38,380,76 1,152,190,152 - - <495,190,85,65>
<506,22> ! 506 22 {22,3703/180,2783/175; 1,1771/900,506/35} 1,22,230,253 1,210,280,15 - 0312 {15,14,12;1,1,9} - Witt Graph M23
<512,21> ! 512 21 {21,14,7; 1,2,3} 1,21,147,343 1,21,147,343 - 0123 {21,14,7;1,2,3} - Hamming H(3,8)
<512,21>a ! 512 21 {21,20,16; 1,2,12} 1,21,210,280 1,210,280,21 - 0312 {21,20,16;1,2,12} - Coset Graph of Doubly Truncated Golay Code
<512,49> 512 49 {49,36,16; 1,6,28} 1,49,294,168 1,49,294,168 - 0123 {49,36,16;1,6,28} - Bilinear Forms graph (3,3,2)
<527,30> ? 527 30 {30,2883/136,93/8; 1,279/136,155/8} 1,30,310,186 1,96,270,160 - - <527,270,141,135>
<527,30>a ? 527 30 {30,961/34,93/8; 1,93/34,155/8} 1,30,310,186 1,160,270,96 - - <527,270,141,135> Y
<532,27> ? 532 27 {27,735/38,21/2; 1,63/38,35/2} 1,27,315,189 1,108,243,180 - - <532,243,114,108>
<532,27>a ? 532 27 {27,490/19,21/2; 1,42/19,35/2} 1,27,315,189 1,180,243,108 - - <532,243,114,108> Y
<540,33> ? 540 33 {33,20,63/5; 1,12/5,15} 1,33,275,231 1,55,99,385 - - <540,99,18,18>
<540,35> ? 540 35 {35,243/10,27/2; 1,27/10,45/2} 1,35,315,189 1,84,315,140 - - <540,315,186,180>
<540,35>a ? 540 35 {35,162/5,27/2; 1,18/5,45/2} 1,35,315,189 1,140,315,84 - - <540,315,186,180> Y
<540,44> ? 540 44 {44,30,5; 1,3,40} 1,44,440,55 1,88,176,275 - - <540,176,76,48>
<540,49> ? 540 49 {49,400/9,10; 1,50/9,40} 1,49,392,98 1,147,294,98 - - <540,294,168,150> Y
<540,77> - 540 77 {77,60,13; 1,12,65} 1,77,385,77 1,77,385,77 - 0123 {77,60,13;1,12,65} <540,385,280,260> 2 SRG, Coolsaet, Jurisic [CJ]
<550,54> ? 550 54 {54,242/5,11; 1,33/5,44} 1,54,396,99 1,135,324,90 - - <550,324,198,180> Y
<560,15> ! 560 15 {15,1024/91,1100/169; 1,1920/1183,20/13} 1,15,104,440 1,39,234,286 - 0123 {39,24,11;1,4,9} - Johnson J(16,3)
<560,39> ? 560 39 {39,250/7,15; 1,30/7,25} 1,39,325,195 1,130,351,78 - - <560,351,222,216> Y
<560,39>a ? 560 39 {39,256/7,8; 1,24/7,32} 1,39,416,104 1,195,234,130 - - <560,234,108,90> Y
<561,32> ? 561 32 {32,847/34,55/4; 1,44/17,77/4} 1,32,308,220 1,112,320,128 - - <561,320,184,180>
<576,23> ? 576 23 {23,432/25,15; 1,48/25,9} 1,23,207,345 1,115,345,115 - - <576,345,204,210>
<576,23>a ? 576 23 {23,64/3,16; 1,8/3,8} 1,23,184,368 1,138,368,69 - - <576,368,232,240> Y
<576,50> ? 576 50 {50,45,12; 1,6,30} 1,50,375,150 1,50,375,150 - 0123 {50,45,12;1,6,30} <576,375,246,240>
<585,52> ? 585 52 {52,140/3,169/10; 1,104/15,65/2} 1,52,350,182 1,80,420,84 - 0123 {80,63,12;1,12,60} -
<598,45> - 598 45 {45,1587/52,69/4; 1,207/52,115/4} 1,45,345,207 1,72,405,120 - 0123 {72,45,16;1,8,54} <598,405,276,270> BCN Thm 4.4.4 [BCN]
<598,45>a ? 598 45 {45,529/13,69/4; 1,69/13,115/4} 1,45,345,207 1,120,405,72 - - <598,405,276,270> Y
<612,26> ? 612 26 {26,405/17,18; 1,54/17,9} 1,26,195,390 1,130,416,65 - - <612,416,280,288> Y
<625,52> ? 625 52 {52,42,16; 1,6,28} 1,52,364,208 1,52,364,208 - 0123 {52,42,16;1,6,28} <625,364,213,210>
<625,72> - 625 72 {72,42,6; 1,6,63} 1,72,504,48 1,48,72,504 - 0231 {72,42,6;1,6,63} <625,504,403,420> BCN Thm 4.4.4 [BCN]
<630,34> ? 630 34 {34,98/3,7; 1,7/3,28} 1,34,476,119 1,255,204,170 - - <630,204,78,60> Y
<630,74> - 630 74 {74,54,15; 1,9,60} 1,74,444,111 1,74,444,111 - 0123 {74,54,15;1,9,60} <630,444,318,300> 2 SRG, Coolsaet, Jurisic [CJ]
<630,74>a ? 630 74 {74,450/7,15; 1,75/7,60} 1,74,444,111 1,111,444,74 - - <630,444,318,300> Y
<665,56> ? 665 56 {56,1805/36,931/80; 1,266/45,665/16} 1,56,475,133 1,120,384,160 - - -
<672,55> - 672 55 {55,32,16; 1,4,40} 1,55,440,176 1,55,440,176 - 0123 {55,32,16;1,4,40} <672,440,292,280> Thm 1.16.3 with Thm 5.2.1 [BCN]
<672,55>a 672 55 {55,49,21; 1,7,35} 1,55,385,231 1,110,495,66 - 0123 {110,81,12;1,18,90} <672,495,366,360> Y Moscow-Soicher graph
<672,55>b ? 672 55 {55,1372/27,7; 1,140/27,49} 1,55,539,77 1,231,275,165 - - <672,275,130,100> Y
<676,25> ? 676 25 {25,208/9,18; 1,26/9,8} 1,25,200,450 1,150,450,75 - - <676,450,296,306> Y
<676,90> ? 676 90 {90,78,7; 1,13,84} 1,90,540,45 1,180,360,135 - - <676,360,212,168> Y
<680,16> ! 680 16 {16,3757/315,4352/637; 1,3536/2205,136/91} 1,16,119,544 1,42,273,364 - 0123 {42,26,12;1,4,9} - Johnson J(17,3)
<680,34> ? 680 34 {34,180/7,1445/294; 1,153/98,680/21} 1,34,560,85 1,168,336,175 - - <680,175,30,50>
<693,65> ? 693 65 {65,3267/56,165/32; 1,1485/224,429/8} 1,65,572,55 1,120,312,260 - - -
<726,65> ? 726 65 {65,99/2,15/2; 1,11/2,117/2} 1,65,585,75 1,130,325,270 - - <726,325,164,130>
<726,87> ? 726 87 {87,66,16; 1,11,72} 1,87,522,116 1,87,522,116 - 0123 {87,66,16;1,11,72} <726,522,381,360> 2 SRG
<729,24> ! 729 24 {24,16,8; 1,2,3} 1,24,192,512 1,24,192,512 - 0123 {24,16,8;1,2,3} - Hamming H(3,9)
<729,24>a ! 729 24 {24,22,20; 1,2,12} 1,24,264,440 1,264,440,24 - 0312 {24,22,20;1,2,12} - Ext Ternary Golay code
<729,26> ? 729 26 {26,486/25,18; 1,54/25,9} 1,26,234,468 1,130,468,130 - - <729,468,297,306>
<729,35> ? 729 35 {35,243/8,6; 1,15/8,27} 1,35,567,126 1,210,168,350 - - -
<729,42> - 729 42 {42,28,5; 1,2,30} 1,42,588,98 1,98,42,588 - 0231 {42,28,5;1,2,30} - DRG not feasible
<729,56> ? 729 56 {56,42,20; 1,6,28} 1,56,392,280 1,56,392,280 - 0123 {56,42,20;1,6,28} <729,392,211,210>
<729,104> - 729 104 {104,66,8; 1,12,88} 1,104,572,52 1,52,104,572 - 0231 {104,66,8;1,12,88} <729,572,445,462> Urlep [U]
<750,49> - 750 49 {49,40,22; 1,5,28} 1,49,392,308 1,112,539,98 - 0123 {112,77,16;1,16,88} <750,539,388,385> BCN Thm 4.4.4 [BCN]
<750,112> ? 750 112 {112,77,16; 1,16,88} 1,112,539,98 1,49,392,308 - 0123 {49,40,22;1,5,28} <750,308,118,132>
<756,75> ? 756 75 {75,64,8; 1,8,60} 1,75,600,80 1,105,350,300 - - -
<759,23> 759 23 {23,945/44,1587/80; 1,345/176,207/20} 1,23,252,483 1,280,448,30 - 0312 {30,28,24;1,3,15} - Witt Graph M24
<760,75> ? 760 75 {75,5776/99,665/121; 1,7600/1089,665/11} 1,75,627,57 1,99,165,495 - - -
<765,84> 765 84 {84,289/5,153/8; 1,51/5,357/8} 1,84,476,204 1,28,224,512 - 0123 {28,24,16;1,3,7} - Dual Polar Graph 2D4(2)
<768,39> ? 768 39 {39,112/3,10; 1,8/3,30} 1,39,546,182 1,273,312,182 - - <768,312,136,120> Y
<768,52> ? 768 52 {52,35,16; 1,4,28} 1,52,455,260 1,65,182,520 - - <768,182,46,42>
<768,59> ? 768 59 {59,54,15; 1,6,45} 1,59,531,177 1,177,472,118 - - <768,472,296,280> Y
<768,65> ? 768 65 {65,54,9; 1,6,45} 1,65,585,117 1,65,312,390 - - <768,312,136,120>
<784,27> ? 784 27 {27,224/9,20; 1,28/9,8} 1,27,216,540 1,162,540,81 - - <784,540,368,380> Y
<792,35> ? 792 35 {35,729/22,117/7; 1,63/22,135/7} 1,35,405,351 1,210,455,126 - - <792,455,262,260> Y
<800,34> - 800 34 {34,25,20; 1,10/3,10} 1,34,255,510 1,85,459,255 - 0123 {85,54,25;1,10,45} <800,459,258,270> BCN Thm 4.4.4 [BCN]
<800,119> ? 800 119 {119,100,15; 1,20,105} 1,119,595,85 1,119,595,85 - 0123 {119,100,15;1,20,105} <800,595,450,420> Y 2 SRG
<816,17> ! 816 17 {17,63/5,3757/525; 1,119/75,51/35} 1,17,135,663 1,45,315,455 - 0123 {45,28,13;1,4,9} - Johnson J(18,3)
<819,26> 819 26 {26,162/7,169/8; 1,13/7,117/8} 1,26,324,468 1,288,512,18 - 0312 {18,16,16;1,1,9} - Gen Hexagon (2,8)
<825,48> ? 825 48 {48,44,125/44; 1,32/11,165/4} 1,48,726,50 1,264,176,384 - - -
<870,29> ? 870 29 {29,4725/176,2523/121; 1,6525/1936,87/11} 1,29,231,609 1,154,616,99 - 0123 {154,100,18;1,25,112} -
<891,22> ! 891 22 {22,21,121/6; 1,11/6,33/4} 1,22,252,616 1,336,512,42 0231 0312 {42,40,32;1,5,21} - Dual Polar Graph 2A5(2)
<891,252> ! 891 252 {252,605/4,33/4; 1,495/8,231} 1,252,616,22 1,42,336,512 0312 0123 {42,40,32;1,5,21} - Dual Polar Graph 2A5(2)
<900,29> - 900 29 {29,108/5,21; 1,12/5,9} 1,29,261,609 1,145,609,145 - 0123 {145,84,25;1,20,105} <900,609,408,420> BCN Thm 4.4.4 [BCN]
<900,29>a ? 900 29 {29,80/3,22; 1,10/3,8} 1,29,232,638 1,174,638,87 - 0123 {174,110,18;1,30,132} <900,638,448,462> Y
<923,70> ? 923 70 {70,5041/78,71/6; 1,497/78,355/6} 1,70,710,142 1,252,490,180 - - <923,490,273,245> Y
<936,51> ? 936 51 {51,1690/49,13; 1,130/49,39} 1,51,663,221 1,119,459,357 - - <936,459,234,216>
<936,51>a ? 936 51 {51,169/4,13; 1,13/4,39} 1,51,663,221 1,204,459,272 - - <936,459,234,216>
<936,51>b ? 936 51 {51,10816/225,260/17; 1,884/225,624/17} 1,51,624,260 1,255,510,170 - - <936,510,284,270> Y
<945,56> ? 945 56 {56,48,49/13; 1,42/13,56} 1,56,832,56 1,312,312,320 0321 - <945,320,85,120>
<945,80> ? 945 80 {80,567/8,50/7; 1,405/56,70} 1,80,784,80 1,224,384,336 - - -
<945,80>a ? 945 80 {80,729/10,27/2; 1,81/10,135/2} 1,80,720,144 1,224,560,160 - - <945,560,343,315> Y
<952,51> ? 952 51 {51,315/8,867/35; 1,255/56,119/5} 1,51,441,459 1,105,630,216 - 0123 {105,72,24;1,12,70} -
<960,35> ? 960 35 {35,144/5,256/21; 1,28/15,120/7} 1,35,540,384 1,140,315,504 - - -
<960,63> ? 960 63 {63,56,81/17; 1,72/17,63} 1,63,833,63 1,357,357,245 0321 - <960,245,40,70>
<960,84> 960 84 {84,125/2,15; 1,15/2,60} 1,84,700,175 1,84,315,560 - - - Ovoids of O+(8,2)
<960,119> - 960 119 {119,96,18; 1,16,102} 1,119,714,126 1,119,714,126 - 0123 {119,96,18;1,16,102} <960,714,538,510> 2 SRG, Jurisic, Vidali [JV]
<969,18> ! 969 18 {18,1805/136,1197/160; 1,855/544,57/40} 1,18,152,798 1,48,360,560 - 0123 {48,30,14;1,4,9} - Johnson J(19,3)
<969,56> ? 969 56 {56,1805/34,19/2; 1,133/34,95/2} 1,56,760,152 1,336,392,240 - - <969,392,175,147> Y
<1000,27> ! 1000 27 {27,18,9; 1,2,3} 1,27,243,729 1,27,243,729 - 0123 {27,18,9;1,2,3} - Hamming H(3,10)
<1000,27>a - 1000 27 {27,24,24; 1,2,12} 1,27,324,648 1,324,648,27 - 0312 {27,24,24;1,2,12} - Thm 5.2.1 [BCN]
<1000,37> ? 1000 37 {37,24,14; 1,2,12} 1,37,444,518 1,74,148,777 - - -
<1000,54> ? 1000 54 {54,42,11; 1,3,44} 1,54,756,189 1,189,432,378 - - <1000,432,200,176>
<1000,63> ? 1000 63 {63,48,24; 1,6,28} 1,63,504,432 1,63,504,432 - 0123 {63,48,24;1,6,28} -
<1000,74> ? 1000 74 {74,55,9; 1,5,66} 1,74,814,111 1,148,444,407 - - <1000,444,218,180>
<1000,99> ? 1000 99 {99,640/9,12; 1,80/9,88} 1,99,792,108 1,108,594,297 - - <1000,594,368,330>
<1000,111> ? 1000 111 {111,88,9; 1,12,99} 1,111,814,74 1,148,444,407 - - <1000,407,150,176>
<1015,28> ? 1015 28 {28,2523/130,4263/338; 1,1218/845,203/26} 1,28,377,609 1,104,208,702 - - -
<1023,98> ? 1023 98 {98,2420/31,33/2; 1,308/31,165/2} 1,98,770,154 1,140,686,196 - - <1023,686,469,441>
<1023,98>a ? 1023 98 {98,5445/62,33/2; 1,693/62,165/2} 1,98,770,154 1,196,686,140 - - <1023,686,469,441> Y
<1024,22> 1024 22 {22,21,20; 1,2,6} 1,22,231,770 1,330,616,77 0231 - - Even weight words in truncated binary Golay code
<1024,31> 1024 31 {31,30,17; 1,2,15} 1,31,465,527 1,310,527,186 - - <1024,527,270,272> Y Dual Kasami
<1024,33> ? 1024 33 {33,30,15; 1,2,15} 1,33,495,495 1,198,495,330 - - <1024,495,238,240>
<1024,66> 1024 66 {66,45,28; 1,6,30} 1,66,495,462 1,66,495,462 - 0123 {66,45,28;1,6,30} <1024,495,238,240> Folded Half-Cube
<1024,231> 1024 231 {231,160,6; 1,48,210} 1,231,770,22 1,77,330,616 0312 - - Even weight words in truncated binary Golay code
<1029,126> - 1029 126 {126,110,18; 1,18,105} 1,126,770,132 1,126,770,132 - 0123 {126,110,18;1,18,105} - Jurisic, Vidali [JV]
<1035,68> ? 1035 68 {68,2116/35,92/7; 1,184/35,391/7} 1,68,782,184 1,252,544,238 - - <1035,544,298,272>
<1056,54> ? 1056 54 {54,847/20,297/25; 1,297/100,198/5} 1,54,770,231 1,180,315,560 - - -
<1056,143> ? 1056 143 {143,512/5,484/25; 1,1408/75,572/5} 1,143,780,132 1,65,585,405 - 0123 {65,54,27;1,6,39} <1056,405,144,162>
<1058,91> ? 1058 91 {91,230/3,16/3; 1,23/3,260/3} 1,91,910,56 1,273,364,420 - - <1058,364,165,104>
<1071,50> ? 1071 50 {50,289/6,17/2; 1,17/6,85/2} 1,50,850,170 1,420,350,300 - - <1071,350,133,105> Y
<1080,26> ? 1080 26 {26,243/10,21; 1,27/10,6} 1,26,234,819 1,234,728,117 - - <1080,728,484,504> Y
<1080,83> ? 1080 83 {83,54,21; 1,6,63} 1,83,747,249 1,83,747,249 - 0123 {83,54,21;1,6,63} <1080,747,522,504>
<1090,108> ? 1090 108 {108,23762/245,109/9; 1,2943/245,872/9} 1,108,872,109 1,252,648,189 - - <1090,648,402,360> Y
<1100,49> ? 1100 49 {49,1250/33,80/3; 1,125/33,70/3} 1,49,490,560 1,147,784,168 - 0123 {147,96,24;1,18,112} <1100,784,558,560>
<1120,195> + 1120 195 {195,392/3,175/9; 1,280/9,455/3} 1,195,819,105 1,39,351,729 - 0123 {39,36,27;1,4,13} <1120,729,468,486> Dual Polar Graph B3(3)
<1125,60> ? 1125 60 {60,56,27; 1,6,30} 1,60,560,504 1,140,840,144 - 0123 {140,108,18;1,18,105} -
<1125,140> ? 1125 140 {140,108,18; 1,18,105} 1,140,840,144 1,60,560,504 - 0123 {60,56,27;1,6,30} -
<1128,140> - 1128 140 {140,2209/18,47/7; 1,329/18,940/7} 1,140,940,47 1,315,560,252 - - <1128,560,316,240> Y No 2-graph
<1134,49> ? 1134 49 {49,48,644/75; 1,196/75,42} 1,49,900,184 1,483,350,300 - - -
<1134,55> ? 1134 55 {55,49,14; 1,7/2,35} 1,55,770,308 1,165,528,440 - - <1134,528,252,240>
<1140,19> ! 1140 19 {19,6400/459,9025/1156; 1,12160/7803,95/68} 1,19,170,950 1,51,408,680 - 0123 {51,32,15;1,4,9} - Johnson J(20,3)
<1140,119> ? 1140 119 {119,2025/19,150/17; 1,255/19,1890/17} 1,119,945,75 1,306,595,238 - - <1140,595,338,280> Y
<1144,51> ? 1144 51 {51,10816/231,208/21; 1,208/77,884/21} 1,51,884,208 1,378,408,357 - - <1144,408,162,136>
<1144,54> ? 1144 54 {54,1331/26,55/3; 1,99/26,110/3} 1,54,726,363 1,297,648,198 - - <1144,648,372,360> Y
<1156,84> ? 1156 84 {84,68,5; 1,17/3,80} 1,84,1008,63 1,252,336,567 - - <1156,336,140,80>
<1156,135> ? 1156 135 {135,119,10; 1,17,126} 1,135,945,75 1,270,675,210 - - <1156,675,418,360> Y
<1170,84> ? 1170 84 {84,65,1440/91; 1,84/13,390/7} 1,84,845,240 1,91,350,728 - - <1170,350,115,100>
<1176,125> ? 1176 125 {125,98,21; 1,14,105} 1,125,875,175 1,125,875,175 - 0123 {125,98,21;1,14,105} <1176,875,658,630>
<1176,125>a ? 1176 125 {125,112,6; 1,14,120} 1,125,1000,50 1,375,500,300 - - <1176,500,256,180> Y
<1189,40> ? 1189 40 {40,5043/203,123/7; 1,615/406,164/7} 1,40,656,492 1,140,600,448 - - <1189,600,305,300>
<1200,55> ? 1200 55 {55,44,25/9; 1,20/9,55} 1,55,1089,55 1,297,297,605 0321 - <1200,605,280,330>
<1200,109> ? 1200 109 {109,80,22; 1,10,88} 1,109,872,218 1,109,872,218 - 0123 {109,80,22;1,10,88} <1200,872,640,616>
<1200,109>a ? 1200 109 {109,90,11; 1,10,99} 1,109,981,109 1,218,654,327 - - <1200,654,378,330>
<1221,120> ? 1221 120 {120,3630/37,121/10; 1,440/37,1089/10} 1,120,990,110 1,200,720,300 - - <1221,720,444,396>
<1225,90> ? 1225 90 {90,84,225/29; 1,210/29,90} 1,90,1044,90 1,522,522,180 0321 - <1225,180,5,30>
<1240,30> ? 1240 30 {30,2883/112,3875/147; 1,1395/784,310/21} 1,30,434,775 1,378,840,21 - 0123,0312 {378,200,9;1,90,360} -
<1248,87> ? 1248 87 {87,960/13,44/5; 1,80/13,396/5} 1,87,1044,116 1,290,522,435 - - <1248,522,246,198>
<1269,140> ? 1269 140 {140,2209/18,47/2; 1,329/18,235/2} 1,140,940,188 1,168,980,120 - 0123 {168,140,18;1,24,147} <1269,980,763,735> Y
<1275,84> ? 1275 84 {84,8670/121,17/2; 1,680/121,153/2} 1,84,1071,119 1,308,504,462 - - <1275,504,228,180>
<1288,22> 1288 22 {22,2645/126,207/11; 1,253/126,46/11} 1,22,230,1035 1,330,792,165 - - <1288,792,476,504> Y M23
<1296,35> ? 1296 35 {35,28,22; 1,2,14} 1,35,490,770 1,245,770,280 - - <1296,770,454,462>
<1296,35>a ? 1296 35 {35,135/4,21; 1,9/4,15} 1,35,525,735 1,350,735,210 - - <1296,735,414,420> Y
<1296,37> ? 1296 37 {37,28,20; 1,2,14} 1,37,518,740 1,185,518,592 - - <1296,518,202,210>
<1326,50> ? 1326 50 {50,31212/637,51/25; 1,1275/637,1224/25} 1,50,1224,51 1,700,100,525 - - <1326,100,50,4> Y
<1330,20> ! 1330 20 {20,833/57,11200/1377; 1,2380/1539,70/51} 1,20,189,1120 1,54,459,816 - 0123 {54,34,16;1,4,9} - Johnson J(21,3)
<1331,30> ! 1331 30 {30,20,10; 1,2,3} 1,30,300,1000 1,30,300,1000 - 0123 {30,20,10;1,2,3} - Hamming H(3,11)
<1331,30>a - 1331 30 {30,26,28; 1,2,12} 1,30,390,910 1,390,910,30 0231 0123,0312 {390,210,12;1,90,364} - Prop 4.1.6 [BCN]
<1331,38> ? 1331 38 {38,34,12; 1,2,12} 1,38,646,646 1,38,646,646 - 0123 {38,34,12;1,2,12} -
<1331,70> ? 1331 70 {70,54,28; 1,6,28} 1,70,630,630 1,70,630,630 - 0123 {70,54,28;1,6,28} -
<1331,70>a ? 1331 70 {70,60,21/2; 1,4,105/2} 1,70,1050,210 1,210,420,700 - - -
<1331,130> - 1331 130 {130,96,18; 1,12,117} 1,130,1040,160 1,130,1040,160 - 0123 {130,96,18;1,12,117} -
<1331,390> - 1331 390 {390,210,12; 1,90,364} 1,390,910,30 1,30,390,910 0312 0123,0231 {30,26,28;1,2,12} - Prop 4.1.6 [BCN]
<1342,60> - 1342 60 {60,11163/308,183/7; 1,915/308,244/7} 1,60,732,549 1,105,900,336 - 0123 {105,60,28;1,7,75} <1342,900,605,600> BCN Thm 4.4.4 [BCN]
<1344,79> ? 1344 79 {79,56,10; 1,4,70} 1,79,1106,158 1,158,553,632 - - <1344,553,252,210>
<1344,79>a ? 1344 79 {79,1792/25,10; 1,128/25,70} 1,79,1106,158 1,395,553,395 - - <1344,553,252,210>
<1344,98> ? 1344 98 {98,90,77/6; 1,49/6,84} 1,98,1080,165 1,308,720,315 - - -
<1349,70> ? 1349 70 {70,10082/171,142/9; 1,710/171,497/9} 1,70,994,284 1,270,700,378 - - <1349,700,375,350>
<1365,124> ? 1365 124 {124,1400/13,125/8; 1,160/13,875/8} 1,124,1085,155 1,248,868,248 - - <1365,868,567,525>
<1365,132> ? 1365 132 {132,3920/39,133/16; 1,448/39,1995/16} 1,132,1155,77 1,176,660,528 - - <1365,660,355,285>
<1365,140> ? 1365 140 {140,104,1225/52; 1,560/39,455/4} 1,140,1014,210 1,104,936,324 - 0123 {104,81,27;1,9,78} <1365,324,63,81>
<1372,60> ? 1372 60 {60,57,16; 1,4,30} 1,60,855,456 1,60,855,456 - 0123 {60,57,16;1,4,30} -
<1377,80> ? 1377 80 {80,1134/17,18; 1,90/17,63} 1,80,1008,288 1,240,800,336 - - <1377,800,475,450>
<1395,62> 1395 62 {62,243/5,2883/98; 1,2511/490,93/4} 1,62,588,744 1,98,784,512 - 0123 {98,72,32;1,9,49} - Grassmann (6,3,2)
<1395,164> ? 1395 164 {164,4050/31,33/2; 1,600/31,297/2} 1,164,1107,123 1,164,984,246 - - <1395,984,708,660>
<1407,76> ? 1407 76 {76,4410/67,77/10; 1,280/67,693/10} 1,76,1197,133 1,380,456,570 - - <1407,456,180,132>
<1408,63> ? 1408 63 {63,640/11,34; 1,64/11,30} 1,63,630,714 1,210,1071,126 - 0123 {210,153,20;1,30,170} <1408,1071,814,816> Y
<1425,56> ? 1425 56 {56,722/15,38/3; 1,38/15,133/3} 1,56,1064,304 1,360,560,504 - - <1425,560,235,210>
<1426,45> ? 1426 45 {45,2645/62,161/6; 1,207/62,115/6} 1,45,575,805 1,300,945,180 - - <1426,945,624,630> Y
<1445,84> ? 1445 84 {84,1275/16,25/4; 1,85/16,315/4} 1,84,1260,100 1,576,420,448 - - <1445,420,163,105> Y
<1456,90> ? 1456 90 {90,8281/100,91/3; 1,819/100,182/3} 1,90,910,455 1,225,1080,150 - - <1456,1080,804,792> Y
<1456,90>a ? 1456 90 {90,169/2,13; 1,13/2,78} 1,90,1170,195 1,420,720,315 - - <1456,720,376,336> Y
<1456,97> ? 1456 97 {97,1176/13,14; 1,98/13,84} 1,97,1164,194 1,388,776,291 - - <1456,776,432,392> Y
<1458,62> ? 1458 62 {62,60,7; 1,3,56} 1,62,1240,155 1,620,372,465 - - <1458,372,126,84> Y
<1458,188> ? 1458 188 {188,162,21; 1,27,168} 1,188,1128,141 1,188,1128,141 - 0123 {188,162,21;1,27,168} <1458,1128,882,840> Y
<1470,104> ? 1470 104 {104,70,25; 1,7,80} 1,104,1040,325 1,104,1040,325 - 0123 {104,70,25;1,7,80} <1470,1040,742,720>
<1485,98> ? 1485 98 {98,242/3,22; 1,22/3,77} 1,98,1078,308 1,210,980,294 - - <1485,980,655,630>
<1520,49> ? 1520 49 {49,900/19,20; 1,50/19,30} 1,49,882,588 1,441,784,294 - - <1520,784,408,400> Y
<1520,56> ? 1520 56 {56,361/7,912/49; 1,152/49,228/7} 1,56,931,532 1,245,784,490 - - <1520,784,408,400>
<1540,21> ! 1540 21 {21,1452/95,9163/1083; 1,2772/1805,77/57} 1,21,209,1309 1,57,513,969 - 0123 {57,36,17;1,4,9} - Johnson J(22,3)
<1540,54> ? 1540 54 {54,300/7,15; 1,15/7,40} 1,54,1080,405 1,297,648,594 - - <1540,648,284,264>
<1540,54>a - 1540 54 {54,363/8,33; 1,33/8,22} 1,54,594,891 1,216,1134,189 - 0123 {216,147,28;1,28,168} <1540,1134,833,840> BCN Thm 4.4.4 [BCN]
<1540,54>b ? 1540 54 {54,363/7,22; 1,22/7,33} 1,54,891,594 1,405,864,270 - - <1540,864,488,480> Y
<1540,76> ? 1540 76 {76,363/5,11; 1,22/5,66} 1,76,1254,209 1,532,608,399 - - <1540,608,264,224> Y
<1540,216> ? 1540 216 {216,1715/11,224/15; 1,1512/55,560/3} 1,216,1225,98 1,90,504,945 - - -
<1548,35> ? 1548 35 {35,2187/86,45/2; 1,135/86,27/2} 1,35,567,945 1,252,875,420 - - <1548,875,490,500>
<1548,35>a ? 1548 35 {35,1458/43,45/2; 1,90/43,27/2} 1,35,567,945 1,420,875,252 - - <1548,875,490,500> Y
<1581,50> ? 1581 50 {50,4046/93,34/3; 1,170/93,119/3} 1,50,1190,340 1,450,500,630 - - <1581,500,175,150>
<1596,55> ? 1596 55 {55,882/19,20; 1,49/19,36} 1,55,990,550 1,330,825,440 - - <1596,825,432,420>
<1596,132> ? 1596 132 {132,361/3,19; 1,38/3,114} 1,132,1254,209 1,308,1056,231 - - <1596,1056,712,672> Y
<1600,39> ? 1600 39 {39,75/2,25; 1,5/2,15} 1,39,585,975 1,390,975,234 - - <1600,975,590,600> Y
<1600,234> ? 1600 234 {234,165,12; 1,30,198} 1,234,1287,78 1,78,234,1287 - 0231 {234,165,12;1,30,198} <1600,1287,1030,1056>
<1617,48> ? 1617 48 {48,735/22,35/2; 1,35/22,63/2} 1,48,1008,560 1,224,720,672 - - <1617,720,327,315>
<1617,48>a ? 1617 48 {48,7203/176,35/2; 1,343/176,63/2} 1,48,1008,560 1,384,720,512 - - <1617,720,327,315>
<1632,135> ? 1632 135 {135,3179/28,765/49; 1,2295/196,765/7} 1,135,1309,187 1,168,770,693 - - -
<1680,69> - 1680 69 {69,30,25; 1,2,45} 1,69,1035,575 1,69,1035,575 - 0123 {69,30,25;1,2,45} <1680,1035,642,630> BCN Prop 5.5.1 [BCN]
<1680,69>a ? 1680 69 {69,42,7; 1,2,63} 1,69,1449,161 1,138,414,1127 - - <1680,414,138,90>
<1680,69>b ? 1680 69 {69,3675/64,25; 1,245/64,45} 1,69,1035,575 1,276,1035,368 - - <1680,1035,642,630>
<1680,69>c ? 1680 69 {69,7350/121,7; 1,350/121,63} 1,69,1449,161 1,506,414,759 - - <1680,414,138,90>
<1680,69>d ? 1680 69 {69,4125/64,25; 1,275/64,45} 1,69,1035,575 1,368,1035,276 - - <1680,1035,642,630>
<1680,69>e ? 1680 69 {69,196/3,28; 1,14/3,42} 1,69,966,644 1,345,1104,230 - - <1680,1104,728,720> Y
<1680,69>f ? 1680 69 {69,200/3,10; 1,10/3,60} 1,69,1380,230 1,644,552,483 - - <1680,552,208,168> Y
<1680,146> ? 1680 146 {146,1323/10,21; 1,147/10,126} 1,146,1314,219 1,292,1168,219 - - <1680,1168,824,784> Y
<1701,160> ? 1701 160 {160,245/2,14; 1,14,140} 1,160,1400,140 1,160,640,900 - - <1701,900,459,495>
<1702,45> ? 1702 45 {45,4761/148,115/4; 1,345/148,69/4} 1,45,621,1035 1,216,1125,360 - - <1702,1125,740,750>
<1702,45>a ? 1702 45 {45,1587/37,115/4; 1,115/37,69/4} 1,45,621,1035 1,360,1125,216 - - <1702,1125,740,750> Y
<1716,77> 1716 77 {77,3380/63,1573/49; 1,2860/441,143/7} 1,77,637,1001 1,49,441,1225 - 0123 {49,36,25;1,4,9} - Partition Graph (7,7)
<1716,98> - 1716 98 {98,60,27; 1,5,72} 1,98,1176,441 1,98,1176,441 - 0123 {98,60,27;1,5,72} <1716,1176,812,792> Thm 1.16.3 with Thm 4.4.4 [BCN]
<1716,98>a ? 1716 98 {98,1210/13,33/7; 1,77/13,660/7} 1,98,1540,77 1,735,392,588 - - <1716,392,148,72> Y
<1728,33> ! 1728 33 {33,22,11; 1,2,3} 1,33,363,1331 1,33,363,1331 - 0123 {33,22,11;1,2,3} - Hamming H(3,12)
<1728,63> ? 1728 63 {63,16384/275,1944/121; 1,9216/3025,504/11} 1,63,1232,432 1,462,770,495 - - -
<1728,77> ? 1728 77 {77,60,32; 1,6,28} 1,77,770,880 1,77,770,880 - 0123 {77,60,32;1,6,28} -
<1728,110> ? 1728 110 {110,189/2,15; 1,15/2,90} 1,110,1386,231 1,264,770,693 - - -
<1728,143> ? 1728 143 {143,108,27; 1,12,117} 1,143,1287,297 1,143,1287,297 - 0123 {143,108,27;1,12,117} <1728,1287,966,936>
<1728,143>a ? 1728 143 {143,120,14; 1,12,130} 1,143,1430,154 1,286,1001,440 - - <1728,1001,604,546>
<1729,64> ? 1729 64 {64,3549/76,65/8; 1,39/19,455/8} 1,64,1456,208 1,256,448,1024 - - <1729,448,147,105>
<1729,64>a ? 1729 64 {64,28392/475,65/8; 1,1248/475,455/8} 1,64,1456,208 1,640,448,640 - - <1729,448,147,105>
<1740,74> ? 1740 74 {74,1701/29,30; 1,126/29,45} 1,74,999,666 1,222,1184,333 - - <1740,1184,808,800>
<1740,74>a ? 1740 74 {74,2025/29,30; 1,150/29,45} 1,74,999,666 1,333,1184,222 - - <1740,1184,808,800> Y
<1771,22> ! 1771 22 {22,10051/630,8349/950; 1,4807/3150,253/190} 1,22,230,1518 1,60,570,1140 - 0123 {60,38,18;1,4,9} - Johnson J(23,3)
<1782,26> ? 1782 26 {26,270/11,23; 1,27/11,4} 1,26,260,1495 1,390,1196,195 - - <1782,1196,790,828> Y
<1782,65> ? 1782 65 {65,121/2,77/2; 1,11/2,55/2} 1,65,715,1001 1,260,1365,156 - 0123 {260,189,24;1,36,210} <1782,1365,1044,1050> Y
<1792,63> ? 1792 63 {63,48,294/25; 1,56/25,42} 1,63,1350,378 1,225,216,1350 - - <1792,216,40,24>
<1792,63>a ? 1792 63 {63,1280/21,52/3; 1,64/21,140/3} 1,63,1260,468 1,567,819,405 - - <1792,819,386,364> Y
<1792,63>b ? 1792 63 {63,1536/25,196/9; 1,896/225,28} 1,63,972,756 1,90,1215,486 - 0123 {90,81,20;1,6,50} -
<1792,99> ? 1792 99 {99,96,6; 1,6,88} 1,99,1584,108 1,504,693,594 - - -
<1792,199> - 1792 199 {199,168,25; 1,24,175} 1,199,1393,199 1,199,1393,199 - 0123 {199,168,25;1,24,175} <1792,1393,1092,1050> Coolsaet, Jurisic [CJ]
<1820,51> - 1820 51 {51,507/14,65/2; 1,39/14,39/2} 1,51,663,1105 1,204,1275,340 - 0123 {204,125,40;1,20,150} <1820,1275,890,900> BCN Thm 4.4.4 [BCN]
<1820,51>a ? 1820 51 {51,338/7,65/2; 1,26/7,39/2} 1,51,663,1105 1,340,1275,204 - - <1820,1275,890,900> Y
<1833,140> - 1833 140 {140,4418/39,94/3; 1,470/39,329/3} 1,140,1316,376 1,180,1400,252 - 0123 {180,140,27;1,18,150} <1833,1400,1075,1050> BCN Thm 4.4.4 [BCN]
<1836,35> ? 1836 35 {35,480/17,124/5; 1,30/17,56/5} 1,35,560,1240 1,350,1085,400 - - <1836,1085,634,651>
<1836,35>a ? 1836 35 {35,2592/85,124/5; 1,162/85,56/5} 1,35,560,1240 1,400,1085,350 - - <1836,1085,634,651>
<1863,98> ? 1863 98 {98,1944/23,99/7; 1,126/23,594/7} 1,98,1512,252 1,392,882,588 - - <1863,882,441,396>
<1885,144> ? 1885 144 {144,5887/52,29/3; 1,261/26,406/3} 1,144,1624,116 1,252,864,768 - - <1885,864,438,360>
<1904,55> ? 1904 55 {55,882/17,35; 1,70/17,21} 1,55,693,1155 1,330,1375,198 - - <1904,1375,990,1000> Y
<1911,195> ? 1911 195 {195,1925/12,169/24; 1,455/24,715/4} 1,195,1650,65 1,270,540,1100 - - <1911,1100,613,660>
<1920,57> ? 1920 57 {57,56,27; 1,3,36} 1,57,1064,798 1,665,1064,190 - - -
<1920,63> ? 1920 63 {63,20480/361,72/5; 1,4608/1805,840/19} 1,63,1400,456 1,399,665,855 - - -
<1920,95> ? 1920 95 {95,448/5,26; 1,32/5,70} 1,95,1330,494 1,399,1235,285 - - <1920,1235,802,780> Y
<1936,43> ? 1936 43 {43,165/4,29; 1,11/4,15} 1,43,645,1247 1,430,1247,258 - - <1936,1247,798,812> Y
<1936,54> ? 1936 54 {54,209/4,25; 1,11/4,30} 1,54,1026,855 1,513,1080,342 - - <1936,1080,604,600> Y
<1944,29> ? 1944 29 {29,22,25; 1,2,5} 1,29,319,1595 1,319,1305,319 - - <1944,1305,864,900>
<1944,58> ? 1944 58 {58,55,8; 1,2,44} 1,58,1595,290 1,435,638,870 - - <1944,638,232,198>
<1944,67> ? 1944 67 {67,160/3,16; 1,8/3,40} 1,67,1340,536 1,201,402,1340 - - -
<1944,134> ? 1944 134 {134,108,15; 1,9,120} 1,134,1608,201 1,268,1072,603 - - <1944,1072,616,560>
<1944,134>a ? 1944 134 {134,117,5; 1,9,130} 1,134,1742,67 1,536,536,871 - - <1944,536,220,120>
<1975,78> ? 1975 78 {78,6241/100,79/4; 1,1027/300,237/4} 1,78,1422,474 1,312,1014,648 - - <1975,1014,533,507>
<1976,25> ? 1976 25 {25,1352/57,338/15; 1,130/57,52/15} 1,25,260,1690 1,450,1300,225 - - <1976,1300,840,884> Y
<1978,42> ? 1978 42 {42,16641/460,1333/45; 1,1161/460,602/45} 1,42,602,1333 1,360,1302,315 - - <1978,1302,851,868>
<2001,160> ? 2001 160 {160,7935/58,161/16; 1,368/29,2415/16} 1,160,1725,115 1,400,960,640 - - <2001,960,504,420>
<2013,60> ? 2013 60 {60,3721/66,305/8; 1,305/66,183/8} 1,60,732,1220 1,320,1500,192 - - <2013,1500,1115,1125> Y
<2016,62> - 2016 62 {62,1215/32,33; 1,81/32,30} 1,62,930,1023 1,155,1364,496 - 0123 {155,88,40;1,10,110} <2016,1364,922,924> BCN Thm 4.4.4 [BCN]
<2016,62>a ? 2016 62 {62,11907/242,21; 1,567/242,42} 1,62,1302,651 1,341,992,682 - - <2016,992,496,480>
<2016,62>b ? 2016 62 {62,243/4,9; 1,9/4,54} 1,62,1674,279 1,868,496,651 - - <2016,496,152,112> Y
<2016,65> ? 2016 65 {65,360/7,22; 1,18/7,44} 1,65,1300,650 1,325,1040,650 - - <2016,1040,544,528>
<2016,65>a ? 2016 65 {65,405/7,33/5; 1,15/7,297/5} 1,65,1755,195 1,650,390,975 - - <2016,390,114,66>
<2016,195> ? 2016 195 {195,160,28; 1,20,168} 1,195,1560,260 1,195,1560,260 - 0123 {195,160,28;1,20,168} <2016,1560,1216,1176>
<2016,195>a + 2016 195 {195,1568/9,28; 1,196/9,168} 1,195,1560,260 1,260,1560,195 - - <2016,1560,1216,1176> Y Relative Hemisystems of GQ(8,64)
<2024,23> ! 2024 23 {23,1280/77,20102/2205; 1,7360/4851,46/35} 1,23,252,1748 1,63,630,1330 - 0123 {63,40,19;1,4,9} - Johnson J(24,3)
<2025,22> 2025 22 {22,21,625/33; 1,11/6,30/11} 1,22,252,1750 1,462,1232,330 - - - Derived Design of Leech Lattice
<2025,44> ? 2025 44 {44,35,31; 1,5/2,14} 1,44,616,1364 1,308,1364,352 - - <2025,1364,913,930>
<2025,88> ? 2025 88 {88,84,625/24; 1,16/3,525/8} 1,88,1386,550 1,528,1232,264 - - -
<2044,72> ? 2044 72 {72,5329/105,73/3; 1,292/105,146/3} 1,72,1314,657 1,216,1152,675 - - <2044,1152,656,640>
<2048,23> 2048 23 {23,22,21; 1,2,3} 1,23,253,1771 1,506,1288,253 0231 - <2048,1288,792,840> Y Binary Golay
<2048,253> 2048 253 {253,210,3; 1,30,231} 1,253,1771,23 1,253,506,1288 0312 - <2048,1288,792,840> Binary Golay
<2058,68> ? 2058 68 {68,65,32; 1,4,40} 1,68,1105,884 1,510,1326,221 - - -
<2060,29> ? 2060 29 {29,2800/103,750/29; 1,290/103,120/29} 1,29,280,1750 1,406,1450,203 - - <2060,1450,1008,1050> Y
<2080,39> ? 2080 39 {39,1000/27,5915/243; 1,520/243,325/27} 1,39,675,1365 1,378,1215,486 - - <2080,1215,702,720>
<2080,54> ? 2080 54 {54,1125/26,55/3; 1,45/26,110/3} 1,54,1350,675 1,405,864,810 - - <2080,864,368,352>
<2080,99> ? 2080 99 {99,3200/39,100/9; 1,60/13,800/9} 1,99,1760,220 1,396,792,891 - - <2080,792,336,280>
<2080,99>a ? 2080 99 {99,1200/13,40; 1,100/13,60} 1,99,1188,792 1,297,1584,198 - - <2080,1584,1208,1200> Y
<2106,65> ? 2106 65 {65,64,676/25; 1,104/25,26} 1,65,1000,1040 1,125,1500,480 - 0123 {125,108,24;1,9,75} -
<2112,110> ? 2112 110 {110,207/2,121/3; 1,55/6,66} 1,110,1242,759 1,225,1656,230 - 0123 {225,184,25;1,25,180} -
<2120,39> ? 2120 39 {39,2000/53,55/2; 1,120/53,25/2} 1,39,650,1430 1,520,1287,312 - - <2120,1287,774,792> Y
<2125,84> ? 2125 84 {84,1445/18,51/2; 1,85/18,119/2} 1,84,1428,612 1,504,1260,360 - - <2125,1260,755,735> Y
<2145,64> ? 2145 64 {64,1352/27,13; 1,52/27,52} 1,64,1664,416 1,384,704,1056 - - <2145,704,253,220>
<2145,64>a ? 2145 64 {64,76050/1331,13/2; 1,2600/1331,117/2} 1,64,1872,208 1,704,384,1056 - - <2145,384,108,60>
<2159,126> ? 2159 126 {126,16129/136,127/8; 1,1143/136,889/8} 1,126,1778,254 1,576,1134,448 - - <2159,1134,621,567> Y
<2160,119> ? 2160 119 {119,90,15; 1,6,105} 1,119,1785,255 1,238,1071,850 - - <2160,1071,558,504>
<2160,119>a ? 2160 119 {119,96,8; 1,6,112} 1,119,1904,136 1,357,714,1088 - - <2160,714,288,210>
<2160,119>b ? 2160 119 {119,225/2,15; 1,15/2,105} 1,119,1785,255 1,612,1071,476 - - <2160,1071,558,504> Y
<2176,84> ? 2176 84 {84,289/4,85/9; 1,119/36,68} 1,84,1836,255 1,420,432,1323 - - -
<2176,87> ? 2176 87 {87,1152/17,88/3; 1,72/17,176/3} 1,87,1392,696 1,261,1392,522 - - <2176,1392,896,880>
<2176,135> ? 2176 135 {135,2023/16,17; 1,153/16,119} 1,135,1785,255 1,540,1215,420 - - <2176,1215,702,648> Y
<2184,111> ? 2184 111 {111,1176/13,40; 1,98/13,72} 1,111,1332,740 1,222,1665,296 - 0123 {222,165,32;1,22,180} <2184,1665,1272,1260>
<2184,111>a ? 2184 111 {111,1372/13,14; 1,84/13,98} 1,111,1813,259 1,666,999,518 - - <2184,999,486,432> Y
<2185,114> ? 2185 114 {114,4761/65,58121/1521; 1,11799/1690,6118/117} 1,114,1196,874 1,78,234,1872 - - -
<2197,36> ? 2197 36 {36,45/2,45/2; 1,3/2,15/2} 1,36,540,1620 1,216,360,1620 - - -
<2197,36>a ! 2197 36 {36,24,12; 1,2,3} 1,36,432,1728 1,36,432,1728 - 0123 {36,24,12;1,2,3} - Hamming H(3,13)
<2197,84> ? 2197 84 {84,66,36; 1,6,28} 1,84,924,1188 1,84,924,1188 - 0123 {84,66,36;1,6,28} -
<2197,126> ? 2197 126 {126,90,10; 1,6,105} 1,126,1890,180 1,180,126,1890 - 0231 {126,90,10;1,6,105} -
<2197,132> ? 2197 132 {132,120,21/4; 1,8,495/4} 1,132,1980,84 1,660,528,1008 - - -
<2197,156> ? 2197 156 {156,120,36; 1,12,117} 1,156,1560,480 1,156,1560,480 - 0123 {156,120,36;1,12,117} -
<2205,58> ? 2205 58 {58,40,343/10; 1,16/5,35/2} 1,58,725,1421 1,174,870,1160 - - -
<2205,76> ? 2205 76 {76,336/5,11; 1,14/5,66} 1,76,1824,304 1,608,684,912 - - <2205,684,243,198>
<2205,76>a ? 2205 76 {76,70,36/5; 1,14/5,60} 1,76,1900,228 1,380,684,1140 - - <2205,684,243,198>
<2205,174> ? 2205 174 {174,154,10; 1,14,165} 1,174,1914,116 1,522,1044,638 - - <2205,1044,543,450>
<2220,147> ? 2220 147 {147,1369/10,37/2; 1,111/10,259/2} 1,147,1813,259 1,504,1323,392 - - <2220,1323,810,756> Y
<2226,105> ? 2226 105 {105,2809/28,53/4; 1,159/28,371/4} 1,105,1855,265 1,720,945,560 - - <2226,945,432,378> Y
<2236,90> ? 2236 90 {90,3718/43,91/5; 1,195/43,364/5} 1,90,1716,429 1,660,1080,495 - - <2236,1080,540,504> Y
<2250,273> ? 2250 273 {273,192,14; 1,28,252} 1,273,1872,104 1,117,728,1404 - - -
<2254,45> ? 2254 45 {45,2116/49,253/8; 1,138/49,115/8} 1,45,690,1518 1,480,1485,288 - - <2254,1485,972,990> Y
<2268,96> ? 2268 96 {96,91,80/7; 1,32/7,84} 1,96,1911,260 1,720,819,728 - - -
<2300,24> ! 2300 24 {24,4375/253,8000/847; 1,4200/2783,100/77} 1,24,275,2000 1,66,693,1540 - 0123 {66,42,20;1,4,9} - Johnson J(25,3)
<2300,99> ? 2300 99 {99,4375/46,25/2; 1,225/46,175/2} 1,99,1925,275 1,792,891,616 - - <2300,891,378,324> Y
<2300,114> ? 2300 114 {114,529/5,46; 1,46/5,69} 1,114,1311,874 1,285,1824,190 - 0123 {285,224,25;1,35,240} <2300,1824,1448,1440> Y
<2300,114>a ? 2300 114 {114,5290/49,23; 1,345/49,92} 1,114,1748,437 1,532,1368,399 - - <2300,1368,828,792> Y
<2304,47> ? 2304 47 {47,135/4,33; 1,9/4,15} 1,47,705,1551 1,282,1551,470 - - <2304,1551,1038,1056>
<2304,47>a ? 2304 47 {47,45,33; 1,3,15} 1,47,705,1551 1,470,1551,282 - - <2304,1551,1038,1056> Y
<2304,98> ? 2304 98 {98,1215/16,33; 1,81/16,66} 1,98,1470,735 1,245,1568,490 - - <2304,1568,1072,1056>
<2304,98>a ? 2304 98 {98,81,36; 1,6,54} 1,98,1323,882 1,196,1323,784 - - <2304,1323,762,756>
<2304,147> ? 2304 147 {147,140,27; 1,12,105} 1,147,1715,441 1,147,1715,441 - 0123 {147,140,27;1,12,105} <2304,1715,1282,1260>
<2324,69> ? 2324 69 {69,5488/83,770/23; 1,322/83,840/23} 1,69,1176,1078 1,483,1518,322 - - <2324,1518,992,990> Y
<2349,260> ? 2349 260 {260,841/4,203/8; 1,29,1885/8} 1,260,1885,203 1,208,1820,320 - 0123 {208,175,32;1,20,182} <2349,1820,1423,1365>
<2350,174> ? 2350 174 {174,7500/47,875/29; 1,725/47,4200/29} 1,174,1800,375 1,348,1740,261 - - <2350,1740,1298,1260> Y
<2376,76> ? 2376 76 {76,363/5,44/3; 1,44/15,66} 1,76,1881,418 1,912,950,513 - - -
<2376,95> ? 2376 95 {95,63,12; 1,3,84} 1,95,1995,285 1,190,855,1330 - - <2376,855,342,288>
<2376,95>a ? 2376 95 {95,864/11,192/5; 1,60/11,288/5} 1,95,1368,912 1,285,1710,380 - - <2376,1710,1233,1224>
<2376,125> ? 2376 125 {125,1296/11,126/5; 1,90/11,504/5} 1,125,1800,450 1,500,1500,375 - - <2376,1500,960,924> Y
<2376,175> ? 2376 175 {175,484/3,22; 1,44/3,154} 1,175,1925,275 1,450,1575,350 - - <2376,1575,1062,1008> Y
<2380,195> ? 2380 195 {195,2940/17,98/13; 1,273/17,2450/13} 1,195,2100,84 1,624,975,780 - - <2380,975,470,350>
<2401,48> ? 2401 48 {48,30,29; 1,3/2,20} 1,48,960,1392 1,240,1392,768 - - <2401,1392,803,812>
<2401,88> ? 2401 88 {88,84,39/7; 1,24/7,77} 1,88,2156,156 1,728,616,1056 - - -
<2401,90> ? 2401 90 {90,245/3,7; 1,7/2,70} 1,90,2100,210 1,240,810,1350 - - -
<2401,100> - 2401 100 {100,60,52; 1,6,40} 1,100,1000,1300 1,100,1000,1300 - 0123 {100,60,52;1,6,40} <2401,1000,411,420> Thm 1.16.3 with Thm 4.4.4 [BCN]
<2401,150> ? 2401 150 {150,136,33; 1,12,102} 1,150,1700,550 1,150,1700,550 - 0123 {150,136,33;1,12,102} <2401,1700,1209,1190>
<2415,68> ? 2415 68 {68,116380/2023,23/2; 1,4048/2023,115/2} 1,68,1955,391 1,578,680,1156 - - <2415,680,220,180>
<2415,68>a ? 2415 68 {68,2645/42,23/2; 1,46/21,115/2} 1,68,1955,391 1,816,680,918 - - <2415,680,220,180>
<2416,150> ? 2416 150 {150,22801/168,453/49; 1,3775/392,906/7} 1,150,2114,151 1,350,945,1120 - - -
<2420,164> ? 2420 164 {164,121,33; 1,11,132} 1,164,1804,451 1,164,1804,451 - 0123 {164,121,33;1,11,132} <2420,1804,1353,1320>
<2420,164>a ? 2420 164 {164,1375/9,15; 1,110/9,150} 1,164,2050,205 1,615,1312,492 - - <2420,1312,744,672> Y
<2432,143> ? 2432 143 {143,2560/19,144/11; 1,176/19,1440/11} 1,143,2080,208 1,715,1144,572 - - <2432,1144,576,504> Y
<2436,174> ? 2436 174 {174,2793/20,841/25; 1,1421/100,522/5} 1,174,1710,551 1,60,855,1520 - 0123 {60,57,32;1,4,18} -
<2470,189> ? 2470 189 {189,9025/52,95/4; 1,855/52,665/4} 1,189,1995,285 1,432,1701,336 - - <2470,1701,1188,1134> Y
<2484,91> ? 2484 91 {91,1058/15,23/2; 1,46/15,161/2} 1,91,2093,299 1,364,819,1300 - - <2484,819,306,252>
<2484,91>a ? 2484 91 {91,529/6,23/2; 1,23/6,161/2} 1,91,2093,299 1,936,819,728 - - <2484,819,306,252> Y
<2484,161> ? 2484 161 {161,1620/13,1587/169; 1,3105/338,1932/13} 1,161,2184,138 1,273,546,1664 - - <2484,1664,1096,1152>
<2500,49> ? 2500 49 {49,42,36; 1,3,14} 1,49,686,1764 1,392,1764,343 - - <2500,1764,1238,1260>
<2500,49>a ? 2500 49 {49,48,26; 1,2,24} 1,49,1176,1274 1,735,1274,490 - - <2500,1274,648,650> Y
<2500,51> ? 2500 51 {51,1152/25,26; 1,48/25,26} 1,51,1224,1224 1,612,1275,612 - - <2500,1275,650,650>
<2500,51>a ? 2500 51 {51,48,24; 1,2,24} 1,51,1224,1224 1,510,1224,765 - - <2500,1224,598,600>
<2500,63> ? 2500 63 {63,56,16; 1,2,42} 1,63,1764,672 1,504,735,1260 - - <2500,735,230,210>
<2500,75> ? 2500 75 {75,1008/17,10000/289; 1,1050/289,600/17} 1,75,1224,1200 1,255,1224,1020 - - <2500,1224,598,600>
<2500,85> ? 2500 85 {85,84,75/4; 1,15/4,70} 1,85,1904,510 1,952,1088,459 - - -
<2500,153> ? 2500 153 {153,136,36; 1,12,102} 1,153,1734,612 1,153,1734,612 - 0123 {153,136,36;1,12,102} <2500,1734,1208,1190>
<2520,55> ? 2520 55 {55,784/15,77/2; 1,56/15,35/2} 1,55,770,1694 1,440,1815,264 - - <2520,1815,1302,1320> Y
<2520,99> ? 2520 99 {99,448/5,72/7; 1,144/35,84} 1,99,2156,264 1,594,693,1232 - - -
<2520,110> ? 2520 110 {110,99,100/19; 1,90/19,110} 1,110,2299,110 1,836,836,847 0321 - <2520,847,238,308>
<2530,54> ? 2530 54 {54,5082/115,143/5; 1,231/115,132/5} 1,54,1188,1287 1,450,1404,675 - - <2530,1404,778,780>
<2530,54>a ? 2530 54 {54,1210/23,143/5; 1,55/23,132/5} 1,54,1188,1287 1,675,1404,450 - - <2530,1404,778,780> Y
<2541,120> ? 2541 120 {120,726/7,22; 1,44/7,99} 1,120,1980,440 1,440,1440,660 - - <2541,1440,834,792>
<2541,120>a ? 2541 120 {120,110,144/23; 1,132/23,120} 1,120,2300,120 1,920,920,700 0321 - <2541,700,147,210>
<2548,90> ? 2548 90 {90,2366/27,13/3; 1,91/27,260/3} 1,90,2340,117 1,1215,360,972 - - <2548,360,116,40> Y
<2556,70> ? 2556 70 {70,15123/242,71/7; 1,497/242,426/7} 1,70,2130,355 1,770,630,1155 - - <2556,630,189,144>
<2556,70>a ? 2556 70 {70,10082/147,71/5; 1,355/147,284/5} 1,70,1988,497 1,980,840,735 - - <2556,840,300,264> Y
<2600,25> ! 2600 25 {25,3718/207,56875/5819; 1,7150/4761,325/253} 1,25,299,2275 1,69,759,1771 - 0123 {69,44,21;1,4,9} - Johnson J(26,3)
<2600,69> ? 2600 69 {69,880/13,14; 1,30/13,56} 1,69,2024,506 1,1012,828,759 - - <2600,828,288,252> Y
<2600,207> ? 2600 207 {207,4732/25,26; 1,468/25,182} 1,207,2093,299 1,414,1863,322 - - <2600,1863,1350,1296> Y
<2625,64> ? 2625 64 {64,50,30; 1,5/2,30} 1,64,1280,1280 1,320,1024,1280 - - <2625,1024,398,400>
<2625,64>a ? 2625 64 {64,400/7,65/2; 1,20/7,65/2} 1,64,1280,1280 1,512,1600,512 - - <2625,1600,975,975>
<2625,128> ? 2625 128 {128,702/7,36; 1,54/7,72} 1,128,1664,832 1,128,832,1664 - - -
<2625,128>a ? 2625 128 {128,108,9; 1,6,108} 1,128,2304,192 1,384,448,1792 - - -
<2625,160> ? 2625 160 {160,147,14; 1,21/2,140} 1,160,2240,224 1,480,1280,864 - - -
<2625,164> ? 2625 164 {164,140,11; 1,10,154} 1,164,2296,164 1,492,1148,984 - - <2625,1148,553,462>
<2640,63> ? 2640 63 {63,640/11,126/5; 1,144/55,30} 1,63,1400,1176 1,315,1344,980 - - -
<2640,87> ? 2640 87 {87,384/5,16; 1,16/5,72} 1,87,2088,464 1,638,1044,957 - - <2640,1044,438,396>
<2640,87>a ? 2640 87 {87,847/10,11; 1,33/10,77} 1,87,2233,319 1,1044,783,812 - - <2640,783,270,216> Y
<2640,104> ? 2640 104 {104,1125/11,80/3; 1,200/33,60} 1,104,1755,780 1,117,1872,650 - 0123 {117,112,25;1,7,72} -
<2640,203> ? 2640 203 {203,160,34; 1,16,170} 1,203,2030,406 1,203,2030,406 - 0123 {203,160,34;1,16,170} <2640,2030,1570,1530>
<2646,230> ? 2646 230 {230,189,33; 1,21,198} 1,230,2070,345 1,230,2070,345 - 0123 {230,189,33;1,21,198} <2646,2070,1629,1584>
<2646,230>a ? 2646 230 {230,1715/9,77/5; 1,175/9,1078/5} 1,230,2254,161 1,345,1610,690 - - <2646,1610,1015,924>
<2646,230>b ? 2646 230 {230,210,11; 1,21,220} 1,230,2300,115 1,690,1380,575 - - <2646,1380,774,660> Y
<2652,220> ? 2652 220 {220,48841/243,221/11; 1,4862/243,2210/11} 1,220,2210,221 1,495,1760,396 - - <2652,1760,1192,1120> Y
<2669,156> ? 2669 156 {156,24649/204,157/4; 1,2041/204,471/4} 1,156,1884,628 1,208,2028,432 - 0123 {208,156,36;1,16,169} <2669,2028,1547,1521>
<2673,80> ? 2673 80 {80,756/11,57/2; 1,36/11,105/2} 1,80,1680,912 1,480,1520,672 - - <2673,1520,871,855>
<2673,80>a ? 2673 80 {80,3159/44,63/8; 1,27/11,585/8} 1,80,2340,252 1,832,560,1280 - - <2673,560,163,105>
<2673,80>b ? 2673 80 {80,1701/22,57/2; 1,81/22,105/2} 1,80,1680,912 1,672,1520,480 - - <2673,1520,871,855> Y
<2704,51> ? 2704 51 {51,195/4,37; 1,13/4,15} 1,51,765,1887 1,510,1887,306 - - <2704,1887,1310,1332> Y
<2704,51>a ? 2704 51 {51,1248/25,28; 1,52/25,24} 1,51,1224,1428 1,765,1428,510 - - <2704,1428,752,756> Y
<2730,77> ? 2730 77 {77,338/5,637/72; 1,91/40,1001/18} 1,77,2288,364 1,297,704,1728 - - -
<2736,135> ? 2736 135 {135,2240/19,81/5; 1,135/19,504/5} 1,135,2240,360 1,200,960,1575 - - -
<2738,184> ? 2738 184 {184,481/3,35/3; 1,37/3,520/3} 1,184,2392,161 1,552,1288,897 - - <2738,1288,657,560>
<2738,221> ? 2738 221 {221,407/2,15/2; 1,37/2,429/2} 1,221,2431,85 1,884,1105,748 - - <2738,1105,528,390> Y
<2744,39> ! 2744 39 {39,26,13; 1,2,3} 1,39,507,2197 1,39,507,2197 - 0123 {39,26,13;1,2,3} - Hamming H(3,14)
<2744,91> ? 2744 91 {91,72,40; 1,6,28} 1,91,1092,1560 1,91,1092,1560 - 0123 {91,72,40;1,6,28} -
<2744,104> ? 2744 104 {104,91,64/15; 1,56/15,104} 1,104,2535,104 1,780,780,1183 0321 - <2744,1183,462,546>
<2744,169> ? 2744 169 {169,132,45; 1,12,117} 1,169,1859,715 1,169,1859,715 - 0123 {169,132,45;1,12,117} -
<2752,63> ? 2752 63 {63,2560/43,44; 1,192/43,20} 1,63,840,1848 1,420,2079,252 - - <2752,2079,1566,1584> Y
<2759,88> ? 2759 88 {88,31684/465,356/15; 1,1424/465,979/15} 1,88,1958,712 1,360,1408,990 - - <2759,1408,732,704>
<2775,74> ? 2775 74 {74,1350/19,12321/361; 1,2775/722,666/19} 1,74,1368,1332 1,380,1824,570 - - <2775,1824,1198,1200>
<2781,80> ? 2781 80 {80,32076/515,108/5; 1,1296/515,297/5} 1,80,1980,720 1,400,1280,1100 - - <2781,1280,604,576>
<2784,231> ? 2784 231 {231,841/4,29; 1,87/4,203} 1,231,2233,319 1,396,2079,308 - - <2784,2079,1566,1512> Y
<2800,144> ? 2800 144 {144,135,256/31; 1,240/31,144} 1,144,2511,144 1,1116,1116,567 0321 - <2800,567,70,126>
<2800,279> - 2800 279 {279,240,32; 1,30,248} 1,279,2232,288 1,279,2232,288 - 0123 {279,240,32;1,30,248} <2800,2232,1790,1736> Jurisic, Vidali [JV]