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Abstract

We investigate solution properties of a class of evolutionary partial differential equations (PDEs)
with viscous and inviscid regularization. An equation in this class of PDEs can be written as an evolution
equation, involving only first-order spatial derivatives, coupled with the Helmholtz equation. A recently
developed two-step iterative method (Chiu et al., JCP, 228, (2009), pp. 8034-8052) is employed to study
this class of PDEs. The method is in principle superior for PDE’s in this class as it preserves their
physical dispersive features. In particular, we focus on a Leray-type regularization (Bhat and Fetecau,
J. Nonlinear Sci., 16, (2006), pp. 615–638) of the Hopf equation proposed in alternative to the classical
Burgers viscous term. We show that the regularization effects induced by the alternative model can be
vastly different from those induced by Burgers viscosity depending on the smoothness of initial data
in the limit of zero regularization. We validate our numerical scheme by comparison with a particle
method which admits closed form solutions. Further effects of the interplay between the dispersive
terms comprising the Leray-regularization are illustrated by solutions of equations in this class resulting
from regularized Burgers equation by selective elimination of dispersive terms.

keywords: Helmholtz equation, iterative algorithm, Leray-type regularization, Hopt equation, regularized Burgers
equation

1 Introduction
Members of the class of evolutionary PDEs

mt +Auxm+Bumx + Cuux +Duxxt = Kux , (1.1)

where m = u − α2uxx is the Helmholtz operator acting on the dependent variable u, function of the spatial variable
x and time t, and A,B,C,D,K are constants, have recently attracted intense interest from both a mathematical and
physical perspective, following the derivation of a member of this class (also known as the Camassa-Holm (CH)
equation), in the context of shallow-water wave dynamics (see e.g., [5, 13]). The CH equation

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, (1.2)
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corresponds to the choice of coefficients A = 2, B = 1, C = 0, D = 0, K = −2κ, and α = 1 in equation (1.1).
The limit κ = 0 in equation (1.2) makes it effectively non-dispersive, and its soliton traveling wave solutions become
weak solutions with a corner singularity at their peaks (hence the name “peakons” by which they are often referred).

Other equations from this class of PDEs include

1. A = 0, B = 1, C = 0, D = 0, and K = 0. This is a “regularized” Burgers equation

mt + umx = 0. (1.3)

This equation and its extensions have attracted some attention in the recent literature. With the definition of the
one dimensional Helmholtz operator

H = 1− α2∂xx , (1.4)

and its Green’s function, one can represent u in terms of m as

u(x, t) =
1

2α

∫ ∞
−∞

exp(−|x− y|/α)m(y, t)dy. (1.5)

The Leray-type [14] smoothed velocity u has been recently proposed for its role of regularizing the inviscid
Burgers equation.

ut + uux = 0. (1.6)

With nonzero viscosity, the Burgers equation

ut + uux = νuxx (1.7)

is the simplest model combing nonlinear propagation effect and the diffusive effect, while its inviscid version for
ν = 0, also known as Hopf equation, is the simplest model of shock forming hyperbolic equation. In [16, 17],
attempts were made to compare regularization effects induced by the viscosity and the filtered velocity (1.5).
It is well-known that one can study the Burgers equation to determine the physically relevant solutions of the
Hopf equation. A similar approach has been proposed (see, e.g., [1]) for the solutions of the regularized Burgers
equation (1.3), written in the form

ut + uux = α2 (uxxt + uuxxx) , (1.8)

to show that solutions of this equation converge strongly to physically relevant weak solutions of the Hopf
equation (1.6) as α → 0, provided the initial data u(x, 0) are in a suitable function space. Thus, equation
(1.8) has been proposed as an alternative to Burgers equation (1.6) in this respect. We remark that an alternative
viewpoint of equation (1.3), closer to that of Leray [14] whose original purpose was to study models of turbulent
flows, is to consider m(x, t) as the primary variable, and hence assign initial conditions m(x, 0) = m0(x).
Provided the operator (1.4) is invertible on such initial data, this viewpoint is perfectly equivalent to that of
regularizing the Hopf equation, but of course the degree of smoothness of the initial data plays a different role
with respect to which viewpoint is adopted.

2. A = 0, B = 1, C = 0, D = α2, and K = 0. This gives rise to a nonlinear dispersive equation of Korteweg-de
Vries (KdV)-type,

ut + umx = 0 (1.9)

or
ut + uux = α2uuxxx. (1.10)

3. A = 0, B = 0, C = 1, D = 0, and K = 0. This is an equation with the so-called Benjamin-Bona-Mahony
(BBM) structure

mt + uux = 0 (1.11)

or
ut + uux = α2uxxt. (1.12)

It is well known that solutions of this BBM equation fail to converge to weak solutions of the Hopf equation as
α→ 0.
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We notice that all equations in this class have no derivatives of order higher than third explicitly (either D = 0, or
D = α2 in equation (1.1)). All these equations share the formulation of a first-order derivative coupled with the
Helmholtz equation. Hence it is natural to introduce a two-step iterative algorithm for this class of PDEs, by solving
the first-order equation first and follow this by a solution of the Helmholtz equation, then repeating the process until
convergence criteria are satisfied.

The focus of this paper is to employ a higher-order dispersion-relation-preserving two-step algorithm to study a
class of PDEs (1.1). We introduce the algorithm in Section 2. We illustrate the solution properties of the regularized
Burgers equation (1.3), the dispersive equation (1.9), and the BBM equation (1.11) in Sections 3 and 4.

2 Two-step iterative algorithm
If D = 0 in equation (1.1), the PDE can be expressed as

mt = F (m,u,mx, ux) , m = u− α2uxx. (2.1)

The evolution equation in (2.1) can be solved by a standard method of lines (MOL). Let mn = m(tn, x) and mn+1 =
m(tn + ∆t, x) be the semi-discretized m values at time level n and n+ 1, respectively. The MOL using the midpoint
time integrator yields

mn+1 −mn

∆t
= F

(
mn+1/2, un+1/2,mn+1/2

x , un+1/2
x

)
, (2.2)

where
mn+1/2 =

1
2
(
mn+1 +mn

)
and un+1/2 =

1
2
(
un+1 + un

)
. (2.3)

It is known that the spatial accuracy of a numerical scheme depends on how accurately we can approximate the
first-order derivative terms. In particular, if the equation of interest is a dispersive equation, such as equation (1.2),
a dispersion-relation-preserving scheme is necessary to ensure the accuracy of numerical solutions. The first-order
derivative terms mn+1/2

x and un+1/2
x are approximated by a sixth-order dispersion-relation-preserving scheme de-

veloped by Chiu et al. [7] using the nodal values of (2.3). It is worth noting that the midpoint time integrator is a
symplectic integrator [4, 8], which retains the Hamiltonian invariants of the PDEs, if the spatially discretized PDEs
are Hamiltonian systems. Since the evolution equation (2.2) is coupled with the Helmholtz equation, it is necessary to
introduce an iterative scheme to obtain mn+1 and un+1 from mn and un. We do this by alternating between solving
equation (2.2) and the Helmholtz equation, as described in the following steps:

• Step 1: Given an initial guess for un+1/2 and mn+1/2, denoted u(0),n+1/2 and m(0),n+1/2 respectively, we
solve the evolution equation (2.2) to obtain m(1),n+1. The initial guess is based on Taylor series expansions:

m(0),n+1/2 = 1.5mn − 0.5mn−1,

u(0),n+1/2 = 1.5un − 0.5un−1,
(2.4)

where n ≥ 1. When n = 0, we impose m(0),1/2 = m0 and u(0),1/2 = u0, where u0 is the initial condition and
m0 = u0 − u0xx. Note that the initial guess (2.4) is chosen based on the facts that tn+1/2 = tn + ∆t/2, and
the Taylor series expansions for m(tn) and m(tn−1) about tn+1/2 give

m(tn+1/2) = 1.5m(tn)− 0.5m(tn−1) +O(∆t2). (2.5)

Therefore, if we let mn = m(tn) and mn−1 = m(tn−1), the initial guess mn+1/2 in (2.4) is an O(∆t2)
approximation for m(tn+1/2).

• Step 2: Using m(1),n+1, we solve the Helmholtz equation to obtain u(1),n+1. It is well known that in order
to obtain a higher-order numerical method for the Helmholtz equation, one can always introduce more points
in a stencil. The improved accuracy, however, comes at the cost of an expensive matrix calculation, due to
the wider stencil. In this study, the Helmholtz equation is solved by a three-point sixth-order compact scheme
developed in the paper by Sheu et al. [18]. We implement a multigrid method using the V-cycle and fully-
weighted projection/prolongation with the red-black Gauss-Seidel smoother to solve the system of algebraic
equations arising from the discretization.
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• Step 3: Repeat Step 1 and Step 2 for the next iteration until the (i + 1)th iteration, for which the residuals, in
the maximum norm, of both equation (2.2) and the Helmholtz equation are less than our convergence criteria:

max
xj,j=1,N

∣∣∣∣m(i+1),n+1 −mn

∆t
− F

(
m(i+1),n+1/2, u(i+1),n+1/2,m(i+1),n+1/2

x , u(i+1),n+1/2
x

)∣∣∣∣ ≤ ε ,
max

xj,j=1,N

∣∣∣m(i+1),n+1 −
(
u(i+1),n+1 − α2u(i+1),n+1

xx

)∣∣∣ ≤ ε, (2.6)

where N is the number of grid points, and the value for the threshold error ε is typically chosen to be 10−12

throughout our computations. Our numerical experiments indicate that the number of iterations needed for
convergence with this value is less than 20 in general.

Note that for the equations
ut = F (u,mx), m = u− α2uxx, (2.7)

(for example, coefficients A = 0, B = 1, C = 0, and D = α2 in (1.1)), a similar iterative scheme is used in
Section 4 to solve the evolution equation and the coupled Helmholtz equation.

We remark that in the paper by Chiu et al. [7], a two-step iterative algorithm (with the function F in the above
algorithm as a special case) was employed to solve the shallow-water wave equation (1.2), a member of the class of
PDEs considered in this study. Detailed error analysis for the dispersion-relation-preserving approximation as well as
numerical convergence study was carried out in that context, thanks to the availability of exact solutions. In addition,
the von Neumann stability analysis was carried out in that paper to demonstrate the stability of the midpoint time
integrator. These properties in principle do not depend on the specific equation and can be expected to hold for all
equations in the class solved by the same principle of algorithm.

3 Numerical study of the regularized Burgers equation
Next, we turn our attention to numerical investigations of the regularized Burgers equation (1.3) and related equations.
To this end, we provide several numerical examples to demonstrate:

1. For large α’s, solutions of the regularized Burgers equation behave very differently from those of the Burgers
equation with large viscosity ν.

2. For an arbitrary small α, solutions of the regularized Burgers equation could be significantly different from
those of the Hopf equation at any finite time, even if the initial data are smooth or in a suitable function space
as indicated in [1].

3. For any arbitrary small α, the longtime behavior of solutions of the regularized Burgers equation might be
different from those of the Burgers equation with small viscosity ν.

4. The two third-order derivative terms uuxxx and uxxt produce high frequency oscillations individually when α
approaches zero, but the dispersive effects cancel each other if the two terms appear together in an equation
such as the regularized Burgers equation.

The following study aims at shedding some light on properties of this class of models. We begin our study with
validating the two-step iterative algorithm for the regularized Burgers equation by comparing the result obtained by
the proposed algorithm with that computed by the particle method developed in [6]. The method is based on turning to
a Lagrangian form of equation (1.3), by which “particles” travel along characteristic curves of the regularized Burgers
model, determined by solving a system of nonlinear integro-differential equations for the two variables q and p, which
can be interpreted as the particle positions and momenta, respectively. This leads to the weak solutions of (1.3) which
are the exact analog of “peakons” for the shallow water equation. The integro-differential equations for q and p are
expressed as follows

qt(ξ, t) =
1

2α

∫ ∞
−∞

exp(−|q(ξ, t)− q(η, t)|/α) p(η, t) dη ,

pt(ξ, t) = − 1
2α2

∫ ∞
−∞

sgn(ξ − η) exp(−|q(ξ, t)− q(η, t)|/α) p(ξ, t) p(η, t) dη .
(3.1)
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The velocity u can then be recovered from q and p as

u(x, t) =
1

2α

∫ ∞
−∞

exp(−|q(ξ, t)− x|/α)p(ξ, t)dξ. (3.2)

Discretizing the integro-integral equations (3.1) results in a finite dimensional dynamical system for “particles” with
coordinates

qi(t) ≡ q(ξi, t)

and momenta
pi(t) ≡ p(ξi, t),

where ξi = Ξ + ih for some real Ξ, step-size h > 0, and i = 1, · · · , N . The finite dimensional system of ODEs for N
particles for equation (3.1) can therefore be written as

q̇i =
h

2α

N∑
j=1

exp(−|qi − qj |/α)pj ,

ṗi = − h

2α2
pi

N∑
i 6=j=1

sgn(qi − qj) exp(−|qi − qj |/α) pj .

(3.3)

We will refer to system (3.3) as the particle method for solving the regularized Burgers equation (1.8).

3.1 Gaussian disturbance initial data
The first example we present here starts with a Gaussian disturbance initial data

u0(x) =
1

5
√
π

exp

[
−
(
x− 50
w

)2
]
, (3.4)

where w is related to the initial width of the Gaussian disturbance. We choose the parameters w = 20 and α = 0.05.
Fig. 3.1(a) compares the evolution results by using the particle method and the two-step iterative algorithm. As
demonstrated by the figure, to within graphical accuracy the two independent numerical methods are identical. The
number of grid points used in the two-step algorithm is N = 20, 481 in the domain [−50, 250], while the number
of particles used in the particle method is N = 40, 001. The final time is t = 350. To further monitor the solution
behaviors, we introduce mass H and the energy norms H1, L2(m), and L2(u) as follows:

H =
∫ ∞
−∞

u dx, H1 =
∫ ∞
−∞

umdx, L2(m) =
∫ ∞
−∞

m2 dx, L2(u) =
∫ ∞
−∞

u2 dx . (3.5)

Fig. 3.1(b) plots mass and the energy norms versus time and shows that mass is conserved, while all three energy
norms decay almost at the same rate. In Fig. 3.2(a), we compare the numerical solutions of the Hopf and the regu-
larized Burgers equations at final times t = 350 and t = 600. A similar comparison between solutions of the Hopf
equation and that of the Burgers equation is shown in Fig. 3.2(b). We used α = 0.05 in the regularized Burgers equa-
tion and ν = 0.015 in the Burgers equation. Our calculations show that using the selected parameters, as time evolves
the solution of the regularization Burgers equation follows the solution of the Hopf equation closely, instead of follow-
ing the solution of the Burgers equation. In summary, our numerical experiments show that for single hump smooth
initial data that are gently varying so that the second derivative of u is finite and small, solutions of the regularized
Burgers equation with small α’s follow those of the Hopf equation closely.

We remark that the same numerical calculations for the Gaussian initial data were performed in [16], and some
discrepancies between our results and those presented therein can detected, possibly due to higher numerical viscosity
from low resolution. Finally, we remark that our numerical simulations for both the inviscid Burgers (Hopf) and
Burgers equations in this section use the high-resolution finite volume method, CLAWPACK [15].
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Figure 3.1: An example taken from the paper by Mohseni et al. [16]. (a) Comparison of the particle method
and the two-step iterative algorithm for the regularized Burgers equation with a Gaussian disturbance ini-
tial condition. (b) Plot of the energy norms and mass for the same equation and initial data in (a). For
comparison, the value of mass (Hamiltonian) is divided by a factor 10.
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Figure 3.2: The same example as Fig. 3.1. (a) Comparison of the solutions of regularized Burgers and
inviscid Burgers (Hopf) equations at t = 350 and t = 600. (b) Comparison of the solutions of Burgers and
inviscid Burgers (Hopf) equations at t = 350 and t = 600.
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3.2 Nearly-square-wave initial data
Our next example is chosen to shed light on how solutions can evolve under the regularized Burgers equation starting
from rough initial data. We consider the initial condition

u0(x) =
1
2

(
tanh

(
x+ 15
w

)
− tanh

(
x− 15
w

))
, (3.6)

where w is related to the width of the profile of the hyperbolic tangent function. When w is small, this is a nearly-
square-wave initial data, with the narrowed smooth profiles centered at ±15. Note that the roughness parameter w is
built-in and its independency of α brings substantially different features to the evolution than in the previous single-
hump example. We anticipate the possibility that non-uniform behavior in the limits of vanishing α and w can be
expected, so that the inviscid regularization can lead unphysical evolution depending on (the class of) initial conditions,
unlike its Burgers counterpart. A systematic physical derivation of the inviscid regularization might eliminate this
possibility by requiring a link between initial data roughness and α when the latter is interpreted as a long wave
parameter.

Fig. 3.3(a) shows solutions of the regularized Burgers equation with α = 0.05 at final times t = 5 and t = 10,
where w = 0.01 is chosen for the initial condition (3.6). The solutions are plotted against the Hopf equation. In
contrast with the previous example, where the initial condition was a smooth Gaussian profile, the solution of the
regularized Burgers equation emanating from the present initial condition follows that of the Hopf equation closely in
the region of the right-propagating quasi-shock front, while the rarefaction wave region to the left exhibits markedly
different behavior from the corresponding Hopf equation solution. The mechanism of such solution behavior is in fact
better appreciated when looking at the finite dimensional dynamical system of the particle method developed in [6]
for the regularized Burgers equation. We remark that in order to compare with the case of single hump initial data,
the small parameter α used in this example is the same as that in the previous one. Fig. 3.3(b) shows the comparison
between solutions of the Burgers equation and that of the Hopf equations. The solutions of the Burgers equation follow
those of the Hopf equation closely, except for the smearing near the corners.

We perform simulations using the initial data (3.6) with various w’s. Fig. 3.4 shows the solutions at t = 0.1 for
w = 0.05 and 0.01, respectively. One can see that the left region of the wave grows into a hump almost immediately
after the initial time. A similar phenomenon is reported in [2], where its connection to the smoothness of the initial
data is analyzed. We note here that the amplitude of the hump depends on both w and the parameter α. Our numerical
experiments indicate that as w decreases or α increases, the amplitudes of the humps also become larger. The mech-
anism of such a growth is related to the magnitude of the second derivative of u, which increases when w decreases.
Hence for α fixed no matter how small, m = u− α2uxx departs significantly from u. Notice that at the left corner of
the nearly square wave, the second derivative of u is positive right before x = −15, and negative right after x = −15,
hence m is negative before x = −15 and positive after x = −15. In [6], we show that such a structure is typical
of a “peakon-antipeakon” solution, where m stretches and grows before some finite time. The implication of such a
scenario is that in the limiting case when w → 0, the left edge of the wave might grow indefinitely for any fixed α.
Based on a rescaling of the independent spatial variable with w, x̃ = x/w, so that the Helmholtz operator becomes
1 − α2/w2 ∂2

x̃, one can see that a power law magnitude orderings between w and α might exist, for which the time
scale when solutions of the regularized Burgers equation can be expected to behave like those of the Hopf equation
can be made arbitrarily large. On the other hand, for the right edge of the initial data (3.6), we show in [6] that the
particle method solution predicts that m decays, thus this edge does not exhibit any growth and the solution appears
to be smeared out around the corners, just like solutions of the Burgers equation. Fig. 3.4 also indicates that for
larger α’s, the left edge of the initial data grows into larger humps. This of course is due to the contribution of second
derivative of u due to larger α’s. We notice that the number of grid points used for the two-step iterative algorithm is
N = 20, 481 in the domain [−40, 40] for this example.

Note that adopting the alternative (Leray) viewpoint mentioned in the introduction, initial data m(x, 0) = m0(x)
that consist of a discontinuous sharp square wave still can result into the growth of spikes in rarefaction waves, since the
mollified velocity u0(x) of m0(x) can be viewed as equivalent to the nearly square-wave initial data (3.6). However,
we remark that in this formulation non-smooth initial data would require a shock-capturing scheme (such as ENO,
WENO etc. ) to avoid the numerical artifact of grid oscillations. Thus, a modification of the present algorithm would
be required to pursue the evolution out of these classes of more singular initial data, unlike the case of equation (3.6)
thanks to the smoothing of m0 offered by such data.
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Figure 3.3: A nearly-square-wave initial data, w = 0.01. (a) Comparison of the solutions of regularized
Burgers and inviscid Burgers (Hopf) equations. α = 0.05, the same as that used in [16] for the single hump
initial data. Unlike the single hump initial condition, solutions of the two equations are different for this
small α. (b) Similar to (a), comparison of the solutions of Burgers and inviscid Burgers (Hopf) equations.
Viscosity ν = 0.015, the same as that used in [16]. Solutions of these two equations are close.
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α = 0.1 and 0.05. The solutions of the regularized Burgers equation are plotted at t = 0.1. The left-hand-
side edge of the initial condition grows into a hump. The larger α]’s lead to larger growths of the hump. (b)
The same calculation as (a), but w = 0.01 in the initial data. The bandwidth of the profile of the hyperbolic
tangent function is much narrower in (b) than that in (a), and the growth of the hump is correspondingly
larger.
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3.3 Zero-mass initial data
An initial condition, such as

u0(x) = sech(x) tanh(x), (3.7)

has zero mass. It was shown in [19] that for this type of zero-mass initial data (negative mass at the left and positive
mass at the right), solutions of the Burgers equation with small viscosity evolve into the so-called N -wave structure
in some finite time. As time further evolves, the diffusion eventually dominates the nonlinear term in the final decay,
no matter how small the viscosity is. This final time period of decay, however, occurs at increasingly larger times as
ν → 0. Such a phenomenon is confirmed numerically in [3] using the technique of renormalization group. Fig. 3.5(a)
shows the comparison of the solutions of Hopf and Burgers equations with viscosity ν = 0.015 at t = 80. With this
small viscosity, the solution of the Burgers equation maintains the N -wave structure, except at the corners which are
smeared out by viscosity.

Similarly, using α = 0.05, in Figure 3.5(b) we show the solution of the regularized Burgers equation at t = 80,
plotted against the solution of the Hopf equation. One can see that at t = 80 solutions of the two equations are visually
identical. At larger times, the diffusion in the Burgers equation is expected to dominate the solutions. The long
time behavior of the regularized Burgers equation from these initial data as α decreases seems to pose an interesting
question which is currently under investigation using the technique of renormalization groups. Here we present some
numerical results, where in order to compare with the single hump initial condition example, we choose the same
values of ν and α as those in the first example. The aim is that of comparing properties of the third derivative terms
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Figure 3.5: A zero-mass initial data. Viscosity used in the Burgers equation and the parameter α used in the
regularized Burgers equation in this example are the same as those in previous examples. (a) Comparison of
the solutions of Burgers and inviscid Burgers (Hopf) equations at t = 80. Both solutions have the N -wave
structure. (b) Comparison of the solutions of regularized Burgers and inviscid Burgers (Hopf) equations at
t = 80. The two solutions are almost identical.

and the diffusion term for zero-mass initial data. We perform simulations for the Burgers and the regularized Burgers
equations using both large and small ν’s and α’s . When viscosity is large, the diffusion term in the Burgers equation
dominates the nonlinear term. One can observe that solutions of the Burgers equation dissipate into something similar
to the dipole solution of the heat equation at early times. Fig. 3.6 shows the comparison of the solutions of Hopf,
Burgers, and regularized Burgers equations at t = 80. The parameters are ν = 1 and α = 1. Inset of Fig. 3.6 shows
the magnification of solutions of the Burgers equation with viscosity ν = 1 at t = 80, which demonstrates how the
solution no longer exhibits an N -wave structure and instead is close to a dipole solution of the heat equation.This
simulation suggests that when ν and α are both large, solutions of the Burgers and the regularized Burgers equations
depart from those of the Hopf equation for zero-mass initial data. Solutions of the Burgers equation are expected to be
heavily dissipated and lose the N -wave structure at a fairly early stage, whereas solutions of the regularized Burgers
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equation maintain the N -wave structure, but with a larger amplitude and wave speed than those observed for the Hopf
equation.

40 30 20 10 0 10 20 30 40

0.2
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0

0.1

0.2

x

u(
x)

 

t=80

 

 

inviscid Burgers
Burgers, =1
regularized Burgers, =1

40 40

0

6 x 10 3

Figure 3.6: The initial data is the same as Fig. 3.5, but viscosities and the parameter α used in the equa-
tions are bigger. Comparison of the solutions of Burgers, regularized Burgers, and inviscid Burgers (Hopf)
equations. ν = 1 in the Burgers equation and α = 1 in the regularized Burgers equation. Inset shows the
solution of the Burgers equation at t = 80 for viscosity ν = 1. The solution is similar to the dipole solution
of the heat equation. The solution of the regularized Burgers equaiton maintains the N -wave structure, but
the amplitude is much bigger and the wave speed is also faster than those of the inviscid Burgers (Hopf)
equation.

In the next simulation, we demonstrate the difference between the Burgers and the regularized Burgers equations
for the zero-mass initial condition, when both ν and α increase. Fig. 3.7 (a) are solutions of the Burgers equation for
viscosity increasing from ν = 0.5,

√
0.5, to 1 at the final time t = 4. The dotted line is the initial data. As expected,

the initial data gets dissipated, and the dissipation gets larger when viscosity gets larger. Fig. 3.7 (b) shows solutions
of the regularized Burgers equation at the same finial time for α = 0.5,

√
0.5, and 1. In contrast to (a), the initial

amplitude grows with time, and the amplitude of growth increases with increasing α.
Finally, we comment on the time steps and the boundary conditions chosen for the above numerical examples. For

our numerical examples, if the choice of time step is not specified, a fixed time step ∆t is chosen to be

c∆t
∆x
≤ 1

2
, (3.8)

where ∆x is the grid size and c is some constant that is independent of ∆t or ∆x. For the boundary conditions,
since the functions of numerical examples illustrated in this section decay rapidly before the boundaries, we use
periodic boundaries for all calculations. The domains are chosen to be large enough so that waves would not reach the
boundaries before the final time of calculation.

4 Physical insights of the role of uuxxx and uxxt in the regularized equation
Having gained some knowledge about the solution behavior of equation (1.3), we now focus our attention on the
interplay between the two third derivative terms, uuxxx and uxxt. Our numerical investigation aims at providing
information for future analysis of the Helmholtz-type regularization.
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Figure 3.7: The same initial data as Fig. 3.5 and 3.6. (a) Solutions of the Burgers equation. Viscosity
increases from 0.5,

√
0.5 to 1. The initial data gets dissipated, and the dissipation gets larger when viscosity

gets larger. (b) Solutions of the regularized Burgers equation. The parameter α also increases from 0.5,√
0.5 to 1. The initial amplitude grows with time, and the amplitude of growth increases with increasing α.

It was pointed out in [1] that the regularized Burgers equation (1.3) is the b = 0 member of the b-family described
in [9]

mt + umx + buxm = 0. (4.1)

All equations in the b-family are also in the class of PDEs we consider (A = 1, B = b, C = 0, D = 0, and K = 0 in
equation (1.1)) and hence can all be solved using the proposed two-step iterative algorithm in this paper.

With one of the third derivative terms missing in the regularized Burgers equation, we expect that the BBM
equation, (1.11) or (1.12), and the dispersive equation, (1.9) or (1.10), to behave totally differently from the regularized
Burgers equation as α→ 0. We compare the regularized Burgers equation and these two equations when α approaches
zero for a single hump initial condition. Consider the initial condition

u0(x) = sech(x) (4.2)

in the domain of −10π ≤ x ≤ 10π. The breaking time of the Hopf equation for this initial condition is

tb = −1/min(ux(x, 0)) ∼= 2.

After this time, the Hopf equation no longer has classical solutions for these initial data. Hence we choose the final
time t = 8, long after the shock has to be fitted for the Hopf solution, for the simulations of the regularized Burgers
equation (1.8), the BBM equation (1.12), and the dispersive equation (1.10). Similar to the b > 0 case in the b-family,
we expect that the zero-α limit is a zero-dispersion limit for both equation (1.10) and the BBM equation (1.12). Figure
4.1 shows simulations for the BBM and the dispersive equations. The results are compared with the regularized
Burgers equation. The left-hand-side column is the dispersive equation (1.10) and the right-hand-side is the BBM
equation (1.12). From top to bottom, the parameter α is 0.1, 0.01, and 0.001 respectively. The dashed line is the
regularized Burgers equation. One can clearly detect that when α decreases the frequency of oscillations increases
for both equations, but the oscillations cancel each other when both the third-order derivative terms appear in the
equation. The cancellation is expected, since the regularized Burgers equation is not a dispersive equation. However
it is numerically impossible to test whether the balance between these terms is maintained indefinitely in time. The
number of grid points used in these simulations is N = 8193. It is worth noting that we perform grid refinement study
for this example. Simulations by using finer grids are almost the same as those presented in Fig. 4.1.
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Figure 4.1: The left-hand-side column is the dispersive equation (1.10) and the right-hand-side is the BBM
equation (1.12). From top to bottom, the parameter α is 0.1, 0.01, and 0.001 respectively. The dashed line
is the solution of regularized Burgers equation.
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5 Discussion and conclusion
In this study, we employ a two-step iterative scheme for solving a class of PDEs involving the Helmholtz operator. We
investigate solution properties of members of this class of PDEs, including the regularized Burgers equation and two
dispersive equations whose structure is reminiscent of physically relevant models of shallow water wave propagation
such as BBM and KdV. Interestingly, these models arise from selecting one term between the two that comprise the
Leray-type regularization. Our numerical investigation indicates that

1. For large α’s, solutions of the regularized Burgers equation behave very differently from those of the Burgers
equation with large viscosity ν.

2. For an arbitrary small fixed α, solutions of the regularized Burgers equation could still be significantly different
from those of the Hopf equation at any finite time, even if the initial data are smooth or in a suitable function
space as in [1].

3. For any arbitrary small fixed α, the longtime behavior of solutions of the regularized Burgers equation might
be different from those of the Burgers equation with small fixed viscosity ν.

4. The two third-order derivative terms uuxxx and uxxt produce high frequency oscillations individually when α
approaches zero, but these dispersive effects cancel each other out if these two terms appear together as in the
regularized Burgers equation.

For these reasons, it appears that the inviscid regularization requires extra care in its application with respect to its
standard Burgers counterpart, and in particular it should not be applied outside of a systematic derivation that assigns
a physical meaning to the limit of vanishing α with respect to the initial data. While we clarify some issues of
the regularized Burgers equation and two related equations, there still are several questions that are not answered in
this study regarding the employed method and other solution properties of the equations. These are currently under
investigation.

1. The two-step iterative method employed in this study is somewhat reminiscent of operator splitting methods,
though we couple this with an iteration with a stoppage threshold criterion. It is not clear what splitting error is
introduced by solving the two equations in alternating fashion. We are developing an a-posteriori error estimator
to evaluate the splitting error introduced by the iterative scheme.

2. The dispersive effects by the two third-order derivative terms, uxxt and uuxxx, cancel each other when the
two terms appear together in the equation, but it is not clear if one of the two terms dominates at extremely
long times. This is inherent to the question on the longtime behavior of the regularized Burgers equation with
zero-mass initial conditions, for fixed (small) α. This question is under investigation using the technique of
renormalization group.

3. Our numerical example shows that when the second derivative of an initial condition is extremely large at some
points, no matter how small the parameter α is, solutions of the regularized Burgers equation are different from
those of the Hopf equation, as well as those of the Burgers equation with small viscosities. The evolution
of solutions of the regularized Burgers equation for rough initial data is an open question, and the present
investigation only suggests possible scenarios for step-like data.
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