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EXPERIMENTAL ERRORS 
 
1. PREFACE 
 
An experimenter must be concerned with the accuracy of the experimental results. Thus error estimation 
is an important aspect of experimental design, and an analysis of the errors in an experiment can involve 
very sophisticated mathematics.  However, no level of mathematical sophistication can replace the use of 
common sense, shrewdness, and intuition.  There are two kinds of errors, random and systematic, and the 
experimenter must recognize the sources of these errors and must devise strategies to minimize the 
impacts of these errors on the experimental results.  
 
2. ACCURACY AND PRECISION 
 
Although these two words are used in everyday life to mean essentially the same thing, they have quite 
different meanings in error analysis.  
 
Accuracy, in its "technical" meaning, is a measure of how far an experimental value is from its "true" 
value. Precision, on the other hand, is a measure of the consistency among individual measurements of a 
quantity regardless of whether or not they are close to the "true" value. Thus one is said to have high 
precision if one's measurements are close to one another.  
 
To illustrate these concepts, consider two people shooting at two targets. They end up with the following 
bullet holes in each target:  

 

  
Figure 1. Accuracy and Precision Schematics 

 
Shooter 1 had the bullets scattered over the entire target but on the average they (or rather their "center of 

SHOOTER 1 
Shaky hand, loose barrel, or gusty 
winds! 

GOOD ACCURACY 
BAD PRECISION 

SHOOTER 2 
Steady hand, consistent gun but steady 
winds, uncalibrated gun or wrong aiming 

BAD ACCURACY 
GOOD PRECISION 
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mass") seem to be centered on the target bull’s eye.  On the other hand, Shooter 2 placed all the bullets in 
a tight cluster.  However, the cluster is off the bull’s eye.  Apparently the shooter and the gun are 
consistent but there must be an error some place, either with the gun or with the shooter's aim or with the 
wind.  
 
In general, imprecise measurements are associated with random errors (Shooter 1) and inaccurate 
measurements are associated with systematic errors (Shooter 2).  However, one must have a sufficient 
amount of data to decide whether one has a lack of precision or a lack of accuracy or a combination of 
both.  Consider for example the two holes circled at each target.  If each shooter had shot only two bullets 
and had ended up with these two holes, one would have been unable to say whether or not there is any 
difference between the two. But subsequent bullet holes reveal a large difference.  
 
Accuracy and precision alone are concepts too vague to be a substitute for rigorous error analysis. 
Nonetheless they are useful concepts for identifying types of errors.  
 
3. RANDOM ERRORS 
 
The first and foremost problem with an experiment is that it is virtually impossible to obtain the "correct" 
result. This may sound a little disheartening, but first consider an example. Suppose an experimenter 
wishes to discover how many times the circumference of a circle can be stretched across its diameter. Of 
course the answer is π, but determining the exact value of π experimentally is in fact impossible. If the 
measuring instrument used was a meter stick, the result could only be determined as accurately as the 
smallest division on the meter stick, at best. Since π is irrational, it can never be measured exactly. There 
will always be some error.  
 
Having obtained a result, the next question is, "How representative is the result?"  In lieu of answering 
this question, consider another example.  Suppose a sharpened pencil and a ruler are given to a group of 
twenty people, and they are each asked to measure the pencil and to report their results as accurately as 
possible.  It is a safe bet that each member of the group will not report the same result. If you divide the 
measurements into “bins” that are one millimeter wide, i.e. an even millimeter ± a half-millimeter, and 
plot a graph of the number of measurements in each bin versus the bin number, in this case the even 
millimeter number, you would expect something like Figure 2.  
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Figure 2 Histogram of Pencil Measurements 
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The part of the graph with the steps is called a histogram. The curve drawn in dashed is called a Gaussian, 
or a bell, curve and describes what is known as a normal distribution. It is a symmetrical curve with its 
line of symmetry being a vertical line that passes through its maximum. Lastly, the curve can be described 
mathematically by the equation  

 
This may look a bit intimidating, but what is important at this point is that the curve can be described 
mathematically.  If the errors are truly random and there are a large number of measurements and the 
count of people within smaller measurement intervals are plotted, the blockiness of the steps wash out and 
the distribution approaches the normal distribution.  In most instances, this is not a bad assumption.  As 
the number of measurements approaches infinity, the curve maximum becomes the distribution mean, µ.  
 
Suppose someone now asks for the length of the pencil.  What is the best result?  Given the twenty 
measurements, all different, the best result is the average, or the mean, x , of all twenty measurements.  If 
the measurements are designated x1, x2, x3, …, xn or simply xi, then 

where n is the number of measurements. 
 
In the example, n = 20.  So if many measurements of some characteristic have been taken, the best value 
for that characteristic is the mean value of all the measurements. Now, back to "How representative is the 
measurement?"  Suppose a measuring experiment is performed twice, each time taking four 
measurements.   The results are:  
 

Experiment 1 – 4,5,5,6 cm Experiment 2 – 3,5,5,7 cm 
 
A quick mental calculation will verify that both of these experiments yield an average value of 5 cm.  
However, in Experiment 2, the people who failed to measure the value 5 cm reported a value further from 
5 cm than was the case in the first experiment.   Therefore, greater confidence can be placed in the 
reported value of 5 cm in Experiment 1 than in Experiment 2.  To relate this to the normal distribution, 
this corresponds to a narrower Gaussian distribution, i.e. the measurements are grouped tighter, for the 
first experiment than the second experiment and introduces the concept of a standard deviation.  A 
standard deviation describes how fat or wide a Gaussian distribution is. One would like the standard 
deviation to describe the distance from the mean, x , to a typical element, xi, of the distribution. Thus, a 
distribution with a large standard deviation has its elements farther away from its mean than does a 
distribution with a small standard deviation.  At first glance, an expression for the measure of scatter 
might be: 
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This is, supposedly, the average deviation from the mean.  However, this formulation will not work, since 
it will always equal zero as prescribed by the definition of x .  One might get around this problem by 
taking the absolute value of the deviations.  This measure of scatter is known as the mean absolute 
deviation (MAD). 

 
 
However, MAD suffers from the undesirable features of the absolute value function, such as being non-
differentiable at xxi = .  Summing the squares of the deviations, dividing by n and taking the square root 
of the quotient circumvents these problems.  This is called root mean square (R.M.S.) deviation and looks 
like: 

As the number of observations, n, approaches infinity, this is the standard deviation, σ, of the distribution 
and is the basic statistic used to describe the scatter of the infinite population of observations, just as µ is 
the distribution mean.   
 
In an actual experiment, an infinite number of observations cannot be taken.  Therefore, estimates of µ 
and σ are needed to describe the best value and scatter of the measurements.  The sample mean, x , is an 
unbiased estimate of the population mean, µ1, and the sample standard deviation is an unbiased estimate 
of the population standard deviation, σ1.  However, the calculation of the sample standard deviation 
differs slightly from the calculation of the population standard deviation.  In this case the summation of 
the deviations squared is divided by (n-1) instead of n, since there are only n-1 independent observations, 
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a mean, µ , and standard deviation,σ , and the mean, x , is calculated for each sample, these means are 
normally distributed with the same mean, µ , and a standard deviation that is smaller than the standard 
deviation of the population by an inverse-square-root relationship.  The equations for the sample standard 
deviation, xs , and the associated sample standard deviation of the mean, xs , are: 

 
Notice that the sample standard deviation of the mean, xs , decreases as n increases since xs  remains 
approximately equal to σ , a constant for all n. This means that by making more measurements, we can 
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narrow the value of x  down to a smaller interval. This is the primary motivation in repeating a 
measurement many times, to get closer to the true value of µ .  
 
Having obtained an estimate of the scatter of a set of measurements, the question immediately arises as to 
how good these estimates are.  Since not all elements of the population were measured, and since the 
sample was selected completely at random, there is always the possibility that the sample may not be 
representative of the population.  One can never say with absolute certainty how far the estimates, x and 
s, are off from their true values, µ and σ, since one does not know the true values. The best that can be 
done is give an interval and quantify the probability that µ will fall within that interval.  
 
Equation (1) is in normalized form such that 

This result is intuitive since the probability of a measurement being between plus and minus infinity must 
equal 1.  The probability of the measurement from the Gaussian parent population falling within a 
specified range, for example x∆± , will then be:  

When the specified ranges are ±1σ and ±2σ  the probabilities of a measurement from the Gaussian parent 
population falling within these ranges are approximately 0.68 and 0.95 respectively. 
 
The integral in Equation 8 cannot be evaluated in closed form, and if its values were tabulated, a separate 
table would be needed for an infinite number of (µ,σ) pairs.  Therefore, normalizing this integral by 

defining the normalized deviation from the mean value as 
σ

µτ −= x
, requires only a single table, 

Appendix I.  In this form the integral is: 

Where: 

From the table, Appendix I, generated from Equation 9  and using Equation 10, a confidence interval can 
be constructed such that one is confident to a stated percentage that the measurement, ix , is within a 
determined tolerance of the population mean.  In other words, the stated percentage of the Gaussian 
population lies with the pre-determined interval about the mean.  For example a 95% confidence interval 
is: 
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Rearranging to isolate ix or µ :  

This confidence interval states that 95% of the population of a Gaussian distribution lies with ±1.96σ of 
the population mean, so one can be 95% confident that a single measurement will fall within that interval. 
 
However, the above confidence interval assumes a parent population with an infinite number of 
observations.  In any practical situation only a sample from the population will be available, and 
therefore, x and xs  will be calculated instead of µ  and σ .  Recalling that x ’s are normally distributed, 
an analog to Equation (11) can be written using the t distribution, Appendix II: 

The variables 
x

i
s

x µ−
 and

n
s
x
x

µ−
are not normally distributed, but they follow the t distribution with n-1 

degrees of freedom, ν.  The values of t that satisfy Equations (13) are dependent on the sample size, n.  As 
n approaches infinity, the values of t approach those for a Gaussian distribution, i.e. for a 95% confidence 
interval the t value approaches 1.96 for large n. 
 
Finally we isolate µ  in Equations (13): 

and define random uncertainties xP  and xP as: 
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4. LOWER LIMIT ON MEASUREMENT ERRORS  
 
Equation 6 for the sample standard deviation of the mean, xs , implies that one can determine any 
quantity to arbitrary precision simply by repeating the measurement enough times, since 

However, this assumes that each element in the sample xi, i = 1...n was measured with " arbitrary 
precision”, i.e. that each xi had an infinite number of significant digits. This is not very realistic, because 
each measurement with an instrument can have only a finite number of significant digits. 
  
To illustrate the point, suppose a given mass is measured with a digital balance and suppose the balance 
reads 152.4 grams.  Probably the same reading will be obtained no matter how many times the object is 
weighed.  Should one conclude that the object is exactly 152.4000... grams?  The answer is, “No”, and the 
explanation is that the balance rounds the actual mass of the object to 4 digits.  Therefore, all that the 
digital reading is indicating, at best, is that the actual mass was anywhere between 152.35 grams and 
152.45 grams.  The measurement at least deviates by ±0.05 grams.  Therefore, the standard deviation of 
the mean for a digital instrument is ½ the smallest measuring unit (smu) (or least count as some people 

call it), and digital measurements are uncertain by 
2
%τ

 smu. 

 
The situation is not very different with analog gauges. The smallest division on a meter stick is usually 1 
mm, and although one can roughly estimate to a tenth of a mm, that is as far as one can go.  Assuming 
that any estimation within that smallest division is equally likely, i.e. the distribution of estimates is a 
uniform distribution, the standard deviation is the standard deviation of a uniform distribution with an 
interval bounded by parameters α and β, where (β −α) is the smallest measuring unit, and since the 
number of samples for any particular reading is one,  xσσ =  .  Multiplying xσ  by τ% from the 
Gaussian probability table in Appendix I gives the minimum uncertainty, xU , for any particular 
measurement to a specified confidence level. 
 

Since each measurement in a sample taken with analog measurements is uncertain by 
12
%τ

 of the 

smallest division and each measurement taken with a digital instrument is uncertain by 
2
%τ

 of the 

smallest measuring unit, x  itself cannot be more precise than these.  Therefore xU  is bounded from 

below by smu
12
%τ

 for analog measuring devices and 
2
%τ

sum for digital measuring devices: 
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5. SIGNIFICANT FIGURES  
 
While some statistical calculations, particularly those involving the differences of large numbers, require 
carrying an inordinate number of significant digits, it is never appropriate to report calculated results with 
more significant figures than any of the important numerical values that were utilized in the calculation.  
An example where a large number of significant digits must be carried is the calculation of differences 
between summations in analysis of variance.  As a general rule, unless there is a compelling reason such 
as the example cited above, carry one or two extra significant digits in intermediate calculations and 
report the final result with no more significant digits that exist in the least of the important parameters 
used in the calculation. 
 
6. STATISTICAL REJECTION OF OUTLIERS FROM A SAMPLE (Adapted from Coleman and 
Steel2) 
 
When a sample of n measurements is examined, some measurements may appear “off”.  If verifiable 
sources of error can be identified for these outliers or wild points, they should be either corrected, if 
possible, or discarded.  Usually, this is not the case, and a statistical criterion must be used to find points 
that can be rejected.  There is no other justifiable way to “throw away” data points. 
 
A widely accepted method is Chauvenet’s criterion.  The criterion states that points should be retained if 

they fall within a band around the mean that corresponds to a probability of 
n2

11− .  This criterion uses 

the Gaussian probabilities in Appendix I such that: 

 

For example if a sample of 8 measurements are taken, 9375.0
16
11

2
11 =−=−
n

.  From Appendix I, τ is 

approximately 1.864, obtained by interpolating between the table τ values, 1.86 and 1.88.  The maximum 
deviation of points to be retained is then 1.864 times the sample standard deviation.  Points that fall 
outside this deviation are rejected and a new sample mean and standard deviation are calculated.  The 
Chauvenet’s criterion should never be applied more than once. 
 
7. SYSTEMATIC ERRORS 
 
Systematic errors, β, often referred to as determinant or constant errors, arise from variables in an 
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experiment that are ignored.  Frequently acceleration of gravity is measured by timing how long it takes a 
heavy object to drop a known distance and then using those values in the kinematic equations. In doing 
this, the effects of air resistance are ignored. This is all right so long as the object does not respond to air 
resistance very much. The error is still there, but because it is small, it is neglected. However, had the 
experiment been performed with a feather, the effect of the air on the object could not be ignored. The 
only way to totally ignore the effect of the air is to perform the experiment in an air-free environment.  
 
Often systematic errors are due to inaccuracies in the measuring devices used. If a ruler has one end worn 
away, it will always give a length longer than the true length. Another form of systematic error is personal 
bias, which can only be minimized by an objective attitude. In general, the mode taken to minimize 
systematic error is to minimize the effects of the variables we are ignoring. 
 
Estimating systematic errors is difficult.  One approach is to assume that any one instance of systematic 
error, B,  is drawn from a population of possible systematic errors, and that population of possible 
systematic error has a Gaussian distribution.  Then the interval defined by ±B = ±tsB gives an estimate of 
the systematic uncertainty.  For the 95% confidence level t ≈ 2, and this value is commonly used such that 
±B = ±2sB.  The manufacturers of instruments sometime supply estimates of sB, but often the experimenter 
must compare the instruments to other standards or make educated guesses.  Where experimental 
influences are ignored, such as air resistance in the above example, the experimenter should model the 
phenomenon producing the influence to show that the effect is indeed negligible. 
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Appendix I – Tabulated values of the ττττ Probabilities1 

τ Prob(τ) τ Prob(τ) τ Prob(τ) τ Prob(τ)
0.00 0.0000 1.00 0.6827 2.00 0.9545 3.00 0.9973002
0.02 0.0160 1.02 0.6923 2.02 0.9566 3.05 0.9977115
0.04 0.0319 1.04 0.7017 2.04 0.9586 3.10 0.9980647
0.06 0.0478 1.06 0.7109 2.06 0.9606 3.15 0.9983672
0.08 0.0638 1.08 0.7199 2.08 0.9625 3.20 0.9986257

0.10 0.0797 1.10 0.7287 2.10 0.9643 3.25 0.9988459
0.12 0.0955 1.12 0.7373 2.12 0.9660 3.30 0.9990331
0.14 0.1113 1.14 0.7457 2.14 0.9676 3.35 0.9991918
0.16 0.1271 1.16 0.7540 2.16 0.9692 3.40 0.9993261
0.18 0.1428 1.18 0.7620 2.18 0.9707 3.45 0.9994394

0.20 0.1585 1.20 0.7699 2.20 0.9722 3.50 0.9995347
0.22 0.1741 1.22 0.7775 2.22 0.9736 3.55 0.9996147
0.24 0.1897 1.24 0.7850 2.24 0.9749 3.60 0.9996817
0.26 0.2051 1.26 0.7923 2.26 0.9762 3.65 0.9997377
0.28 0.2205 1.28 0.7995 2.28 0.9774 3.70 0.9997843

0.30 0.2358 1.30 0.8064 2.30 0.9786 3.75 0.9998231
0.32 0.2510 1.32 0.8132 2.32 0.9797 3.80 0.9998552
0.34 0.2661 1.34 0.8198 2.34 0.9807 3.85 0.9998818
0.36 0.2812 1.36 0.8262 2.36 0.9817 3.90 0.9999037
0.38 0.2961 1.38 0.8324 2.38 0.9827 3.95 0.9999218

0.40 0.3108 1.40 0.8385 2.40 0.9836 4.00 0.9999366
0.42 0.3255 1.42 0.8444 2.42 0.9845 4.05 0.9999487
0.44 0.3401 1.44 0.8501 2.44 0.9853 4.10 0.9999586
0.46 0.3545 1.46 0.8557 2.46 0.9861 4.15 0.9999667
0.48 0.3688 1.48 0.8611 2.48 0.9869 4.20 0.9999732

0.50 0.3829 1.50 0.8664 2.50 0.9876 4.25 0.9999786
0.52 0.3969 1.52 0.8715 2.52 0.9883 4.30 0.9999829
0.54 0.4108 1.54 0.8764 2.54 0.9889 4.35 0.9999863
0.56 0.4245 1.56 0.8812 2.56 0.9895 4.40 0.9999891
0.58 0.4381 1.58 0.8859 2.58 0.9901 4.45 0.9999911

0.60 0.4515 1.60 0.8904 2.60 0.9907 4.50 0.9999931
0.62 0.4647 1.62 0.8948 2.62 0.9912 4.55 0.9999946
0.64 0.4778 1.64 0.8990 2.64 0.9917 4.60 0.9999957
0.66 0.4907 1.66 0.9031 2.66 0.9922 4.65 0.9999966
0.68 0.5035 1.68 0.9070 2.68 0.9926 4.70 0.9999973

0.70 0.5161 1.70 0.9109 2.70 0.9931 4.75 0.9999979
0.72 0.5285 1.72 0.9146 2.72 0.9935 4.80 0.9999984
0.74 0.5407 1.74 0.9181 2.74 0.9939 4.85 0.9999987
0.76 0.5527 1.76 0.9216 2.76 0.9942 4.90 0.9999990
0.78 0.5646 1.78 0.9249 2.78 0.9946 4.95 0.9999992

0.80 0.5763 1.80 0.9281 2.80 0.9949 5.00 0.9999994
0.82 0.5878 1.82 0.9312 2.82 0.9952
0.84 0.5991 1.84 0.9342 2.84 0.9955
0.86 0.6102 1.86 0.9371 2.86 0.9958
0.88 0.6211 1.88 0.9399 2.88 0.9960

0.90 0.6319 1.90 0.9426 2.90 0.9963
0.92 0.6424 1.92 0.9451 2.92 0.9965
0.94 0.6528 1.94 0.9476 2.94 0.9967
0.96 0.6629 1.96 0.9500 2.96 0.9969
0.98 0.6729 1.98 0.9523 2.98 0.9971

Tabulation of Two-Tailed Gaussian Probabilities
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Appendix II – Tabulated values of the t distribution3 
 
 
 

df 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.001
1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598
3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.941
4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.859

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.405
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.767
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 0.679 0.848 1.046 1.296 1.671 2.000 2.390 2.660 3.460

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.373
inf. 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.291

df 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0005

Probability of a larger value of t , sign ignored

Probability of a larger value of t , sign considered

Values of t

- two tailed 

- one tailed 


