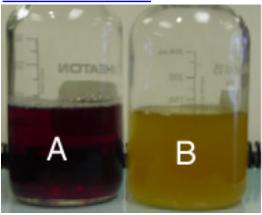

**Lecture 23: Water Microbiology** 

## Non-potable water Not for drinking or cooking use

| I. Introdu                                                          |                                                                                                                                         |  |  |  |  |  |    |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|----|
| A                                                                   | Water microbiology is the                                                                                                               |  |  |  |  |  |    |
|                                                                     | A. Water microbiology is the This is done to determine what organisms are                                                               |  |  |  |  |  |    |
| pr                                                                  | present, and if they are helpful or harmful.                                                                                            |  |  |  |  |  |    |
| B. The safety of water for drink and contact is the main reason for |                                                                                                                                         |  |  |  |  |  |    |
|                                                                     |                                                                                                                                         |  |  |  |  |  | ca |
|                                                                     | ul organisms (Bacteria, Parasites and Viruses)                                                                                          |  |  |  |  |  |    |
| A                                                                   |                                                                                                                                         |  |  |  |  |  |    |
| af:<br>pr                                                           | ect as few as 1 or 2 people, or they may affect enough people to reach epidemic oportions. Luckily, the Safe Water Drinking Act and the |  |  |  |  |  |    |
|                                                                     | help keep us safe. Water I reatment is not without flaws, so it is                                                                      |  |  |  |  |  |    |
| sti                                                                 | l a that drinking water is safe, especially with the                                                                                    |  |  |  |  |  |    |
| ine                                                                 | reased number of HIV/AIDS patients.                                                                                                     |  |  |  |  |  |    |
|                                                                     | Water contamination from                                                                                                                |  |  |  |  |  |    |
|                                                                     | introduces into the water:                                                                                                              |  |  |  |  |  |    |
|                                                                     | 1. Pathogenic Bacteria (Mostly enteric or GI Tract)                                                                                     |  |  |  |  |  |    |
|                                                                     | a. Vibrio cholerae which causes Cholera                                                                                                 |  |  |  |  |  |    |
|                                                                     | b including Salmonella typhi                                                                                                            |  |  |  |  |  |    |
|                                                                     | c. Cyanobacteria which may be a risk factor in cancer                                                                                   |  |  |  |  |  |    |
|                                                                     | d. Mycobacterium                                                                                                                        |  |  |  |  |  |    |
|                                                                     | 2 including the "Super Bugs" <i>Cryptosporidium</i>                                                                                     |  |  |  |  |  |    |
|                                                                     | and Giardia                                                                                                                             |  |  |  |  |  |    |
|                                                                     | 3. Viruses including Hepatitis viruses.                                                                                                 |  |  |  |  |  |    |
| III. Scree                                                          | ning for pathogens                                                                                                                      |  |  |  |  |  |    |
| $\mathbf{A}$                                                        | It isto screen for enteric pathogens (e.g.                                                                                              |  |  |  |  |  |    |
| Sh                                                                  | It isto screen for enteric pathogens (e.g. igella and) for several reasons:                                                             |  |  |  |  |  |    |
|                                                                     | 1. These pathogens enter the water supply because not everyone is infected and shedding them continuously.                              |  |  |  |  |  |    |
|                                                                     | because not everyone is infected and shedding them continuously.                                                                        |  |  |  |  |  |    |

|      | 2. Most enteric                                        | pathogens ar   | e not stable | in the envir                                     | onment, theref            | fore they    |  |  |
|------|--------------------------------------------------------|----------------|--------------|--------------------------------------------------|---------------------------|--------------|--|--|
|      | 3. These pathogens are generally                       |                |              |                                                  |                           |              |  |  |
|      | so they may                                            |                |              |                                                  |                           |              |  |  |
|      | 4.                                                     |                |              |                                                  | are required to           | o culture    |  |  |
|      | enteric pathoge:                                       | ns.            |              |                                                  |                           |              |  |  |
| B. I | Due to these proble                                    | ems associated | d with findi | ng pathogen                                      | s in large volu           | mes of       |  |  |
| wat  | er, we will instead<br>ose presence indica             | look for       |              |                                                  |                           |              |  |  |
| who  | ose presence indica                                    | ates fecal con | tamination.  | The most co                                      | ommon group               | of these     |  |  |
| ınd  | icator organisms a                                     | re called      |              |                                                  | _•                        |              |  |  |
| C. ( | Coliforms are                                          | C              | 1 1          | 1 1 '                                            | that are prese            | nt in the    |  |  |
|      | 1. 0 1                                                 | of eve         | ery warm bl  | ooded anim                                       | ial. They are do          | efined as    |  |  |
|      | obic or facultative                                    |                |              |                                                  | o not form spo            | ores, but    |  |  |
| The  | e                                                      |                |              |                                                  |                           | than         |  |  |
| ente | eric pathogens for                                     | several reasor | ns:          |                                                  |                           |              |  |  |
|      | 1. Animals and                                         |                |              |                                                  |                           |              |  |  |
|      | in their GI tract                                      |                |              |                                                  |                           |              |  |  |
|      | <ul><li>2. They are</li><li>3. Their present</li></ul> | <u> </u>       | 11 1 11 0    | in fe                                            | eces.                     |              |  |  |
|      |                                                        |                |              |                                                  | ination which s           | suggests     |  |  |
|      | the possibility of 4. Coliforms                        | of pathogen co | ontaminatioi | 1.                                               | :4 1                      | 1.           |  |  |
|      | 4. Colliorms                                           |                |              | n the lab.                                       | _ in water and            | are much     |  |  |
| D ,  | The detection of a                                     | 1:fi           |              |                                                  | a.t                       |              |  |  |
| υ.   | The detection of co                                    | omorms is co   | inplicated b | y me raci m                                      | al                        | mmonly,      |  |  |
| fou: | nd in the environm                                     | ent. Because   | of this, we  | commonly d                                       | listinguish coli<br>using | forms<br>the |  |  |
|      |                                                        |                |              | •                                                |                           | ,            |  |  |
|      | IMViC                                                  |                |              |                                                  |                           |              |  |  |
|      | (                                                      |                |              |                                                  |                           | )            |  |  |
| -    | Organism                                               | Indole         | MR           | VP                                               | Citrate                   | 1            |  |  |
|      | 0.5                                                    |                |              |                                                  |                           | ı            |  |  |
|      | fecal                                                  |                |              |                                                  |                           |              |  |  |
|      | coliforms                                              |                |              |                                                  |                           |              |  |  |
|      |                                                        |                |              |                                                  |                           |              |  |  |
|      | (Escherichia                                           |                |              |                                                  |                           |              |  |  |
|      | coli)                                                  |                |              |                                                  |                           |              |  |  |
|      |                                                        |                |              | <del>                                     </del> |                           | 1            |  |  |
|      | non-fecal                                              |                |              |                                                  |                           |              |  |  |
|      | coliforms                                              |                |              |                                                  |                           |              |  |  |
|      | (Enterobacter                                          |                |              |                                                  |                           |              |  |  |
|      | aerogenes)                                             |                |              |                                                  |                           |              |  |  |
|      | ucrosenes)                                             |                |              |                                                  |                           |              |  |  |

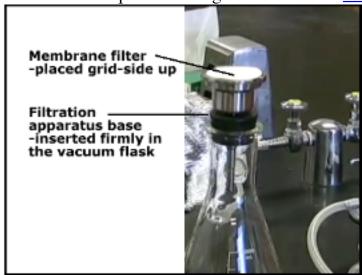
IV. We will screen waste water treatment plant (WWTP) influent and effluent, Laramie River water, water treatment plant (WTP) influent and effluent and drinking water for the presence of coliforms.




## V. Tests for Coliforms

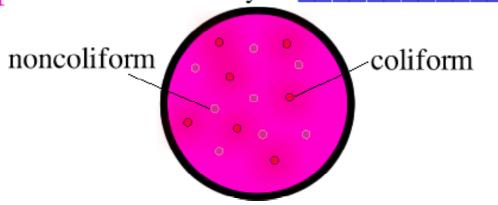
A. The

- 1. The PA is used to quickly examine for the presence of coliforms. This test is able to detect \_\_\_\_\_ and a pH indicator which will
- change from a purple color to a \_\_\_\_


from the fermentation of lactose.

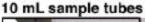


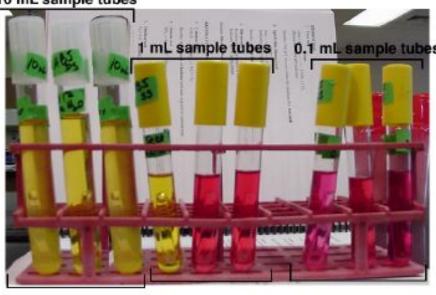
## Which water sample contains at least 1 coliform??


is a test that may be used to assay a \_\_\_\_\_ the number of coliforms in and allow us to that sample.

1. The water is passed through a 0.45 micron




2. The filter is then placed on a selective and differential medium, usually EMB or Endo agar, which allows for identification of coliforms.


Endo media contains sodium sufite and basic fuchsin to inhibit the growth of \_\_\_\_\_\_ organisms. Coliforms that ferment lactose form red or pink colonies that may be \_\_\_\_\_



D. The Multiple Tube Fermentation Method is a test that is performed in three stages.

| 1 use                                          | es a                            |
|------------------------------------------------|---------------------------------|
| that will be used to                           | determine the presence of       |
| lactose fermenting bacteria in the sample. The | e nine inoculated lactose broth |
| tubes will also enable us to                   |                                 |
| the amount of coliforms present in our sample  | e by using the MPN (most        |
| probable number) table located in your lab ma  | aniial .                        |





| <b>Profile:</b> |  |
|-----------------|--|
| rionie.         |  |

How many coliforms/100 mL are present in this sample?

| 2                   |                                 | is performed by            | inoculating        |
|---------------------|---------------------------------|----------------------------|--------------------|
| MacConkey           | agar that contains MUG (4       | -Methylumbellifery         | 1-β-D-             |
| glucuronide         | ). Selected Gram-negative of    | colonies that fermen       | t lactose turn     |
| bright pink;        | if the enzyme                   | is presen                  | t, it will         |
|                     | AUG to form a compound          |                            |                    |
| wavelength          | UV. Because 96-97% of <i>E</i>  | . coli strains produc      | е β-               |
|                     | se, this test is said to verify |                            |                    |
| 3                   |                                 | is done b                  | y selecting a      |
| lac+, fluores       | scent colony from the Mac       | Conkey/MUG plate           | and                |
|                     |                                 |                            |                    |
|                     | n. Also, the same colony sh     |                            | erify the Gram-    |
| negative,           |                                 | character.                 |                    |
| E. These tests are  | done on numerous bodies a       | and sources of water       | r                  |
|                     |                                 | <u> </u>                   |                    |
| 71 Od 1 1 1         | 1                               | 4                          |                    |
|                     | applications in water treatment |                            | V anaan aaiantist  |
| A. Blosensing is of | ne of the new breakthrough      | is ill illicrobiology.     | Korean scientists  |
| are using           | een a failure in waste water    |                            | ion to indicate if |
|                     |                                 |                            | 1' 1 1 1 1         |
| B. Britain has the  | Microtox System which us        | es <i>Photobacterium</i> ( | directly to detect |
| pollutants.         | They can't                      | 1 .1                       |                    |
| C. Pseudomonas e    | expressing                      | _ and other genes en       | ncoding toluene    |
| or benzene r        | recognition will fluoresce in   | n presence of these p      | ollutants.         |
|                     |                                 |                            |                    |

<sup>&</sup>lt;sup>1</sup> American Society for Microbiology, Microbe Library (2009).