

I. Introduction

A. Water microbiology is the

. This is done to determine what organisms are present,

and if they are helpful or harmful.

B. The safety of water for drink and contact is the main reason for______. We must know if the water will cause harm to us or the environment. Some microorganisms can actually reduce the amount of

environmental damage. We treat drinking water to make it potable.

II. Harmful organisms (Bacteria, Parasites and Viruses)

A.______may affect as few as 1 or 2 people, or they may affect enough people to reach epidemic proportions. Luckily, the Safe Water Drinking Act and the_______help keep us safe. Water Treatment is not without flaws, so it is still a

that drinking water is safe, especially with the increased number of HIV/AIDS patients.

B. Water contamination from

introduces into the water:

1. Pathogenic Bacteria (Mostly enteric or GI Tract)

a. Vibrio cholerae which causes Cholera

b. _____ including Salmonella typhi

c. Cyanobacteria which may be a risk factor in cancer

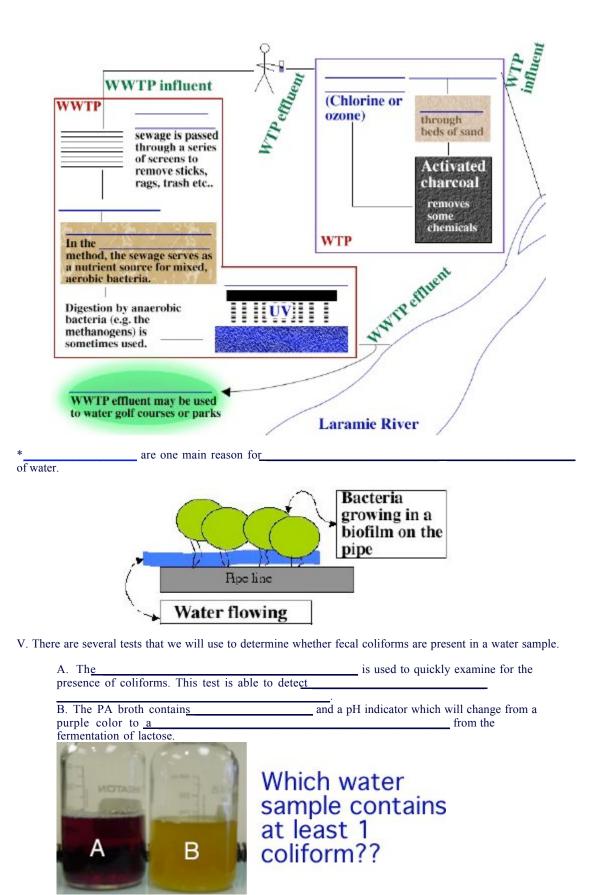
d. Mycobacterium

2. _____ including the "Super Bugs" *Cryptosporidium* and *Giardia*

3. Viruses including Hepatitis viruses

III. Screening for pathogens

A. It i <u>s</u> Shigella and	to screen for enteric pathogens (e.g) for several reasons:
 These pathogens enter the water because not everyone is infected an Most enteric pathogens are not stated. 	supplyd shedding them continuously. able in the environment, therefore they
3. These pathogens are generally	
they may	•
4.	are required to culture
enteric pathogens.	
instead look for indicates fecal contamination. The most com	ading pathogens in large volumes of water, we will whose presence amon group of these indicator organisms are called that are present in the
of every	warm blooded animal. They are defined as aerobic
or facultative anaerobic Gram-negative rods	that are present in the warm blooded animal. They are defined as aerobic that do not form spores, but do
The	than
enteric pathogens for several reasons:	
1. Animals and humans	in
their GI tract.	
2. They are	in feces. ate fecal contamination which suggests the
3. Their presence in water will indic	ate fecal contamination which suggests the
possibility of pathogen contamination	
1 Coliforms	in water and are much


4. Coliforms______ in water and are much ______ in the lab.

D. The detection of coliforms is complicated by the fact that

. In fact, some are commonly found in the environment. Because of this, we commonly distinguish coliforms biochemically, to determine______using the

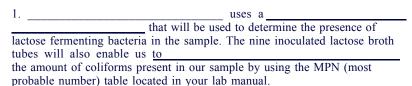
Organism	Indole	MR	VP	Citrate
fecal coliforms (<i>Escherichia</i> <i>coli</i>)				
non-fecal coliforms (Enterobacter aerogenes)				

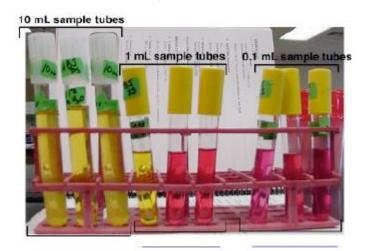
IV. We will screen waste water treatment plant (WWTP) influent and effluent, Laramie River water, water treatment plant (WTP) influent and effluent and drinking water for the presence of coliforms.

C. The

_ is a test that may be used to assay a _____ and allow us to_____ the number of coliforms in that sample.

1. The water is passed through a 0.45 micron


2. The filter is then placed on a selective and differential medium, usually EMB


or Endo agar, which allows for identification of coliforms.

3. Once colonies form, they can be counted to determine the number of coliforms present in a sample.

Endo media contains sodium sufite and basic fuchsin to inhibit the growth of ______ organisms. Coliforms that ferment lactose form red or pink colonies that may be ______. noncoliform

D. The Multiple Tube Fermentation Method is a test that is performed in three stages.

Profile:

How many coliforms/100 mL are present in this sample?

2	involves the inoculation of
w	ith a lactose positive sample. EMB selects for
the growth of	organisms and
differentiates bacteria based on th	eir ability to ferment lactose.
3	is done by selecting a lac+ colony
from our EMB plate and	

to verify lactose fermentation. Also, should be inoculated with the same colony to demonstrate the Gram-negative,

character.

E. These tests are done on numerous bodies and sources of water____

VI. Other microbiology applications in water treatment

A. Biosensing is one of the new breakthroughs in microbiology. Korean scientists are using ______ containing the lux operon to indicate if there has been a failure in waste water treatment.

B. Britain has the Microtox System which uses Photobacterium directly to detect pollutants. They can't

C. Pseudomonas expressing ______ and other genes encoding toluene or benzene recognition will fluoresce in presence of these pollutants.

Additional Information / Course Schedule / Lectures / Course Syllabus / Home

Rachel Watson, M.S. AG 5010 766-3524 Cell: 307-760-2942 rwatson@uwyo.edu