
Chap. 5 "Properties of Enzymes" 
 
Reading Assignment: pp. 130-155. (Skip Sections 5.6, 5.7 B & C, 5.9, and 5.10 A & C) 
 
Problem Assignment: 2, 4, 5, 7 a and b, 8, 13, & 16. 
 
I. Introduction  
 

Nearly all reactions of metabolism are catalyzed by enzymes. Enzymes increase the rates of 
reactions allowing them to occur within a biologically useful time scale. Most enzymes are proteins, 
although a number of enzymes are RNA molecules. For both types of enzymes, the reaction occurs 
within a specialized site known as the active site. Active sites are complementary in shape to the 
reactant (the substrate), and are even more closely complementary to the transition state structure for 
the reaction (Chap. 6). Enzymes are like simple catalysts in that they are not consumed during the 
chemical reaction that takes place. 

Enzymes are able to increase rates of reactions by 103 to 1017 fold over the rate of the un-
catalyzed reaction. It is important to note that enzymes do not change the positions of chemical 
equilibrium, they just increase the rate at which equilibrium is attained. By having a shape 
complementary to the transition state structure, enzymes favor formation of this structure, and 
thereby, increases the rate of the reaction (Chap. 6). 

Enzyme-catalyzed reactions are highly specific. Unlike most organic chemistry reactions, side 
products rarely are produced from an enzyme-catalyzed reaction. Specificity results from the 
structural complementarity between the enzyme and its substrate. Only substrates with the correct 
shapes can be bound by the enzyme, minimizing the frequency of side reactions. Most enzymes are 
stereospecific and act only on one stereoisomeric form of the substrate. 

Metabolism is regulated largely by  modulating the activity of enzymes that catalyze key steps 
in metabolic pathways. Enzyme activity can be regulated by changing enzyme concentration in 
response to a hormonal signal, changing the activity of existing enzyme molecules by binding of 
modulators, and pharmacologically by drugs that act as enzyme inhibitors, e.g., aspirin. 

 
II. The six classes of enzymes. 
 
 1. Oxidoreductases. Catalyze oxidation-reduction reactions. Most often called dehydrogenases. 
 

2. Transferases. Catalyze group transfer reactions. This group includes kinases which transfer a 
phosphoryl group from ATP. 

 
 3. Hydrolases. Catalyze bond cleavage by hydrolysis. 
 

4. Lyases. Catalyze substrate lysis to produce a double bond. If the reverse reaction is catalyzed, the 
enzyme may be called a synthase. 

 
 5. Isomerases. Catalyze structural changes within a single molecule. 
 

6. Ligases. Catalyze the ligation or joining together of 2 substrates. If ATP is required in the reaction 
the enzyme usually is referred to as a synthetase. 

 
 
 



 
III. Kinetic experiments reveal enzyme properties. 

 
Enzyme kinetics is the study of the rates of enzyme catalyzed reactions. Basic studies shed 

light on the mechanisms of reactions and the specificity of enzymes for substrates. In the clinic, the 
determination of enzyme activity level can be used to diagnose diseases such as myocardial infarction 
(heart attack). 
  
A. Chemical kinetics. 
 

Consider a reaction S →  P, where S is the substrate and P is the product. The rate (or 
velocity, v) of the reaction is the change in [P] per unit time (t). This can be expressed in a rate 
equation for the reaction, where k is the rate constant: 

 
    ∆[P] /∆t   =  v  =  k[S]. 

 
This equation indicates that the reaction velocity is a linear function of [S], where the rate constant k 
is the slope of a plot of v vs [S]. Fig. 5.1 Because the rate depends on the concentration of just one 
substrate, the reaction is said to have a kinetic order of one, i.e., is a first-order reaction. In this case, 
the units of k are s-1. If there are 2 substrates 

 
          S1  +  S2  →  P 

 
then the rate equation is 

 
              ∆[P]/∆t  =  v  =  k[S1][S2] 
 
and the kinetic order is 2, i.e., is a second-order reaction. In this case the units of k are M-1s-1. 
Reactions involving 3 or more substrates can occur, but won't be dealt with here. 

 
 B. Enzyme kinetics, and basic rate determinations. 
 

During an enzyme catalyzed reaction, the enzyme (E) first combines with the substrate to 
generate an enzyme-substrate complex, and then the product is formed and dissociates from the 
enzyme. The kinetic scheme for an enzyme catalyzed reaction can be written as 

 
E  +  S  →  ES  →  E  +  P 

 
If the rate limiting step is the breakdown of ES  →  E  +  P, then the initial velocity (v0) of the 

reaction will be linearly proportional to the amount of E present, provided S is in great excess and all 
of the enzyme is combined with S, i.e., the enzyme is "saturated." This basic behavior can be 
exploited to determine the amount of enzyme in a sample of blood, for example, using a simple 
calibration curve (Fig. 5.2). 

In actuality the 2 steps of this reaction are reversible. However, if one measures initial 
velocity (v0) before P builds up then the equation can be written as 

 
     k1     k2 
   E  +  S        ES    →   E  +  P 
     k-1 



 
In this equation k1 is the rate constant for the association of E and S, and k-1 is the rate constant for 
the dissociation of the ES complex. k2 is the rate constant for formation of E and P. At prolonged 
times after the onset of the reaction when P has accumulated, the rate ∆P/∆t falls off due to the 
reverse reaction E  +  P  →  EP resulting in progress curves such as shown in Fig. 5.3. This illustrates 
the importance of measuring initial velocities before the reaction begins to slow down due to product 
accumulation, so that one can calculate the amount of enzyme present. 

 
IV. Michaelis-Menten equation. 
 

A. Basic assumptions.  
 
For many enzymes, a plot of initial reaction velocity (v0, measured in units of moles of 

product per liter per second) vs. substrate concentration [S] gives a hyperbolic curve like the one in 
Fig. 5.4. At very low substrate concentration, v0 increases almost linearly with increasing [S], while 
at high [S], v0 is independent of [S] and approaches a maximum velocity, Vmax. 

The French mathematicians Leonor Michaelis and Maud Menten derived a mathematical 
equation that describes the kinetic behavior of most enzymes. In their derivation, they proposed that 
1) the enzymatic reaction occurs in two stages, and 2) the rate of product formation is determined by 
the amount of enzyme substrate (ES) complex present, as shown in the equation:   

 
        k1       k2 
     E  +  S  ‹−›    ES   →   E  +  P 
        k-1 

 
They also assumed that the rate of the second stage of the reaction (ES → E + P) is slower than the 
first. For this reason, the second stage of the reaction sets the rate of the overall reaction, i.e., is "rate 
limiting". Because 1) the rate of the overall reaction is dependent on [ES], and 2) the second stage is 
rate-limiting, the velocity of the reaction (v0) is given by the equation: 
 

v0 = k2[ES]. 
 
A maximal rate is obtained when all of the enzyme (denoted by [E]total) is in the form of the ES 
complex, and under these conditions: 
 

Vmax = k2[E]total. 
 
 B. Derivation of the Michaelis-Menten equation. 
 

Starting with these assumptions it is possible to derive the MM equation. The derivation takes 
the standpoint that a "steady state", in which the concentration of ES remains relatively constant over 
time, soon develops after the substrate and enzyme are mixed. The amount of ES formed depends on 
the concentration of the substrate and its affinity for the enzyme. When the steady state is achieved, 
the rate of ES formation equals the rate of ES breakdown, i.e., 

 
Rate of ES formation = k1([E]total - [ES])[S] 

 
Rate of ES breakdown = k-1[ES] + k2[ES]  =  (k-1  +  k2)[ES] 

 



 and therefore, 
 

k1([E]total  -  [ES])[S] = (k-1 +  k2)[ES]. 
 

(Note that the concentration of the free enzyme [E] in upper of these 2 kinetic equations, has been 
written as [E]total - [ES].) The steady state equation is then rearranged to collect all of the rate 
constants on one side in the so-called Michaelis constant, Km: 

 
     k-1  +  k2    ([E]total - [ES])[S] 

=   Km   = 
          k1    [ES]  
 
 
 This equation is solved (in several steps) for [ES]: 
 
         [E]total[S] 
      [ES]       = 
        Km  +  [S] 

 
Next, the initial velocity (v0) term is introduced into the equation after multiplying both sides by the 
k2 rate constant and substituting v0 = k2[ES] from above: 

 
        k2[E]total[S] 
       v0   =   k2[ES]   =  
         Km + [S] 

 
Finally, the term Vmax is substituted into the equation for k2[E]total resulting in the final form of the 
MM equation: 

 
       Vmax [S] 
      v0   = 
       Km + [S] 

 
Does the equation actually describe for the shape of the hyperbolic curve shown in Fig. 5.3? 

This can be addressed using some simple mathematical proofs. At high substrate concentrations (the 
extreme right side of the curve), [S]>>Km, we can neglect the term Km in the MM equation. Under 
these conditions, 

 
     Vmax [S] 
    v0   =      =   Vmax. 
        [S] 

 
Thus, at very high substrate concentrations v0 becomes independent of [S], and the curve becomes 
flat at the limiting value Vmax. 

 
Now, at very low substrate concentrations (the extreme left side of the curve) where [S]<<Km, 

we can neglect the term [S] in the denominator of the MM equation. Under these conditions, 
 
 



 
     Vmax [S] 

     v0  =       = (Vmax/Km) [S]  
       Km 
 

This indicates that at very low substrate concentrations the velocity is linearly proportional to [S], 
i.e., the shape of the curve is approximately linear. These points about curve shape at extremes of 
substrate concentration also are made in Fig. 5.5. 
 

V. Meaning of kcat, Km, and Vmax. 
 
 A.   
 

In a large percentage of cases, the rate-limiting step is indeed ES → E + P, and the equations 
v0 = k2[ES] and Vmax = k2[E]total are directly applicable to the enzyme catalyzed reaction. However, in 
a significant number of cases, the enzymatic rate may be dependent not only on k2, but on other rate 
constants (e.g., k-1) as well. In these cases, it is better to use a generic constant kcat for the rate 
limiting step. kcat lumps together all of the constants that actually influence the rate of the reaction. 
Then, the v0 and Vmax equations become 

 
v0  =  kcat[ES] 

 and 
Vmax  =  kcat[E]total. 

 
kcat (like k2) is a first order rate constant and has the units s-1. When the enzyme is operating at 
maximal velocity, it is a direct measure of the number of moles of product formed per second in the 
active site. This is the so-called turnover number for the enzyme, and the higher the turnover number 
the more efficient the enzyme is in carrying out the reaction (Table 5.1). The enzyme carbonic 
anhydrase which converts dissolved CO2 into carbonic acid has one of the fastest turnover numbers 
known and thus is well designed for efficient CO2 transport to the lungs. 

 
 B. Km. 
 

The Km kinetic constant actually has units of moles/liter (M). It can be mathematically proven 
that the reaction velocity is half-maximal when [S]  =  Km. To prove this, [S] is substituted for Km in 
the MM equation: 

 
   Vmax [S] Vmax [S] Vmax 
  v0   =       =     =  
   [S] + [S]    2[S]   2 
 
The Km constant also provides information about the affinity of an enzyme for its substrate. If 

the breakdown of ES → E + P truly is rate limiting, then k2 can be neglected from the Km constant 
and Km ≈ k-1/k1. Under these conditions, Km is equivalent to the dissociation constant (KES) for the ES 
complex: 

 
       k-1 
      ES         E  +  S 
            k1 



 
 for which 
 

Km  =  KES = ([E][S])/[ES] = k-1/k1. 
 

This demonstrates that "the lower the Km, the higher the affinity of the enzyme for its substrate." 
 
 The Km is an intrinsic property of an enzyme and is independent of the enzyme concentration 
used in a reaction. The Km of an enzyme often is just slightly higher than the typical intracellular 
concentration of its substrate (Fig. 5.4). Because the hyperbolic curve is roughly linear in this range 
of substrate concentration, a slight change in substrate concentration produces a significant change in 
reaction rate, which is advantageous to metabolism. In contrast, if the Km were much lower than the 
typical intracellular substrate concentration, then there would be little change in reaction velocity 
even for substantial changes in S concentration. 

 
 C. Vmax. 
 

Vmax is calculated from the equations Vmax = k2[E]total or Vmax = kcat[E]total. These equations 
show that Vmax is dependent on the concentration of enzyme used to set up a reaction. In other words, 
the Vmax measured for a reaction will depend on the amount of enzyme present. This allows one to 
determine the concentration of a clinically important enzyme in a blood specimen, for example, by 
determining the Vmax for the sample and using a calibration curve such as shown in Fig. 5.1 to 
calculate the amount of enzyme present. The value of Vmax also can be used to calculate the turnover 
number (kcat) for an enzyme, as was explained above. 

 
VI. Determination of Km and Vmax by Lineweaver-Burk plots. 
 

It is difficult to accurately determine Km and Vmax values from hyperbolic kinetic curves due 
to uncertainty as to where the limit Vmax occurs. To better determine these values, data often are 
graphed in the form of the Lineweaver-Burk plot, which plots 1/v0 vs 1/[S] (Fig. 5.6). If one takes the 
reciprocal of the MM equation, then the LB equation is obtained: 

   
1/v0   =   (Km/Vmax)(1/[S])  +  1/Vmax 

 
This equation is in the form y = mx + b which is the general equation for a straight line. The y-
intercept of a LB plot is 1/Vmax and the x-intercept is -1/Km. Thus, the values of Vmax and Km are 
obtained by determining the intercepts of the line with the axes. 

 
VII. Reversible enzyme inhibition. 
 

The study of enzyme inhibition provides information about the structure of active sites, 
mechanisms of metabolic control, and provides useful information pertinent to the development of 
pharmaceuticals. Enzyme inhibitors are classified into two broad categories--irreversible and 
reversible. Irreversible inhibitors usually combine covalently with the enzyme and cannot easily be 
removed. Reversible inhibitors bind noncovalently and thus reversibly to their target enzyme. When 
reversible inhibitors are bound to the enzyme, the enzyme is inactive. One common type of reversible 
enzyme inhibition (competitive inhibition) will be discussed. For reversible inhibitors, one can 
calculate an inhibition constant Ki, which is the same as the EI dissociation constant. The lower the 
value of Ki, the stronger the inhibitor binds to the enzyme. 



 
EI       E  +  I 

 
Ki    =   [E][I]/[EI] 

 
 A. Competitive inhibitors and competitive inhibition. 
 

A competitive inhibitor has a structure that is similar to that of the substrate for the enzyme. 
For example, the structure of benzamidine, which is a competitive inhibitor of the protease trypsin, is 
reminiscent of arginine, which is one of the amino acids recognized by this enzyme (Fig. 5.10). Due 
to structural resemblance to the substrate, a competitive inhibitor competes with the substrate for 
binding to the active site. Then when bound to the enzyme, the competitive inhibitor prevents binding 
of S (Fig. 5.8). Because the EI complex cannot bind S, v0 values are less when the competitive 
inhibitor is present than when it is absent. The kinetic scheme for competitive inhibition and the 
appearance of Lineweaver-Burk plots as a function of [I] are shown in Fig. 5.9. Both Lineweaver-
Burk and hyperbolic plots (discussed in class) reveal that Vmax is unaffected by the presence of the 
competitive inhibitor. This is so because at very high substrate concentrations S can effectively 
compete with I for binding to the enzyme. However, the value of the apparent Km (Km

app), which is 
the S concentration needed to achieve half-maximal velocity, is increased in the presence of the 
competitive inhibitor. In other words, the apparent affinity of the enzyme for S decreases in the 
presence of I. The affinity appears to decrease because I competes with S for binding to the active 
site. 

 
VIII. Irreversible enzyme inhibition. 
 

Irreversible inhibitors typically react covalently with their target enzymes causing permanent 
inactivation. Often a key amino acid side-chain in the active site is alkylated or acylated by the 
inhibitor. A classic example of an irreversible inhibitor is the nerve gas diisopropyl fluorophosphate 
(DFP) (Fig. 5.15). DFP inactivates the enzyme acetylcholinesterase by combining with a serine 
located within the active site. Acetylcholinesterase is secreted into the synapses of cholinergic nerves, 
where it serves to degrade acetylcholine molecules once a nerve signal has passed through the 
synapse. Acetylcholine must be removed from the synapse to allow the neurons to return to their 
resting state before conduction of another impulse. Other enzymes that contain serines in their active 
site, such as trypsin and chymotrypsin, also are inactivated by DFP. Another example of an 
irreversible enzyme inhibitor is aspirin, whose mode of action will be discussed in class. 

 
IX. Regulation of enzyme activity. 
 

In order for metabolism to proceed in an economical fashion, flux through metabolic 
pathways must be regulated. This is achieved through both long- and short-term regulation of the 
activity of regulatory enzymes that catalyze key steps in pathways. Long-term regulation is achieved 
through altering the level of synthesis of regulatory enzymes in response to a hormone or other 
signal. This type of regulation typically takes hours or days to achieve. Short-term, second-by-second 
regulation is accomplished by noncovalent binding of modulators (effectors) to regulatory enzymes, 
or by covalent modification of regulatory enzymes. In both cases, the shape of the enzyme is altered, 
and with it, its ability to carry out the reaction. Because enzyme shape is affected, this type of 
regulation is know as allosteric (other shape) regulation. To reduce wasteful synthesis and 
degradation of metabolites, the activity of an enzyme that catalyzes the first step of a metabolic 
pathway or a step that requires the input of energy usually is regulated. Allosteric regulation can be 



used to positively or negatively regulate activity, depending on the modulator-enzyme combination. 
The general aspects of allosteric regulation are discussed here. 

 
 A. Regulation of allosteric enzymes by noncovalent binding of effectors. 
 

The activity of allosteric enzymes can be controlled by reversible binding of negative 
effectors (inhibitors) and positive effectors (activators), which usually don't resemble the structure of 
the substrate, to separate regulatory sites. Allosteric effectors bind noncovalently to regulatory 
enzymes, changing either the Km or Vmax of the reaction. Allosteric enzymes almost always are multi-
subunit enzymes and regulation is achieved through changing the packing of subunits within the 
quaternary structure. Individual chains can be the same or different. Regulatory sites may be on the 
same subunit that contains the active site or on a purely regulatory subunit that itself lacks an active 
site. Allosteric enzymes do not obey Michaelis-Menten kinetics. Instead, they show sigmoidal v0 vs. 
[S] plots instead of hyperbolic plots for at least one of the substrates of the reaction. The sigmoidal 
plot indicates that cooperative binding of the substrate is occurring due to the binding of an effector. 
The general kinetic behavior of allosteric enzymes in response to activators and inhibitors is shown in 
Fig. 5.21. Activators often shift the velocity curve to the left, lowering the apparent Km, and making 
the curve more hyperbolic (indicating high affinity). Inhibitors often shift the curve to the right, 
raising the apparent Km, and exaggerating the sigmoidal shape. 

 
 B. Regulation of allosteric enzymes by covalent modification.  
 

The activity of allosteric enzymes often is controlled by covalent modification. In this case, 
the regulatory enzyme, known as an interconvertible enzyme, is modified by the action of converter 
enzymes (Fig. 5.24). Depending on the modification, the regulatory enzyme is shifted between its 
inactive and active forms, and activity is slowed down or turned on, respectively. Note that converter 
enzymes themselves also are regulatory enzymes whose activity can be altered by the binding of 
some small molecule (ligand) or also by covalent modification. 

Phosphorylation is a common type of covalent modification used to regulate enzyme activity. 
Phosphate groups typically are transferred from ATP to the hydroxyl group of a serine, threonine, or 
tyrosine residue of the enzyme, forming phosphate esters. Enzymes that transfer a phosphate group 
from ATP to the target enzyme are called kinases. Enzymes that remove the phosphate groups (by 
hydrolysis) are called phosphatases. 

 
X. Multienzyme complexes and multifunctional enzymes. 
 
Often, different enzymes that catalyze successive steps in a metabolic pathway may be held together in a 
multienzyme complex. Furthermore, through gene evolution, the individual catalytic domains may have 
become fused together within a single larger multifunctional polypeptide. The advantage is that a metabolite 
formed in the first step of a pathway can be directly handed off to the enzyme that carries out the next step 
through a process known as metabolic channeling. Channeling increases the rate at which metabolic 
pathways can run by reducing the time required for enzymes and their substrate to diffuse together in the 
bulk solution of the cytoplasm. 
 


