HW3

(Due Tuesday, October 29, 2013)

This optional HW2a is an opportunity for students wishing to improve their HW2 grade.

1. Let \(\tau = \frac{1 + \sqrt{5}}{2} \).

 (a) Show that \(\tau^2 = \tau + 1 \).

 (b) Consider \(\mathbb{Z}[\tau] = \{a + b\tau : a, b \in \mathbb{Z}\} \). Using (a), show that \(R \) is a commutative ring with identity.

 (c) Expand each of the following ring elements, and express in the standard form \(a + b\tau \) where \(a, b \in \mathbb{Z} \):

 - \((7 + 4\tau)(3 - 5\tau)\)
 - \(\tau^3\)
 - \(\tau^4\)
 - \(\tau^5\)

 (d) Find a formula expressing \(\tau^n \) in the standard form \(a + b\tau \) where the integer coefficients \(a, b \) are given in terms of a well-known sequence. Prove your formula by induction.

2. Let \(R \) be the set of all 2 matrices with elements in \(\mathbb{Z}_2 \). Addition and multiplication of \(2 \times 2 \) matrices are defined as usual; but since entries are in \(\mathbb{Z}_2 \), they are added and multiplied as integers modulo 2).

 (a) Is \(R \) commutative? Justify your answer.

 (b) What is the identity element of \(R \)?

 (c) How many elements does \(R \) have?

 (d) How many units does \(R \) have? Which elements of \(R \) are units?

3. (a) How many elements \(z \in \mathbb{Z}[i] \) are there satisfying \(|z|^2 = 101 \)? List them. Which of these elements are irreducible? (Here \(i = \sqrt{-1} \).

 (b) How many elements \(z \in \mathbb{Z}[\sqrt{-2}] \) are there satisfying \(|z|^2 = 101 \)? List them. Which of these elements are irreducible?
4. Factor 30 into irreducible factors
 (a) in \(\mathbb{Z} \);
 (b) in \(\mathbb{Z}[\sqrt{-2}] \);
 (c) in \(\mathbb{Z}[\sqrt{3}] \);
 (d) in \(\mathbb{Z}[i] \) where \(i = \sqrt{-1} \);
 (e) in \(\mathbb{Z}[\sqrt{7}] \).

 You may use any facts stated (with or without proof) in the handout on Factorization in Rings.

5. Prove that the ring \(\mathbb{Z}[\sqrt{-6}] \) does not have unique factorization.

 \textit{Hint:} Imitate the proof, given in class, that \(\mathbb{Z}[\sqrt{-5}] \) does not have unique factorization.