REVIEW: Basic Notation and Properties of the Integers

We will standard notation for the following number systems:

- \(\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \), the set of all integers;
- \(\mathbb{N} = \{ 1, 2, 3, \ldots \} \), the set of all natural numbers;
- \(\mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \} \), the set of all rational numbers;
- \(\mathbb{R} \), the set of real numbers, including \(\mathbb{Q} \) but also \(\pi, \sqrt{2}, \) etc.; intuitively, all numbers on the ‘number line’;
- \(\mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \} \) where \(i = \sqrt{-1} \), the set of all complex numbers.

The number system \(\mathbb{Z} \) is our first example of a ring. The systems \(\mathbb{Q}, \mathbb{R} \) and \(\mathbb{C} \) are more than rings; they are fields. The system \(\mathbb{N} \) is neither. We shall write \(\mathbb{N}_0 = \{ 0, 1, 2, 3, \ldots \} \) for the non-negative integers.

Let \(a \) and \(b \) be integers. We say that \(a \) divides \(b \), if \(b = ka \) for some integer \(k \). In symbols, this relationship is written as \(a \mid b \). In this case we also say that \(a \) is a divisor of \(b \), or that \(b \) is a multiple of \(a \). If this relation does not hold, i.e. \(a \) does not divide \(b \), we write \(a \nmid b \). Thus, for example, we have \(3 \mid 6 \) and \(4 \nmid 6 \). The number 6 has exactly eight divisors: 1, 2, 3, 6, −1, −2, −3 and −6.

Divisibility is an example of a relation. Another example of a relation is the ‘less than relation’; thus, for example, 5 is less than 7, denoted \(5 < 7 \). We distinguish between relations and operations. Operations, such as addition (as in ‘5 + 7’) and multiplication (as in ‘5 \times 7’) yield numerical values; not so for a relation such as ‘5 < 7’ which is simply a statement expressing a relationship between two numbers. Thus for any two numbers \(a \) and \(b \), the statement \(a < b \) is either true or false; but it does not have a numerical value. Just so for divisibility: \(a \mid b \) is either true or false, depending on the values of \(a \) and \(b \); but it is a statement, not a number. We have not yet begun to divide (which would be an operation).

Several properties of divisibility are well known and easily verified; for example

Proposition 1. Let \(a, b, c \) be integers.

(a) If \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

(b) If \(c \) divides both \(a \) and \(b \), then \(c \) also divides their sum \(a + b \) as well as their difference \(a - b \).

Proof. If \(b = ka \) and \(c = \ell b \) for some integers \(k \) and \(\ell \), then \(c = (k\ell)a \). This proves (a).
Next, suppose \(a = rc \) and \(b = sc \); then \(a + b = (r + s)c \) and \(a - b = (r - s)c \). This proves (b). \(\square \)

The divisors of 6 are \(\pm1, \pm2, \pm3, \pm6 \). The divisors of 20 are \(\pm1, \pm2, \pm4, \pm5, \pm10, \pm20 \). The numbers 6 and 20 have four common divisors are \(\pm1, \pm2 \), of which the largest is 2. We write \(gcd(6, 20) = 2 \) (the greatest common divisor of 6 and 20 is 2).

Note that every integer divides 0. (For example, 5 divides 0 since \(5 = 5 \times 0 \).) The divisors of 0 are \(0, \pm1, \pm2, \pm3, \ldots \). The common divisors of 6 and 0 are \(\pm1, \pm2, \pm3, \pm6 \), the greatest of which is 6; thus \(gcd(6, 0) = 6 \).

Similarly we can define \(gcd(a, b) \) for any two integers \(a \) and \(b \), provided that \(a \) and \(b \) are not both zero. (The value of \(gcd(0, 0) \) is undefined since the common divisors of 0 and 0 include all integers, of which there is no largest.) Two integers \(a \) and \(b \) are relatively prime, or coprime, if \(gcd(a, b) = 1 \).

An integer \(n > 1 \) is prime if its only positive divisors are 1 and \(n \); otherwise it is composite. The number 1 is in a class by itself, neither prime nor composite.

The Division Algorithm

Now we will start to divide! Let \(a \) and \(d \) be integers with \(d \) positive. There exist unique integers \(q \) and \(r \) such that

\[
a = qd + r \quad \text{and} \quad r \in \{0, 1, 2, \ldots, d - 1\}.
\]

‘Unique’ means that there is only one choice for \(q \) and \(r \) satisfying these conditions. We \(q \) the quotient, and \(r \) the remainder, when \(a \) is divided by \(d \). Note that \(d \) divides \(a \) iff the remainder \(r = 0 \).

Examples:

\(70 = 6 \times 11 + 4 \). When 70 is divided by 11, the quotient is 6 and the remainder is 4. Clearly \(11 \mid 70 \).

\(70 = 5 \times 11 + 15 \). However, 15 is not in the required range \(\{0, 1, 2, \ldots, 10\} \), so it is not the remainder (and 5 is not the quotient).

\(-70 = (-7) \times 11 + 7 \). When \(-70 \) is divided by 11, the quotient is \(-7 \) and the remainder is 7.
Congruences

Fix a positive integer \(n \). Given integers \(a \) and \(b \), we say that \(a \) is congruent to \(b \) (modulo \(n \)) if \(b - a \) is divisible by \(n \); in symbols, this is written \(a \equiv b \pmod{n} \) (or if the choice of modulus \(n \) is understood, we simply write \(a \equiv b \)). If this relation does not hold, i.e. \(a \) is not congruent to \(b \), we write \(a \not\equiv b \). The following properties hold for congruences:

Proposition 2. Fix a positive integer \(n \) as the modulus in each of the following congruences. For all integers \(a, b, c \) we have

(a) \(a \equiv a \).
(b) If \(a \equiv b \) then \(b \equiv a \).
(c) If \(a \equiv b \) and \(b \equiv c \), then \(a \equiv c \).
(d) If \(a \equiv b \) and \(c \equiv d \), then \(a + c \equiv b + d \) and \(ac \equiv bd \).

Properties (a)–(c) say that congruence modulo \(n \) is an equivalence relation. Property (d) says that sums and products are well-defined for congruence classes.

Proof. Since \(a - a = 0 \) is divisible by \(n \), (a) holds. If \(b - a = kn \) then \(a - b = (-k)n \), which proves (b). If \(b - a \) and \(c - b \) are divisible by \(n \) then so is their sum \(c - a = (b - a) + (c - b) \) by Proposition 1; this proves (c).

If \(b - a = rn \) and \(d - c = sn \), then \((b + d) - (a + c) = (r + s)n \) so \(a + c \equiv b + d \); also

\[
bd - ac = (b - a)d + (d - c)a = rdn + sna = (rd + sa)n
\]

so \(ac \equiv bd \). \(\square \)

Let us use congruences to show that the equations \(x^2 - 3y^2 = 104 \) has no solution in integers. First observe that for every integer \(a \), we have \(a^2 \equiv 0 \) or \(1 \mod 3 \). (By the Division Algorithm, we have \(a = 3q + r \) for some \(r \in \{0, 1, 2\} \) so \(a \equiv 0, 1 \) or \(2 \) mod 3; and we check that \(a^2 \equiv 0 \) or \(1 \) mod 3 in each case.) It follows that \(x^2 - 3y^2 \equiv 0 \) or \(1 \mod 3 \) for all integers \(x, y \); however \(104 \equiv 2 \mod 3 \).

Modular Arithmetic

Again fix a positive integer \(n \). The set \(\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\} \) is a number system with addition and multiplication defined modulo \(n \). Thus for example the number system \(\mathbb{Z}_4 = \{0, 1, 2, 3\} \) has addition and multiplication defined by the tables
A statement like $2 + 3 = 1$, valid in \mathbb{Z}_4, must not be taken out of context; the statement does not hold in \mathbb{Z}, where the operation of addition, and the numbers themselves, have a different meaning. To be precise, we should use different symbols in \mathbb{Z}_4. This is often resolved by denoting $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ or $\{[0]_4, [1]_4, [2]_4, [3]_4\}$ where the new symbols represent the congruence classes modulo 4:

\[
\bar{0} = 4\mathbb{Z} = \{4k : k \in \mathbb{Z}\} = \{\ldots, -8, -4, 0, 4, 8, 12, 16, \ldots\};
\]
\[
\bar{1} = 4\mathbb{Z} + 1 = \{4k + 1 : k \in \mathbb{Z}\} = \{\ldots, -7, -3, 1, 5, 9, 13, 17, \ldots\};
\]
\[
\bar{2} = 4\mathbb{Z} + 2 = \{4k + 2 : k \in \mathbb{Z}\} = \{\ldots, -6, -2, 2, 6, 10, 14, 18, \ldots\};
\]
\[
\bar{3} = 4\mathbb{Z} + 3 = \{4k + 3 : k \in \mathbb{Z}\} = \{\ldots, -5, -1, 3, 7, 11, 15, 19, \ldots\}.
\]

These are simply the equivalence classes for the equivalence relation of congruence modulo 4. With this understanding we have

\[
\bar{2} + \bar{3} = \{\ldots, -6, -2, 2, 6, \ldots\} + \{\ldots, -5, -1, 3, 7, \ldots\}
\]
\[
= \{\ldots, -11, -7, -3, 1, 5, 9, 13, \ldots\} = \bar{1}.
\]

However, we soon find the extra notation tiresome, and drop them the way one outgrows training wheels on a bicycle. At this point our perspective changes: rather than regarding \mathbb{Z}_4 as ‘coming from \mathbb{Z}’, we regard \mathbb{Z}_4 as a number system that exists in its own right alongside the other number systems \mathbb{Z}, \mathbb{Q}, \mathbb{R}, etc. However one should always remember that \mathbb{Z}_4 is not a subset of \mathbb{Z}. The fallacy of this notion (encouraged by our abuse of the symbols 0, 1, 2, 3 to represent two things in different contexts) is emphasized by the fact that the statement $2 + 3 = 5 = 1$ is true in \mathbb{Z}_4, but false in \mathbb{Z}. Similarly, \mathbb{Z}_3 is not a subset of \mathbb{Z}_4, despite our laziness in using the same symbols $\bar{0}, \bar{1}, \bar{2}$ in these different contexts. Note that $\mathbb{Z}_3 = \{0, 1, 2\} = \{[0]_3, [1]_3, [2]_3\}$ where in this context

\[
\bar{0} = 3\mathbb{Z} = \{3k : k \in \mathbb{Z}\} = \{\ldots, -6, -3, 0, 3, 6, 9, 12, \ldots\};
\]
\[
\bar{1} = 3\mathbb{Z} + 1 = \{3k + 1 : k \in \mathbb{Z}\} = \{\ldots, -5, -2, 1, 4, 7, 10, 13, \ldots\};
\]
\[
\bar{2} = 3\mathbb{Z} + 2 = \{3k + 2 : k \in \mathbb{Z}\} = \{\ldots, -4, -1, 2, 5, 8, 11, 14, \ldots\}.
\]

These are quite different from the elements of \mathbb{Z}_4 listed above; and our use of the same symbols is pure laziness. If there is any danger of confusion, we should go back to the old notation

\[
[a]_n = n\mathbb{Z} + a = \{kn + a : k \in \mathbb{Z}\} = \{\ldots, a - 2n, a - n, a, a + n, a + 2n, a + 3n, \ldots\}.
\]