#1. \(H = 2 \cdot 7 = (1 + \sqrt{13})(1 - \sqrt{13}) \). We will show that these are essentially distinct factorizations into irreducibles. First observe that \(\mathbb{Z}[\sqrt{13}]^* = \{1, -1\} \) since the only solutions of \(N(a + b\sqrt{13}) = a^2 + 13b^2 = 1 \) are \((a, b) = (\pm 1, 0) \).

To show that 2 is irreducible in \(\mathbb{Z}[\sqrt{13}] \), suppose \(2 = xy \), \(x, y \in \mathbb{Z}[\sqrt{13}] \) with neither factor \(x, y \) a unit. Then \(4 = N(2) = N(x)N(y) \) so \(N(x) = N(y) = 2 \). However, \(N(a + b\sqrt{13}) = a^2 + 13b^2 = 2 \) has no solutions with \(a, b \in \mathbb{Z} \), a contradiction. Thus, 2 is irreducible. Similar reasoning shows that 7, \(1 + \sqrt{13} \), \(1 - \sqrt{13} \) are irreducible.

Finally, the factors \(1 \pm \sqrt{13} \) are not associates of the factors 2, 7 as is easily seen since the only units are 1, -1.

#2. (a) This is not a ring; it does not contain a zero element (additive identity).

(b) This is not a ring; the associative law fails since \((i \times i) \times j = 0 \times j = 0 \) whereas \(i \times (i \times j) = i \times k = -j \).

(c) This is a ring (a subring of \(\mathbb{M}_2(\mathbb{R}) \) since it contains \(\mathbb{R} \)) and is closed under addition, subtraction and multiplication.

(d) This is not a ring since it is not closed under multiplication: \((0 1)(0 1) = (0 0)\).

(e) This is not a ring since the distributive law fails. Let \(f(t) = t \); then \((f * (f + f))(t) = t \) whereas \((f * f)(t) + (f * f)(t) = t + t = 2t \).
3. (a) Suppose \(f(x) \) has a rational root \(\frac{a}{b} \) where \(a, b \in \mathbb{Z} \) with \(\gcd(a, b) = 1 \). Then \(a^3 - ab^2 + 2b^3 = 0 \). If \(b \) has a prime divisor \(p \), then \(p \mid a^3 \) so \(\frac{a}{b} \), a contradiction, thus \(b = \pm 1 \). If \(a \) has a prime divisor \(p \), then \(p \mid 2 \) so \(p = 2 \); thus, \(\frac{a}{b} \in \{-2, -1, 0, 1, 2\} \). However, we readily check that none of \(-2, -1, 0, 1, 2\) is a root of \(f(x) \). So \(f(x) \) has no root in \(\mathbb{Q} \), which means \(f(x) \) has no factor of degree 1. Since \(\deg f(x) = 3 \), it follows that \(f(x) \) is irreducible in \(\mathbb{Q}[x] \).

(b) Take \(F = \mathbb{Q}[x]/\langle f(x) \rangle \). Every element of \(F \) has the form \(a + bx + cx^2 + \langle f(x) \rangle \), which we abbreviate as \(a + bx + cx^2 \). Here \(\alpha \in F \) satisfies \(f(\alpha) = 0 \).

(c) The relation \(\alpha^3 - \alpha = -2 \) may be factored as \((x+1)(\alpha^2 - \alpha) = -2 \), so \(\frac{\alpha}{\alpha+1} = \frac{1}{2} (\alpha - \alpha^2) = 0 + \frac{1}{2} \alpha - \frac{1}{2} \alpha^2 \).

Alternatively, \(\gcd(x+1, x^3-x+2) = 1 \) in \(\mathbb{Q}[x] \) since \(x^3-x+2 \) is irreducible. Proceeding with the extended Euclidean algorithm:

\[
\begin{array}{c|ccc}
\text{x}^3-x+2 & x+1 \\
\hline
1 & 0 & x^3-x+2 \\
0 & 1 & x+1 \\
1 & -x^2+x & 2 \\
\frac{1}{2} & -\frac{1}{2} x^2+\frac{1}{2} x & 1 \\
\end{array}
\]

i.e. \(1 = \frac{1}{2} (x^3-x+2) + (x+1) \left(\frac{1}{2} x - \frac{1}{2} \alpha^2 \right) \)

so \((x+1 + \langle f(x) \rangle) \left(\frac{1}{2} x - \frac{1}{2} \alpha^2 + \langle f(x) \rangle \right) = 1 + \langle f(x) \rangle \) in \(\mathbb{Q}[x] \). Passing to the quotient ring \(F = \mathbb{Q}[x]/\langle f(x) \rangle \) we obtain \((x+1) \left(\frac{1}{2} x - \frac{1}{2} \alpha^2 \right) = 1 \), i.e. \(\frac{1}{\alpha+1} = \frac{1}{2} \alpha - \frac{1}{2} \alpha^2 \).
#4. (a) Multiplying both sides of \(1+1 = 0 \) by \(x \in \mathbb{R} \) gives \(2x = x + x = 0 \) for all \(x \in \mathbb{R} \). Now
\[
\theta (x+y) = (x+y)^2 = x^2 + 2xy + y^2 = x^2 + y^2 = \theta (x) + \theta (y)
\]
and \(\theta (xy) = (xy)^2 = x^2 y^2 = \theta (x) \theta (y) \) for all \(x, y \in \mathbb{R} \).

(b) Examples include \(\mathbb{Z}_2 [x] \) and the field of elements studied in class.

#5. The evaluation map \(\theta : \mathbb{R} \to \mathbb{R} \) given by \(f \mapsto f(0) \)
is (as always) a homomorphism. It is onto \(\mathbb{R} \) since constant functions map onto \(\mathbb{R} \).

#6. Recall that every ideal of \(\mathbb{Z} \) is principal.
(a) The only such ideals are \(\langle p \rangle \) and \(\mathbb{Z} \) itself.
This is because any such ideal has the form \(\langle m \rangle \) with \(m \in \mathbb{Z} \); and \(pq, pr \in \langle m \rangle \) requires \(m | pq \) and \(m | pr \), so \(m \) divides \(\gcd (pq, pr) = p \).
This forces \(\langle m \rangle = \langle 1 \rangle = \mathbb{Z} \) or \(\langle m \rangle = \langle p \rangle \).
(b) Of the two ideals listed in (a), only \(\mathbb{Z} \) is possible since \(q \not\in \langle p \rangle \).

#7. (a) F (b) T (c) F (d) T (e) F (f) T (g) F (h) T (i) T (j) T

Remarks:
(a) \(\mathbb{Z}[\sqrt{2}] \) has unique factorization, as mentioned in class. The factors 2, 7 and \(6 + 2\sqrt{2} \) are reducible:
\[7 = (3 + \sqrt{2})(3 - \sqrt{2}), \quad 2 = (\sqrt{2})(\sqrt{2}), \quad 6 + 2\sqrt{2} = (\sqrt{2})(\sqrt{2})(3 + \sqrt{2}) \]
(b) \(f(x) \mapsto f(t) \) is an isomorphism \(\mathbb{Z}[x] \to \mathbb{Z}[t] \).
(c) \(xf(x) = 1 \) has no solution \(f(x) \in \mathbb{Z}[x] \) since if \(f(x) \neq 0 \) then \(\deg (xf(x)) > 1 \).
(d) \(3 \cdot 17 = 0 \) in \(\mathbb{Z}_5 \).

(e) \(x^4 + 1 \in \mathbb{R}[x] \) has no real roots but it is reducible in \(\mathbb{R}[x] \):
\[x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1). \]

(f) This follows from Euclid's Algorithm since \(\mathbb{R} \) is a field.

(g) \(F[[t]] \) is a field; its only ideals are \{0\} and \(F[[t]] \) itself. \(F[t] \) is however a subring of \(F[[t]] \).

(h) \(a^2 = a \cdot a \) which uses only multiplication (which is well-defined in \(\mathbb{Z}_n \)).

(i) \((x + J)(y + J) = xy + J = yx + J = (y + J)(x + J)\).

(j) \((x + J)(1 + J) = xJ + J = x + J = 1x + J = (1 + J)(x + J).\)