1. \(x^2 \equiv 1 \mod p \) iff \(p \) divides \(x^2 - 1 = (x+1)(x-1) \) iff \(p \mid (x+1) \) or \(p \mid (x-1) \) by Euclid’s Lemma. iff \(x \equiv 1 \mod p \) or \(x \equiv -1 \mod p \) iff \(x \equiv \pm 1 \mod p \).

2. (a) 24 = \[3 \times 7 + 8\]
(b) \(-24 = -4 \times 7 + 4\)
(c) \(7 = 0 \times 24 + 7\)
(d) \(10^{24} = 10^{17} \times 10^7 + 0\)
(e) \(10^{24} = (10^{17} + 10^3) \times (10^3 - 1) + 10^3 - 1\)

3. \[
\begin{array}{c|c|c|c}
45321 & 4321 & 1 & 0 \\
654321 & 4321 & 1 & 0 \\
1850 & 621 & 151 & -1 \\
608 & 13 & 303 & 2 \\
13 & 1 & 1060 & 329 \\
10 & 3 & 50577 & -334 \\
1 & 1 & 201248 & 1329 \\
\end{array}
\]

Check: \(1329 \times 654321 - 201248 \times 4321 = 1\).

4. \(456 x = 789 \mod 123 \) iff \(87x = 51 \mod 123 \) iff \(87x = 51 + 123k \) for some \(k \in \mathbb{Z} \) iff \(29x = 17 + 41k \) for some \(k \in \mathbb{Z} \) iff \(29x \equiv 17 \mod 41 \) iff \(x \equiv 17 \times 17 = 289 \equiv 2 \mod 41 \).

The solution set is \(\{ x \in \mathbb{Z} : x \equiv 2 \mod 41 \} \)
\[= \{ \ldots, -80, -39, 2, 43, 84, \ldots \} \]
5. (a) F (b) F (c) F (d) T (e) F (f) T (g) F (h) T (i) F (j) F

Comments:
6 divides 0, but 6 \not\div 0 and 16 \not\div 101. This is a counterexample to both (a) and (b).

(d) If \(b = ra \) and \(a = sb \) for some \(r, s \in \mathbb{Z} \) then \(b = rsb \), i.e. \((rs-1)b = 0 \). Either \(r = s = \pm 1 \) (in which case \(a = \pm b \) as required) or \(b = 0 \) (in which case also \(a = 0 \) so once again \(a = \pm b \) follows).

(e) A counterexample is given by \(2 \mid -2 \), \(-2 \mid 2 \) but \(2 \not\mid -2 \).

(h) A counterexample is given by \(1 \mid 2 \), \(2 \mid 2 \) but \(3 \nmid 4 \).

(f) \(d \mid a \) iff \(a = kd \) for some \(k \in \mathbb{Z} \)
 iff \((-a) = (-k)d \) for some \(k \in \mathbb{Z} \)
 iff \(d \mid (-a) \).

(g) If \(b = ra \) and \(d = sc \) for some \(r, s \in \mathbb{Z} \), then
 \(bd = (rs)(ac) \) so \(ac \mid bd \).

(h) This is trivially true. (If \(a^2 \equiv 1 \pmod{n} \) then
 \(a^2 \equiv 1 \) or \(a^2 \equiv -1 \pmod{n} \). This follows from the meaning of \(\equiv \) without any consideration of congruences necessary.) The intended statement was "If \(a^2 \equiv 1 \pmod{n} \) then necessarily \(a^2 \equiv 1 \pmod{n} \)" which is false, as the example \(a = 3, n = 8 \) shows.

(i) Consider the counterexample \(4 \mid 12, 6 \mid 12 \) but \(24 \nmid 12 \).

(j) Consider the counterexample \(4 \mid 2 \cdot 6 \) but \(4 \nmid 2, 4 \nmid 6 \).