1. No, \(R \not\cong C \). As evidence for this, it suffices to say that \(C \) has a root of \(x^2 + 1 = 0 \) but \(R \) doesn’t.

To express this more formally, suppose \(\Theta: C \to R \) is an isomorphism. As explained in class, \(\Theta(0) = 0 \) and \(\Theta(i) = 1 \); this follows from the uniqueness of 0 and 1, as identities for addition and multiplication respectively. Then

\[
0 = \Theta(0) = \Theta(i^2 + i) = \Theta(i^2) + \Theta(i) = \Theta(i)^2 + 1
\]

so \(\Theta(i) \in R \) is a root of \(x^2 + 1 = 0 \), a contradiction.

2. (a) No, it is not a ring; most elements have no additive inverse (e.g. \(5 + x = 0 \) has no solution).

(b) \(U \) is not a ring; it has no zero element i.e. no element \(x \) satisfying \(x + z = x \) for all \(x \in U \).

(c) \(S \) is not a ring; it has no zero element i.e. no element \(z \) satisfying \(x + z = x \) for all \(x \in S \).

(d) \(R \) is a ring (commutative, with zero element \(-1 \) and identity 0 i.e. \(x + 0 \cdot (-1) = x \), \(x \cdot 0 = x \) for all \(x \in R \)). If \(Z \) is the usual ring of integers then \(\Theta: R \to Z \) given by \(\Theta(r) = r + 1 \) is an isomorphism, so \(R \cong Z \).

(e) \(T \) is not a ring; for example it fails the left-distributive law. If \(f(x) = x^2 \), \(g(x) = x \), \(h(x) = 1 \) then \(f(1) = (g + h) \neq (f \circ g) + (f \circ h) \) since \((f \circ (g + h))(x) = (x + 1)^2 \), \((f \circ g)(x) = x^2 \), \((f \circ h)(1) = 1 \).
#3. Units in \mathbb{Z}_{18} are represented by integers $a \in \{0, 1, 2, \ldots, 17\}$ such that $\text{gcd}(a, 18) = 1$, so there are six units $1, 5, 7, 11, 13, 17$.

\[
\begin{array}{cccccc}
 \text{a} & 1 & 5 & 7 & 11 & 13 & 17 \\
 \text{a'} & 1 & 11 & 13 & 5 & 7 & 17 \\
\end{array}
\]

#4. (a) Units in R are fractions of the form $\frac{a}{b}$ where a, b are odd integers.

This is because an element $\frac{a}{b} \in R$ (with $a \in \mathbb{Z}$ and b odd) is a unit iff its inverse $\frac{b}{a}$ is also in R; this requires $a \in \mathbb{Z}$ to be odd also.

(b). $2 = \frac{2}{1} \in R$ is irreducible; more generally, $\frac{2a}{b} \in R$ (where a, b are odd) is irreducible. These are all the irreducible elements of R.

And by (a), they are all associates of each other.

To see this, suppose $\frac{a}{b} \in R$ is irreducible where $a \in \mathbb{Z}$ and b is odd. Since $\frac{a}{b}$ is not a unit (by definition), $a = 2c$ for some $c \in \mathbb{Z}$ and $c \neq 0$. If c is even then $c = 2d$ and we have $\frac{a}{b} = 2 \cdot \frac{2d}{b}$ where neither of the factors $2, \frac{2d}{b}$ is a unit. This cannot happen, so c is odd.
5. (a) T (b) F (c) F (d) T (e) T (f) F (g) T (h) T (i) T (j) T

Comments:

(a) \(\mathbb{Z}_p \) is a commutative ring with identity. If \(a \in \{1, 2, 3, \ldots, p-1\} \) then \(\gcd(a, p) = 1 \) so \(ax + py = 1 \) for some \(x, y \in \mathbb{Z} \) by the extended Euclidean algorithm, so \(ax \equiv 1 \mod p \); hence \(a \) represents a unit in \(\mathbb{Z}_p \).

(c) The only units in \(\mathbb{Z}[x] \) are the two constant polynomials \(1 \) and \(-1 \).

(d) Units in \(\mathbb{Z}[12] \) are \(\pm (1+\sqrt{2})^k \), \(k \in \mathbb{Z} \).

(b) \((x+y)^2 = (x+y)(x+y) = x^2 + xy + yx + y^2\). This doesn't simplify any further unless \(xy = yx \), which only works if \(R \) is commutative.

(e) If \(23 = xy \) where \(x, y \in \mathbb{Z}[i] \) then \(23 = N(x)N(y) \).

We cannot have \(N(x) = 23 \) since \(a^2 + b^2 = 23 \) has no integer solutions; so \(N(x) = 1 \) or \(N(y) = 1 \), i.e. either \(x \) or \(y \) is a unit.

(f) \(53 = (7+2i)(7-2i) \) where neither \(7+2i \) nor \(7-2i \) is a unit.

(g) If \(uv = 1 \) then \((-u)(-v) = 1\).

(h) As indicated in class, for large integers in general, factorization is prohibitively difficult; however, Euclid's algorithm is very efficient.

(i) If \(x, y \in S \) then \((x+y)r = x(r)+yr = x+ry = r(xy) \)
so \(x+y \in S \); also \((xy)r = x yr = x(ry) = x(r)y = (xr)y = (rx)y = r(xy) \)
so \(xy \in S \). Thus \(S \) is closed under addition and multiplication. The other requirements are consequence of the fact that \(R \) is a ring.

(j) See class notes or the handout in the Fund. Theorem of Arithmetic.