Counting Necklaces (Handout March, 2016)

We illustrate the use of exponential generating functions in a counting problem. More details are found in Chapter 8 of the textbook, although we will be covering only a few highlights of this topic.

How many ways can we string together \(n \) different beads to form a necklace? Start by stringing \(n \geq 2 \) beads onto a linear piece of string (i.e. a cord with two end points). There are \(n! \) choices of order for this sequence; but the reverse sequence gives exactly the same string of beads, so really there are

\[
\begin{cases}
 \frac{n!}{2} & \text{if } n \geq 2; \\
 1 & \text{if } n = 1
\end{cases}
\]

ways to string \(n \) beads onto a linear piece of string. (The case \(n = 1 \) is an exception, with only one way to string one bead, since reversing a string of one bead gives the same sequence.) Here we picture the \(\frac{4!}{2} = 12 \) ways to string 4 beads in a row:

![Image of 12 ways to string 4 beads in a row]

Now join the ends of the string together to form a loop. If \(n \geq 3 \), there are \(n \) different linear strings that could be used to form the same loop necklace (in other words, for each loop necklace there are \(n \) different points to break the string to form a linear string with \(n \)
beads). The cases \(n \leq 2 \) are again exceptional. So the number of loop necklaces that can be formed using \(n \) different beads is

\[
a_n = \begin{cases}
\frac{n!}{2^n} = \frac{(n-1)!}{2} & \text{if } n \geq 3; \\
1, & \text{if } n = 1, 2.
\end{cases}
\]

By convention, we will take \(a_0 = 0 \) (with no beads, we cannot form a necklace at all). Here are the \(\frac{(4-1)!}{2} = 3 \) loop necklaces using 4 beads:

The exponential generating function for \(a_n \) is

\[
A(x) = \sum_{n \geq 1} \frac{a_n}{n!} x^n = x + \frac{1}{2} x^2 + \sum_{n \geq 3} \frac{(n-1)!}{2^n} x^n = x + \frac{1}{2} x^2 + \frac{1}{2} \left(\frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \cdots \right).
\]

To find a closed formula for \(A(x) \), consider the derivative

\[
A'(x) = 1 + x + \frac{1}{2} \left(x^2 + x^3 + x^4 + x^5 + \cdots \right) = \frac{1}{2} + \frac{1}{2} x + \frac{1}{2} \left(1 + x + x^2 + x^3 + \cdots \right) = \frac{1}{2} + \frac{1}{2} x + \frac{1}{2} \left(\frac{1}{1-x} \right).
\]

Integrating, we obtain

\[
A(x) = \frac{x}{2} + \frac{x^2}{4} - \frac{1}{2} \ln(1-x).
\]

Now let \(c_n \) be the number of ways to form a collection of nonempty necklaces from \(n \) different beads. Call this number \(c_n \). After \(c_0 = 1 \) the next few terms are as shown:

\[
\begin{array}{ccc}
c_1 = 1 & c_2 = 2 & c_3 = 5 \\
\begin{array}{c}
1 \\
\end{array} & \begin{array}{c}
1 \ 2 \\
\end{array} & \begin{array}{c}
1 \ 2 \ 3 \\
1 \ 2 \ 3 \ 4 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
c_4 = 17 \\
\begin{array}{c}
1 \ 2 \ 3 \ 4 \\
1 \ 2 \ 3 \ 4 \\
1 \ 2 \ 3 \ 4 \\
1 \ 2 \ 3 \ 4 \\
\end{array}
\end{array}
\]
No additional structure is required on the set of necklaces, so we take \(b_n = 1 \) and

\[
B(x) = \sum_{n \geq 0} \frac{b_n}{n!} x^n = \sum_{n \geq 0} \frac{x^n}{n!} = e^x.
\]

Finally, the exponential generating function of \(c_n \) is

\[
C(x) = B(A(x)) = \frac{e^{\frac{x^2}{2} + \frac{x^2}{4}}}{\sqrt{1 - x}} = 1 + x + x^2 + \frac{5}{6} x^3 + \frac{17}{24} x^4 + \frac{73}{120} x^5 + \frac{97}{180} x^6 + \ldots
\]

where we are able to determine as many terms as desired in this series expansion using the MAPLE session.

From this we are able to recover the value of \(c_n \) for small values of \(n \) by multiplying the coefficient of \(x^n \) in the series expansion, by \(n! \) as we have demonstrated in our MAPLE session, thereby obtaining

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 c_n & 1 & 1 & 2 & 5 & 17 & 73 & 388 & 2461 & 18155 & 152531 \\
\end{array}
\]

A second example, in which we incorporate more structure on the set of necklaces, is the following: Denote by \(c_n \) the number of ways to construct a set of loop necklaces from \(n \) different beads, and then arrange these necklaces in a row in order. We compute the first few terms in this new sequence by a slight modification of our first example. There
are now $b_n = n!$ ways to list n objects in a row, and the exponential generating function for this is

$$B(x) = \sum_{n \geq 0} \frac{b_n}{n!} x^n = \sum_{n \geq 0} x^n = \frac{1}{1 - x}.$$

Using the same $A(x)$ as above, we now obtain

$$C(x) = B(A(x)) = \frac{1}{1 - \frac{x}{2} - \frac{x^2}{4} + \frac{1}{2} \ln(1 - x)} = 1 + x + \frac{3}{2} x^2 + \frac{13}{6} x^3 + \frac{77}{24} x^4 + \cdots.$$

Here is our MAPLE session:

As before, the first few values of c_n are found to be

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_n</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>77</td>
<td>572</td>
<td>5114</td>
<td>53406</td>
<td>637818</td>
</tr>
</tbody>
</table>

We verify the smallest values here using our previous catalog of necklaces:

$c_0 = 1$;
$c_1 = 1$;
$c_2 = 1 \times 2! + 1 \times 1! = 2 + 1 = 3$;
$c_3 = 1 \times 3! + 3 \times 2! + 1 \times 1! = 6 + 6 + 1 = 13$;
$c_4 = 1 \times 4! + 6 \times 3! + 7 \times 2! + 3 \times 1! = 24 + 36 + 14 + 3 = 77$.

4
Let us explain c_3: We have listed five ways to construct necklaces from 3 different beads,

- one way using three necklaces, which can be listed in $3! = 6$ ways;
- three ways using two necklaces, in each case with $2!$ ways to list the necklaces,
 for a total of $3 \times 2! = 6$ ways; and
- one way using a single necklace, which can be listed in only $1!$ way,
for a total of $c_3 = 6 + 6 + 1 = 13$ ways to construct necklaces from 3 different beads, then list them in some order.