Homework Assignment HW4 Due Friday, February 27, 2015

Instructions: Do not copy work from other sources. You may freely use MAPLE or comparable software. Check your answers whenever it is reasonable to do so.

1. Consider the smallest 16-digit prime number, which is
\[p = 10^{15} + 37 = 1000000000000037. \]
Find an integer \(a \) such that
\[a^{4321} \equiv 418910750415330 \mod p. \]

Hint: Find integers \(r \) and \(s \) such that \(4321r + (p - 1)s = 1 \); then use Fermat’s Little Theorem to simplify \(a^{4321r+(p−1)s} \mod p \). Do not try to run an exhaustive search through all the quadrillion possible values of \(a \mod p \).

2. Refering to the prime \(p \) given in #1, find an integer \(b \) such that
\[b^{1234} \equiv 256360808697320 \quad \text{and} \quad b^{4321} \equiv 584631348017142 \mod p. \]

Hint: Apply the extended Euclidean Algorithm for the exponents 1234 and 4321. Do not try to run an exhaustive search through all the quadrillion possible values of \(b \mod p \).

3. Consider the integer
\[n = 10000\cdots02673000\cdots0801. \]
Using Fermat’s Little Theorem, show that \(n \) is not prime. Does your computation provide the prime factorization of \(n \)? Explain.

4. Referring to the number \(n \) given in #3, you are given the additional information that
\[\phi(n) = 10000\cdots02662000\cdots0532. \]
Using this additional information, determine the prime factorization of \(n \).

Hint: Assume that \(n \) has two distinct prime factors \(p \) and \(q \). From the information given, obtain a quadratic equation in \(p \) which may be solved using MAPLE. The point of this exercise is that for large values of \(n \), determining \(\phi(n) \) is of the same level of difficulty as factoring \(n \).