#1. Using Maple we find \(\gcd(4321, p-1) = 1 = 4321r + (p-1)s \)
where \(r = -11108539689887, \ s = 48 \). Now \(a^{p-1} \equiv 1 \pmod{p} \)
by Fermat's Little Theorem so
\[
a = a^{4321r + (p-1)s} = (a^{4321})^r (a^{p-1})^s = (a^{4321})^s = 418910750415330^s \equiv 12345678901234 \pmod{p}.
\]
One integer solution is \(12345678901234 \).

#2. Using Maple we get \(\gcd(1234, 4321) = 1 = 1234r + 4321s \)
where \(r = -1082, \ s = 309 \) so
\[
b = b^{1234r + 4321s} = (b^{1234})^r (b^{4321})^s = 24630086807320^s \times 58463134801742^s \equiv 801234567890123 \pmod{p}.
\]
One integer solution is \(801234567890123 \).

#3. Using Maple, we find \(2^{p-1} \not\equiv 1 \pmod{a} \). See the accompanying worksheet which finds the
remainder (residue) of \(2^{p-1} \pmod{a} \); however, this
gives no direct information as to the prime
factorization of \(n \). The only information we
obtain (from Fermat's Little Theorem) is that \(n
\) is not prime.
4. Given that \(n = pq \) where \(p, q \) are distinct primes, we have \(\phi(n) = (p-1)(q-1) = pq - p - q + 1 \) so \(p, q \) are the roots of the quadratic polynomial

\[
x^2 - (p+q)x + pq = x^2 - (n - \phi(n) + 1)x + n.
\]

Using Maple, the roots are given by

\[
p = \frac{-b + \sqrt{\Delta}}{2} = 10^{10} + 3,
q = \frac{-b - \sqrt{\Delta}}{2} = 10^{10} + 267
\]

where \(b = -(n - \phi(n) + 1) \), \(\Delta = b^2 - 4n \) (the discriminant).
Question #1.
> p := 10^15 + 37;
> igcdex(4321, p-1, 'r', 's');
> r, s;
> 418910750415330 &^ r \mod p;
> 12345678901234

If you are uncomfortable with the negative exponent here, one can first reduce \(r \mod p - 1 \); but of course this yields the same answer:
> r := r \mod (p-1);
> 418910750415330 &^ r \mod p;
> 12345678901234

Question #2.
> igcdex(1234, 4321, 'r', 's');
> r, s;
> (256360808697320 &^ r) * (584631348017142 &^ s) \mod p;
> 801234567890123

Just as in #1, the negative exponent can be avoided by first reducing \(r \mod p - 1 \); and once again, this does not change the answer:
> r := r \mod (p-1);
> (256360808697320 &^ r) * (584631348017142 &^ s) \mod p;
> 801234567890123

Question #3.
> n := (10^101 + 2673) * 10^100 + 801;
> 2 &^ (n-1) \mod n;
> 30170771928057262249964177081596257824747799663986032536464164761629828439455\ 65669711673713642488762889260049104219389222304156796614080230557691384405\ 46090053001246555810330988148855055118765117194403

Question #4.
> phi := (10^101 + 2662) * 10^100 + 532;
> b := -(n - phi + 1);
\[\Delta := b^2 - 4n; \]
\[p := \frac{-b + \sqrt{\Delta}}{2}; \]
\[q := \frac{-b - \sqrt{\Delta}}{2}; \]

Check that \(pq = n \):
\[p * q; \]

Also check that \((p - 1)(q - 1) = \phi(n) \):
\[(p-1)(q-1); \]