Recall that a nondegenerate conic is either an ellipse, hyperbola or parabola. (This list includes circles as a special case.)

(a) If \(C \) is a nondegenerate conic and \(\ell \) is a line, how many points of intersection can \(C \) and \(\ell \) have? Justify your answer.

(b) If \(C \) and \(C' \) are distinct nondegenerate conics, how many points of intersection can \(C \) and \(C' \) have?

An algebraic curve of degree \(d \) is a curve defined by a polynomial equation of degree \(d \). We have been considering curves of degree 1 (i.e. lines) and curves of degree 2 (i.e. conics). (By contrast, a catenary has an equation of the form \(y = k(e^{ax} + e^{-ax}) \), which is not a polynomial; this curve is transcendental, and no degree can be designated for a catenary. The study of such curves belongs to analytic geometry rather than algebraic geometry.)

(c) Some examples of cubic curves (i.e. algebraic curves of degree three) are \(y = x^3 - x \) and \(x = y^3 - y \). What do these curves look like? How many points of intersection can a cubic curve have with a line? Or with a conic? Or with another cubic curve?

(d) The settings (a), (b) and (c) above are special cases of a more general result. Guess the statement of this result.