HW9 has become a discussion.

If you hand something in, I will read and comment, but no letter grade.
John's construction
Lara used this in her construction... inversion!
Inversion in γ
Inversion in γ

Inversion
- Takes circles to circles;
- Reverses orientation;
- Preserves angles.
What happens when we invert η? We get:

\[\text{Grid} \]
Inversion in \(\mathbb{R} \) yields:
Proof: The inverse β' of β in γ is a circle containing Q, P, P' so $\beta' = \beta$.

Thus β is orthogonal to γ.

Theorem: Suppose P, P' are inverse in γ.

Every circle through P and P' is orthogonal to γ.
Invert in a circle centered at \(P' \):

Find the unique circle through \(X \) orthogonal to every circle through \(P \) and \(P' \).