Consider two nonintersecting circles γ and γ', shown in green. A circle α_1, tangent to both γ and γ', is chosen as shown, followed by a circle α_2, tangent to α_1 as well as γ and γ'; then a circle α_3, tangent to α_2 as well as γ and γ'; etc. resulting in a sequence of circles $\alpha_1, \alpha_2, \alpha_3, \ldots$ all of which are tangent to the original two circles.

After a finite number (say n) of circles, we eventually reach a circle α_n beyond which we cannot continue without overlapping α_1. It may happen (either by design or by extreme luck) that α_n is in fact tangent to the original circle α_1 in the sequence, as shown:
I say *extreme* luck (or design) because if \(\gamma \) were just a tiny bit larger, then all the \(\alpha \)'s would be a tiny bit smaller, resulting in a gap between \(\alpha_n \) and \(\alpha_1 \), like this:

![Diagram of nested circles with a gap](image1)

However, the position of the starting circle \(\alpha_1 \) has no effect on whether or not this works (i.e. results in the last circle \(\alpha_n \) being tangent to \(\alpha_1 \)); if we chose a different starting point, we would obtain another closed ring of tangent circles, as shown:

![Diagram of another closed ring of tangent circles](image2)

Why is this true? *Find* an inversion that simplifies the problem and *explain* how, with respect to the new (inverted) viewpoint, the problem becomes obvious.