As discussed in class, each pair of points P,Q lies in four lines:

This follows directly from the fact that there are 10 points, and any three points determine a unique circle. In particular the points A,B lie in one extended affine line $ABC\infty$ and three affine circles which partition the remaining affine points D,E,F,G,H,I. Given that one of these affine circles is

$$
\begin{array}{cc}
A & B \\
D & E \\
\end{array}
$$

there are only three choices for the remaining two affine circles containing A and B:

$$
\begin{array}{cc}
A & B \\
G & H \\
\end{array}
\quad \text{or} \quad
\begin{array}{cc}
A & B \\
F & I \\
\end{array}
\quad \text{or} \quad
\begin{array}{cc}
A & B \\
G & I \\
\end{array}
$$

The second of these three pairs violates (11) since $ABFG$ overlaps $BFG\infty$ in three points. The third pair violates (11) since $ABFH$ overlaps $AFH\infty$ in three points. So only the first choice is possible. The same argument, applied repeatedly, shows that we must have the following set of 18 affine circles: