Consider a set of \(n \) distinct points \(\{P_1, P_2, \ldots, P_n\} \) in the Euclidean plane, not all collinear. A connecting line is a line joining two points of the set. Each point is on at most \(n - 1 \) connecting lines (maybe fewer, since some connecting lines may contain more than two \(P_i \)’s). We investigate the following open (i.e. unsolved) problem:

Must one of the points \(P_i \) lie on at least \(\frac{n}{3} \) connecting lines?

Our goal here is not to resolve any unsolved problems, but merely to acquire a sense of the nature and difficulty of certain problems in Euclidean plane geometry that can be stated in quite elementary terms.

For class discussion

Suppose \(n = 5 \) points are given, not all collinear.

- Must one of the points lie on at least 2 connecting lines?
- Must one of the points lie on at least 3 connecting lines?
- Must one of the points lie on at least 4 connecting lines?

Whenever the answer is ‘no’, sketch a counterexample.

HW13

a) Suppose \(n = 6 \) points are given, not all collinear. Must one of the points lie on at least 2 connecting lines? Must one of the points lie on at least 3 connecting lines? Must one of the points lie on at least 4 connecting lines? Whenever the answer is ‘no’, sketch a counterexample.

b) Suppose \(n = 7 \) points are given, not all collinear. Must one of the points lie on at least 3 connecting lines? Must one of the points lie on at least 4 connecting lines? Must one of the points lie on at least 5 connecting lines? Whenever the answer is ‘no’, sketch a counterexample.

c) Suppose \(n = 8 \) points are given, not all collinear. Must one of the points lie on at least 3 connecting lines? Must one of the points lie on at least 4 connecting lines? Must one of the points lie on at least 5 connecting lines? Whenever the answer is ‘no’, sketch a counterexample.

d) Suppose \(n = 9 \) points are given, not all collinear. Must one of the points lie on at least 3 connecting lines? Must one of the points lie on at least 4 connecting lines? Must one of the points lie on at least 5 connecting lines? Whenever the answer is ‘no’, sketch a counterexample.