Yellowstone allocations and writing successful requests

November 27, 2012
David L. Hart, CISL
dhart@ucar.edu
Welcome to the Petascale

- Yellowstone environment
- Allocations opportunities at NWSC
 - University, CSL, NCAR, and Wyoming-NCAR alliance
- Tips for writing successful allocation requests
Yellowstone

NWSC high-performance computing resource

- **Batch Computation**
 - 72,288 cores total – 1.504 PFLOPs peak
 - 4,518 IBM dx360 M4 nodes – 16 cores, 32 GB memory per node
 - Intel Xeon® E5-2670 (Sandy Bridge EP with AVX) – 2.6 GHz clock
 - 144.6 TB total DDR3-1600 memory
 - 28.9 Bluefire equivalents

- **High-Performance Interconnect**
 - Mellanox FDR InfiniBand full fat-tree
 - 13.6 GB/s bidirectional bw/node
 - <2.5 µs latency (worst case)
 - 31.7 TB/s bisection bandwidth

Login
- 6 IBM x3650 M4 Nodes; Intel Xeon® E5-2670 @ 2.6 GHz
- 16 cores & 128 GB memory per node
• **10.94 PB usable capacity ➔ 16.42 PB usable (1Q2014)**
 Approximate initial file system sizes
 – **scratch** ≈ 5 PB shared, temporary space
 – **work** ≈ 1 PB individual work spaces
 – **projects** ≈ 3 PB long-term, allocated space
 – **collections** ≈ 2 PB RDA, CMIP5 data

• **Disk storage subsystem**
 – 4,560 3-TB NL-SAS drives
 • 76 IBM DCS3700 controllers
 – Add 2,280 3-TB NL-SAS drives (1Q2014)

• **GPFS NSD servers**
 – 90 GB/s aggregate I/O bandwidth
 • 20 IBM x3650 M4 nodes

• **Data mover nodes (GPFS, GLADE-HPSS connectivity)**
 – 10-GbE & FDR interfaces; 4 IBM x3650 M4 nodes

• **High-performance I/O interconnect**
 – Mellanox FDR InfiniBand full fat-tree
 – 13.6 GB/s bidirectional bandwidth/node
Geyser and Caldera

NWSC Data Analysis & Visualization Resource

- **Geyser: Large-memory analysis system**
 - 16 IBM x3850 nodes – Intel Westmere-EX processors
 - 40 cores, **1 TB memory**, 1 NVIDIA GPU per node
 - Mellanox FDR full fat-tree interconnect

- **Caldera: GPU computation/visualization system**
 - 16 IBM x360 M4 nodes – Intel Sandy Bridge EP/AVX
 - 16 cores, 64 GB memory per node
 - 2 NVIDIA GPUs per node
 - Mellanox FDR full fat-tree interconnect

- **Knights Corner system (early 2013 delivery)**
 - Intel Many Integrated Core (MIC) architecture
 - 16 IBM nodes
 - 16 Sandy Bridge EP/AVX cores, 64 GB memory
 - 1 Knights Corner adapter per node
 - Mellanox FDR full fat-tree interconnect
Yellowstone Software

- **Compilers, Libraries, Debugger & Performance Tools**
 - **Intel** Cluster Studio (Fortran, C++, performance & MPI libraries, trace collector & analyzer) 50 concurrent users
 - **Intel** VTune Amplifier XE performance optimizer 2 concurrent users
 - **PGI** CDK (Fortran, C, C++, pgdbg debugger, pgprof) 50 conc. users
 - **PGI** CDK GPU Version (Fortran, C, C++, pgdbg debugger, pgprof) for DAV systems only, 2 concurrent users
 - **PathScale** EckoPath (Fortran C, C++, PathDB debugger) 20 concurrent users
 - Rogue Wave **TotalView** debugger 8,192 floating tokens
 - **IBM** Parallel Environment (POE), including IBM HPC Toolkit

- **System Software**
 - **LSF-HPC** Batch Subsystem / Resource Manager
 - IBM has purchased Platform Computing, Inc., developers of LSF-HPC
 - Red Hat Enterprise **Linux** (RHEL) Version 6
 - IBM General Parallel Filesystem (**GPFS**)
 - Mellanox Universal Fabric Manager
 - IBM xCAT cluster administration toolkit
Yellowstone allocation opportunities
Yellowstone will be capable of almost 600 million core-hours per year, compared to 34 million for Bluefire, and each Yellowstone core-hour is equivalent to 1.53 Bluefire core-hours.
Wyoming-NCAR Alliance

• **Deadline: May 15, 2013**
 – For early feedback on requests prior to panel submission, contact bshader@uwyo.edu

• Yellowstone resources
 – 75 million core-hours per year
 – U Wyoming managed process

• Large requests reviewed by “WRAP” twice per year

• Small and classroom allocations are also be available

• Activities must have substantial U Wyoming involvement
 – Allocated projects must have Wyoming lead
 – Extended list of eligible fields of science
 – Eligible funding sources not limited to NSF
 – Actively seeking to increase collaborations with NCAR and with other EPSCoR states.

www.uwyo.edu/nwsc
University allocations

- **Next deadline: April 1, 2013**
- Large allocations will continue to be reviewed and awarded twice per year
 - Deadlines (usually) in March and September
 - Approx. 85 million core-hours to be allocated at each opportunity
- Small allocations are also available
- Limited to atmospheric, ocean, and related sciences
- Small allocation will be up to 200,000 core-hours
 - For researchers with NSF award—appropriate for benchmarking, preparation for large request
 - One-time allocations for grad students, post-docs, new faculty without NSF award
 - Classroom allocations for instructional use
- www2.cisl.ucar.edu/docs/allocation/university
Tips for writing successful allocation requests
Allocation requests

• Not just HPC, but DAV, HPSS, GLADE allocations
 – Non-HPC resources \(\approx \frac{1}{3} \) procurement cost
 – Ensure that use of scarce and costly resources are directed to the most meritorious projects

• Balance between the time to prepare and review requests and the resources provided
 – Minimize user hurdles and reviewer burden
 – Build on familiar process for requesting HPC allocations

• Want to identify projects contributing to the NWSC Community Scientific Objectives
 – www2.cisl.ucar.edu/resources/yellowstone/science
General submission format

- Please see specific opportunities for detailed guidelines!
- Five-page request typically
 A. Project information (title, lead, etc.)
 B. Project overview and strategic linkages
 C. Science objectives
 D. Computational experiments and resource requirements (HPC, DAV, and storage)
- Supporting information
 E. Multi-year plan (if applicable)
 F. Data management plan
 G. Accomplishment report
 H. References and additional figures
Tips and advice (part 1)

• Remember your audience: Computational geoscientists from national labs, universities and NCAR
 – Don’t assume they are experts in your specialty

• Be sure to articulate relevance and linkages
 – Between funding award, computing project, eligibility criteria, and NWSC science objectives (as appropriate)

• Don’t submit a science proposal
 – Describe the science in detail sufficient to justify the computational experiments proposed
 – Panel is not re-reviewing the science
Tips and advice (part 2)

• Most of the request should focus on computational experiments and resource needs
 – *Effective methodology:* Are you using the right computational tools for the job?
 – *Appropriateness of experiments:* Are the proposed experimental configurations necessary and sufficient to answer the scientific question? Are all key experimental parameters justified?
 – *Efficiency of resource use:* Are the resources being used efficiently for the proposed methodologies and experiments?

• The amount of requested resources should be clearly and explicitly calculated based on the justification for the three preceding criteria
 – E.g., University guidelines recommend a table with one row per experimental configuration
Justifying resource needs

- **HPC** — familiar, if you’ve requested compute time elsewhere
 - Cost of runs necessary to carry out experiment, supported by benchmark runs or published data
 - Yellowstone allocations will be made in “core-hours” (not GAUs).
 - Request a small allocation to conduct actual Yellowstone benchmark runs
 - Reasonably justified estimates based on runs from other systems will also be accepted.
 - Yellowstone core-hours can be calculated as: # of nodes x 16 x job duration (in hours).

- **DAV** — will be allocated, similar to HPC practice
 - Simple justification for standard interactive use: # users x 5,000 core-hours
 - Small allocations will get up to 5,000 core-hours upon request
 - Allocation review will focus on larger needs associated with batch use
 - E.g., for projects conducting GPGPU code development and testing
GLADE resource requests

- All disk is not provisioned equally
- Allocations only needed for *project space*
 - No need to detail use of scratch, work spaces
- Describe why project space is essential
 - That is, why scratch or work space insufficient
 - Show that you are aware of the differences
- Relate the storage use to your workflow and computational plan
 - Projects with data-intensive workflows should show they are using resources efficiently
HPSS resource requests

- **Goal:** Demonstrate that HPSS (tape archive) use is efficient and appropriate
 - Not store-everything-forever in a “data coffin”
 - Not treating it as a temporary file system
- **Note:** Tape use up to 20 TB available upon request
- **Explain new data to be generated**
 - Relate to computational experiments proposed
 - Describe scientific value/need for data stored
- **Justify existing stored data**
 - Reasons for keeping, timeline for deletion
- **Data management plan:** Supplementary information
 - Additional details on the plans and intents for sharing, managing, analyzing, holding the data
Summer Internships in Parallel Computational Science
Students work in NCAR’s Supercomputing Lab
with mentors on challenging R&D projects

- 11-week summer internship program
 - May 20 – August 2, 2013
 - Application deadline: Feb. 1, 2013

- Open to
 - Upper division undergrads
 - Graduate students

- In disciplines such as
 - Computer Science and Software Engineering
 - Mechanical Engineering
 - Applied Math and Statistics
 - Earth System Science

- Support
 - Travel, housing
 - 11 weeks salary
 - Conference travel and publication costs

- Number of interns selected
 - Approx. 10-12

For more information:
http://www2.cisl.ucar.edu/siparcs
http://www2.cisl.ucar.edu/resources/yellowstone
http://www2.cisl.ucar.edu/docs/allocations
cislhelp@ucar.edu or dhart@ucar.edu

QUESTIONS?