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PREFACE 

 The quantum world of the small (objects of atomic size or smaller), is an extremely foreign 

concept to most beginning physicists.  The concepts that are useful in describing the quantum 

domain of nature are in clear contrast to the ones that are used to describe classical physics, 

appropriate for understanding objects in our everyday lives.  Typically, the most common 

application of classical physics is through the use of Newton’s equations of motion for massive 

particles, as well as through the use of Maxwell’s equations for the electric and magnetic fields, 

and for the associated electromagnetic waves.  Even though these classical physics concepts can 

be applied to high speed particles (approaching the speed of light), by using a relativistic approach, 

the key classical physics assumption is of precise particle trajectories (in a deterministic sense).  

However, in the quantum domain, this is not the case; in fact, it is fundamentally impossible to 

simultaneously know both the precise position of a quantum particle and its precise momentum, 

which is normally assumed for a classical particle. 

 Classical physics concepts are the ones that we are comfortable with when we describe the 

motion of relatively sizeable objects (such as a baseball or even a grain of sand) that are found in 

our everyday lives.  Unfortunately, it turns out that by using these classical physics concepts, we 

are ill-prepared when we try to describe the motion of very small objects (such as an electron), that 

are found in the quantum domain of nature.  Furthermore, the issue of constructing an adequate 

description of objects in the quantum domain is much deeper than one might expect.  Specifically, 

in classical physics we have found it useful to describe an object that has a small spatial extent as 

being classified as a particle, and in contrast to this, we have also found it useful to describe a 

collection of particles, which are correlated and interact over a sizeable spatial extent, as forming 

a wave (for example, used in the description of a ripple on the surface of a pond of water).  

However, in many situations in the quantum domain, we have had to resort to a bizarre 

combination of these concepts, referred to as the wave/particle duality.  This is even true for the 

description of a seemingly simple object, such as an electron; in some situations it behaves like a 

point particle, and in other situations it behaves as a spatially extended wave.  Shockingly, this is 

only the “tip of the iceberg” with respect to the quantum mechanical interpretation issue. 

 The most telling quantum interpretation issue is exemplified by the long-standing argument 

that occurred between two of the founders of quantum mechanics, Bohr and Einstein, which was 

brought to the forefront in the 1935 EPR publication (to be detailed in this textbook).  To describe 

this argument most simply, Bohr believed (which is denoted as the Copenhagen interpretation of 

quantum mechanics) that an underlying quantum reality does not actually exist until a 

measurement occurs on the quantum system; however, in marked contrast to this, Einstein believed 

that there is an objective quantum reality prior to measurement.  To expand on this Einstein 

ontological notion, he assumed that there must be an element of reality which exists prior to 

measurement, if it can be predicted with certainty prior to a confirming measurement taking place.  

In order to further emphasize that the quantum domain is unusual, these two opposing viewpoints 

will be explored in detail throughout this textbook, with the conclusion that a modern description 

of quantum mechanics must include an admixture of both of these concepts, as neither one by itself 

is correct.  Ultimately, this discussion will lead to the most important topic on the completeness of 

quantum mechanics. 



 As brought out in his EPR publication, Einstein believed that the quantum mechanical 

model is incomplete, which led to the unresolved debate on quantum mechanical interpretation.  

Once again, Einstein’s belief of the incompleteness of quantum mechanics, is in direct contrast to 

Bohr’s opposite opinion on the subject.  To make this issue clear, one should note that classical 

physics is considered to be a complete science, in the sense that the trajectory of classical objects 

are self-consistent and completely understood.  For example, the solution of the Newtonian 

equation of motion of a charged massive particle, in combination with the associated self-

consistent solution of Maxwell’s equations, which provide knowledge of the force acting on the 

charged particle, results in a complete description of the particle motion (which is exhibited in the 

classical field of plasma physics).  However, in the quantum mechanical domain of reality, such a 

complete description of quantum mechanical objects does not still exist today.  Unfortunately, as 

was proposed by the founders of quantum mechanics, there is an underlying uncertainty principle 

which constrains our capability of achieving precise and complete quantum knowledge, which has 

not been violated since the inception of the principle.  Although quantum mechanics was 

developed during a reasonably lengthy (roughly a thirty year) period, starting in approximately 

1900, with numerous physicists involved, it is the measure of discreteness (the quantum), 

associated with a very small number (Planck’s constant), which is pervasive throughout all aspects 

of quantum mechanics, which has led to a dramatic contrast between classical and quantum 

mechanics.  Nevertheless, rather than leaving the reader with a vague understanding of quantum 

interpretation due to quantum discreteness, as is the case with most previous quantum mechanics 

textbooks, a clear understanding of quantum interpretation is emphasized in every topic throughout 

this book. 

 There have been numerous very useful quantum mechanics textbooks which have been 

constructed during the past half century; however, just as with the founders of quantum mechanics, 

the quantum interpretation issue has been sorely lacking in most of these textbooks.  As the 

quantum mechanical interpretation issue has recently (during the past twenty years) come to the 

forefront of physicists’ concerns, it is finally necessary to produce a modern introductory quantum 

mechanics textbook with interpretation.  This is especially true since the Bell inequality spin 

experiments have promoted the desire to explore nonlocal quantum aspects, such as quantum 

teleportation and quantum computing.  However, as noted in a recent publication (Thayer and 

Jafari, IJARPS, Vol. 2, Issue 2, pp. 18-26, 2015), on the spin correlation of singlet state pair 

particles, it is possible to interpret the unusual spin product expectation value result as being 

associated with a nonlinear dynamics model which incorporates deterministic chaos, in contrast to 

having to invoke a far more disturbing nonlocal interpretation.  In addition, as the field of 

nanotechnology continually advances, it will become more and more necessary to educate our 

physics students with modern quantum mechanics tools in order that they can ultimately achieve 

a far more advanced and complete quantum mechanics, which can successfully be used on the 

quantum engineering problems of the future. 

 This textbook has been constructed to provide the physics student with the most important 

quantum mechanics tools that have been successfully applied to the quantum domain of nature, 

which have been very useful over the past century.  However, in marked contrast to previous 

textbooks on this subject, the quantum interpretation issue has been highlighted throughout this 

book.  This is a particularly important approach in order that we are able to train our young 



physicists to continually look for the future, and ultimately develop a far more useful quantum 

mechanics than we have today.  For example, for those who know a bit about standard quantum 

mechanics, it should be noted that the subject is always based on simple linear operator theory; 

however, this is precisely the approach that has led to major problems with quantum interpretation.  

Specifically, I strongly believe when we are able to get beyond our current simplistic quantum 

model, and properly include the complicated measurement process in our model, the well-known 

issue of the need for a mystical wave function collapse to a linear eigenvalue state, upon 

measurement, will disappear along with our interpretation problems.  As an educator, it is with 

this desire that I construct this “Modern Introductory Quantum Mechanics with Interpretation” 

textbook for our young physicists. 

 Finally, in order to help quantum mechanics physics instructors who choose to use this 

textbook, it is useful to briefly present the organization of the sections that follow.  This textbook 

is designed to cover all of the most important topics of introductory quantum mechanics that are 

appropriate for undergraduate physics students in order to efficiently master the subject.  The 

teaching material is optimally designed using two sections, which can be covered throughout a 

one-semester course, where the first section, Elementary Quantum Mechanics, is the most 

important material to be covered in a one-semester course, and the second section, Advanced 

Quantum Mechanics Topics, can be added to the one-semester course if time permits.  The 

quantum mechanics textbook is designed to be self-contained, which provides all the subjects that 

a student needs to fully understand quantum mechanics.  The first section starts with a very 

important chapter (1 Historical Review & Interpretation Issues), which provides the background 

and history (covered throughout ten sections, Sect. 1.1 to Sect. 1.10) that is associated with the 

creation of quantum mechanics (which occurred roughly throughout the period from 1900 to 

1930).  Although many of the current quantum mechanics textbooks used in a variety of schools 

do not offer such a comprehensive history of the development of quantum mechanics, I believe 

that the approach used here is essential from a sound pedagogy perspective, in order that the 

quantum mechanics student can appreciate how the extremely unusual quantum mechanics theory 

was developed, especially as it is in marked contrast to classical mechanics theory.  Since the 

majority of quantum mechanics can be understood by simply focusing on one-dimensional 

mechanics analysis and two-state spin ½ particles, the second chapter (2 Elementary & 

Representative Concepts in 1D Quantum Mechanics) briefly covers most of the quantum 

mechanics topics within this practical limitation, that are provided in Points 1) to 10) at the 

beginning of Chapter 2, which is essentially all a student needs to know in order to become 

reasonably proficient in quantum mechanics.  More specific details and examples of elementary 

quantum mechanics are then provided in the following five sections of Chapter 2 (Sect. 2.1 to Sect. 

2.5).  The first section then continues with two chapters (denoted as:  3 Free Particle Quantum 

State Analysis; and 4 Bound Particle Quantum State Analysis), which provide the slightly more 

complicated examples of 1D quantum analysis that are associated with free particles (which 

includes an introduction to scattering analysis), and then with bound particles (which includes 

analysis associated with general confining potentials, such as found in the well-known harmonic 

oscillator problem, which utilizes the quadratic potential, and then in the hydrogen atom problem, 

which utilizes the Coulomb potential).  Although section one ends with a brief analysis of the 

hydrogen atom, where it is necessary to first reduce the general 3D analysis to the most important 

representative radial 1D problem, the more difficult concept of rotational angular momentum is 



included.  For the students and physics programs who desire to explore more advanced quantum 

mechanics topics, the second section can be used as an appropriate continuation of the first section 

to address a few more informative advanced topics.  The second section begins with a chapter on 

an extensive review of all the most important quantum mechanics topics (5 Review of General 

Quantum Mechanics), so that the reader can finally appreciate the current limitation of quantum 

mechanics, and the associated interpretation problems (such as the unexplained need for a wave 

function collapse upon measurement), that permeate the simple linear eigenvalue approach to 

quantum mechanics, which must be rectified in the future, using a more sophisticated quantum 

model (which might be approached using a nonlinear dissipative/driven quantum system, that 

naturally includes the needed probabilistic aspects of quantum mechanics, through the inherent 

deterministic chaos aspects of the more sophisticated model, which will ultimately resolve the 

interpretation issues that we struggle with today).  The second section continues with two 

important chapters (6 General Uncertainty Principle and 7 Bell Inequality - Explained), which help 

to complete the “Modern Introductory Quantum Mechanics with Interpretation” textbook, by 

providing some additional insight into the deeper structure and limitations of current quantum 

mechanics.  Specifically, the general approach to the uncertainty principle that is presented is based 

on the Schwartz inequality, which is quite abstract but general, and it is in marked contrast to the 

derivation of the Heisenberg uncertainty principle, using the much more appealing variational 

analysis, which is presented in Chapter 1 (and given in detail in Appendix IV); consequently, even 

for such long standing concepts as the uncertainty principle, it should be clear to the student that 

interpretation issues with quantum mechanics can continually be rectified.  Finally, the full 

description of the Bell inequality is provided since it demonstrates the unusual correlation that 

exists between spatially separated spin ½ singlet state particles, which can ultimately be 

understood without the need to invoke a bizarre nonlocal correlation between the particles, which 

would have pleased Einstein (as detailed in Appendix V);  consequently, this important topic again 

emphasizes the need to continually improve on quantum interpretation, and speculate on the 

structure of the more sophisticated quantum models of the future which will rectify all quantum 

interpretation issues.  Ultimately, in order to give the quantum mechanics students practice in 

applying the quantum mechanics analysis tools, the very extensive Appendix VII provides 

numerous completely solved quantum mechanics problems that follow (in consecutive order) all 

the topics provided throughout the textbook. 
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