Deactivation of aquaporins decreases internal conductance to CO₂ diffusion in tobacco leaves grown under long-term drought

Shin-Ichi Miyazawa¹, Satomi Yoshimura¹, Yuki Shinzaki², Masayoshi Maeshima³ and Chikahiro Miyake⁴,⁵,⁶

¹Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa City, Kyoto 619-0292, Japan.
²Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
³Present address: Laboratory of Plant Nutrition, Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan.
⁴Corresponding author. Email: cmiyake@hawk.kobe-u.ac.jp

Abstract. We compared the diffusion conductance to CO₂ from the intercellular air space to the chloroplasts (internal conductance \(g_i \)) between tobacco leaves acclimated to long-term drought (drought-acclimated (DA)) and those grown under sufficient irrigation (well-watered (WW)), and analysed the changes in \(g_i \) in relation to the leaf anatomical characteristics and a possible CO₂ transporter, aquaporin. The \(g_i \), which was estimated by combined analyses of CO₂ gas exchange with chlorophyll fluorescence, in the DA plants was approximately half of that in the WW plants. The mesophyll and chloroplast surface areas exposing the intercellular air space, which potentially affect \(g_i \), were not significantly different between the WW and DA plants. The amounts of plasma membrane aquaporins (PIP), immunochemically determined using radish PIP antibodies, were unrelated to \(g_i \). After treatment with HgCl₂, an aquaporin inhibitor, the water permeability of the leaf tissues (measured as the weight loss of fully-turgid leaf disks without the abaxial epidermis in 1 M sorbitol) in WW plants decreased with an increase in HgCl₂ concentration. The \(g_i \) in the WW plants decreased to similar levels to the DA plants when the detached leaflets were fed with 0.5 mM HgCl₂. In contrast, both water permeability and \(g_i \) were insensitive to HgCl₂ treatments in DA plants. These results suggest that deactivation of aquaporins is responsible for the significant reduction in \(g_i \) observed in plants growing under long-term drought.

Additional keywords: acclimation, drought stress, leaf anatomy, mesophyll conductance.

Introduction

The net photosynthesis rate on a leaf-area basis \(A \) generally decreases in drought-acclimated (DA) leaves of C₃ plants. These reductions in \(A \) are partly attributed to decreases in the chloroplastic CO₂ concentration \((C_c) \) because both stomatal conductance to water vapour \((g_s) \) and diffusion conductance to CO₂ from the intercellular air space to the chloroplasts (internal conductance \(g_i \)) significantly decrease in DA plants (Galmes et al. 2006; Monti et al. 2006). In contrast, the water-use efficiency (WUE = \(A \) per unit transpiration rate) increases in DA leaves, and this has been reported for some C₃ species, including Ulmus americana L. (Reich et al. 1989) and Helianthus annuus L. (Fredeen et al. 1991). The transpiration rate decreases more rapidly than \(A \) with a decrease in \(g_s \), such that the DA plants have a higher WUE than well-watered (WW) plants (Lambers et al. 1998; Nobel 1999). In contrast, the physiological importance of \(g_i \) to drought adaptation is not clearly understood (Flexas et al. 2008; Warren 2008).

As shown in previous studies (Evans et al. 1994; Terashima et al. 2001), \(g_i \) is composed of liquid-phase conductance \((g_{liq}) \) and gas-phase conductance \((g_{gas}) \):

\[
g_i = \frac{g_{liq}}{1 + \frac{S_c}{S_{liq}}} \]

\(g_{liq} \) is expressed as \(g'_{liq} \; S_c \), where \(S_c \) and \(g'_{liq} \) represent the chloroplast surface area facing the intercellular air space and the liquid-phase conductance per unit \(S_c \), respectively. Thus, Eqn (1) is given as:

\[
g_i = \frac{g'_{liq} \; S_c}{1 + \frac{g'_{liq} \; S_c}{S_{liq}}} \]

\(g_{gas} \) depends on the mesophyll thickness and the fraction of the mesophyll volume occupied by the intercellular air space \(f_{lia} \). \(g'_{liq} \) is affected by both the thickness and the properties of the pathways from the mesophyll cell surfaces to the active sites of
Rubisco (Hanba et al. 1999; Miyazawa and Terashima 2001; Terashima et al. 2005). g_{gas} cannot be a major limitation for the net photosynthesis rates, particularly in amphytomalous leaves, such as tobacco leaves, because CO$_2$ diffuses $\sim 10^4$-fold faster in the gas-phase than in the liquid-phase (Parkhurst and Mott 1990; Evans et al. 1994). Thus, Eqn (2) is approximated by $g_i \approx g_i^{\text{liq}} S_c$. S_c is close to the mesophyll surface area facing the intercellular air space (S_{mes}) when the chloroplasts occupy most of the S_{mes}. Therefore, g_i is roughly proportional to S_{mes} (Syvertsen et al. 1995; Terashima et al. 2005). The anatomical characteristics of leaves change in response to long-term drought and might affect g_i (Chartzoulakis et al. 2002).

A number of recent studies have revealed that aquaporins are proteins that might regulate g_i^{liq} (Terashima and Ono 2002; Hanba et al. 2004; Flexas et al. 2006). Aquaporins have originally been known as proteins that facilitate and regulate water transport across biological membranes. Water transport by aquaporins occurs in a manner dependent on the osmotic pressure and water potential gradient. Some members of the aquaporin family transport CO$_2$ molecules; this was shown for *Xenopus* oocytes expressing a human aquaporin (AQP1, Cooper and Boron 1998; Nakhoul et al. 1998; but see Yang et al. 2000) or a tobacco plasma membrane aquaporin (NtAQP1, Uehlein et al. 2003). g_i decreased when HgCl$_2$, an aquaporin inhibitor, was fed to the petioles of *Vicia faba* and *Phaseolus vulgaris* leaves (Terashima and Ono 2002). Furthermore, Hanba et al. (2004) indicated that transgenic rice plants overexpressing the barley plasma membrane aquaporin HvPIP2;1 had larger g_i than wild-type plants. Transgenic tobacco (*Nicotiana tabacum* L.) plants overexpressing and suppressing NtAQP1 had higher and lower g_i, respectively, than their respective wild-type plants (Flexas et al. 2006). These studies have clearly demonstrated that plasma membrane aquaporins regulate g_i.

Plasma membrane aquaporins are classified into two subfamilies;PIP1 and PIP2. Each subfamily has several isoforms in radish (Suga et al. 2001) and in *Arabidopsis thaliana* L. (Johanson and Gustavsson 2002). Suga and Maeshima (2004) measured aquaporin activity with a stopped-flow spectrophotometer using the membrane vesicles of the yeast cells expressing radish plasma membrane aquaporins, and demonstrated that PIP2s generally have a much higher water transport activity than PIP1s. As the vesicles were incubated with 5 mM HgCl$_2$, the activities of PIP2s were severely inhibited while those of PIP1s were relatively insensitive to the mercury treatments. A PIP2-type aquaporin identified in spinach (PM28A) is phosphorylated in response to an increase in apoplastic water potential; this was demonstrated using leaf pieces infiltrated with media containing labelled phosphate and different concentrations of sucrose (Johansson et al. 1996). The water transport activity of PM28A decreases as a result of the de-phosphorylation of the cytoplasmic sites of the aquaporins (Johansson et al. 1998). Thus, the mercury sensitivity of the water-transport activities differs among the aquaporin isoforms and the water-transport activity of the aquaporins is probably regulated by phosphorylation in response to the cellular water balance.

Transgenic studies have clearly shown that aquaporin plays a pivotal role in regulating g_i. In contrast, there is little information on the physiological mechanisms responsible for the significant reductions in g_i in DA leaves. In tobacco plants intermittently irrigated (DA) or sufficiently irrigated (WW), we addressed questions aiming to clarify the underlying mechanisms by which both leaf anatomical characteristics and leaf aquaporins affect g_i.

Materials and methods

Growth conditions

Tobacco (*Nicotiana tabacum* L. cv. Xanthi) plants were grown in 0.7-L pots filled with peat-moss-based soils. Six pots, each with one plant, were placed on a 4-L tray. The plants were supplied with a 1000-fold diluted commercial fertiliser (Hyponex 6–10–5; Hyponex Japan, Osaka, Japan). In addition, 2 L of the fertiliser was applied to each tray every 2 weeks until four true leaves appeared. Thereafter, 2 L of the fertiliser was supplied to each tray intermittently (every 4 days) for raising the DA plants and every 1–2 days for the WW plants. The treatments were continued for 2–3 weeks until the developing leaves were fully expanded.

The leaves were grown under a PPFD of $\sim 850 \mu$mol m$^{-2}$ s$^{-1}$, a relative humidity of 60/50% (day/night) and a temperature of 25/22°C (day/night) in an environmentally controlled growth chamber. The volumetric soil water content was measured with a soil moisture sensor (ECH2O probe model EC-5; Decagon Devices, Pullman, WA, USA). Fully-expanded mature leaves were used. For all measurements, except for the measurement of soil water content, we used at least three plants from each treatment. All measurements on DA leaves were carried out 1 or 2 days later when the plants were supplied with the fertiliser.

Measurement of photosynthesis

Photosynthesis measurements were carried out with a portable CO$_2$ exchange analyser combined with a chlorophyll fluorometer (LI-6400; Li-Cor, Lincoln, NE, USA). To minimise CO$_2$ leakage from the chamber, the gaskets were surrounded by a laboratory-made skirt with which the air once exhausted from the chamber was again blown to the outer surface of the gaskets. The gas exchange analyser was linked with a gas cylinder containing either 20% or 2% O$_2$ balanced in N$_2$. A dew point generator (LI-610; Li-Cor) was placed in between the analyser and the cylinders to saturate the gases supplied from the cylinders with water vapour. The temperature of the dew point generator was set between 14 and 17°C.

When measuring photosynthesis, the plants were taken from the growth chamber before the lights were switched on and were supplied with enough water to saturate the soil. First, the dark respiration rate was measured at a CO$_2$ concentration surrounding the leaves (C_i) of 360 μmol mol$^{-1}$. The net photosynthesis rate on a leaf-area basis (A) at $C_i = 360 \mu$mol mol$^{-1}$ reached steady-state levels 20–30 min after the red/blue LED lights of the analyser had been turned on. The changes in A against the CO$_2$ concentration of the intercellular air space (C_i) that is, $A–C_i$ responses, were generated by stepwise changes in the supplied CO$_2$ concentrations. The leaf temperature, incident PPFD and leaf to air vapour pressure deficit were 25°C, 1000 μmol m$^{-2}$ s$^{-1}$ and 0.9–1.2 kPa, respectively.
Calculation of \(g_t \) by the chlorophyll-fluorescence method

The \(C_{oc} \) concentration in the chloroplast (\(C_c \)) was calculated as:

\[
C_c = \frac{O_c V_c}{\tau V_o},
\]

where \(O_c \) is the chloroplastic \(\text{O}_2 \) concentration, \(\tau \) is the relative specificity of Rubisco, and \(V_c \) and \(V_o \) are the carboxylase and oxygenase rates of Rubisco. \(O_c \) was assumed to be 200 mmol mol\(^{-1}\). \(\tau \) was assumed to be 2665 mmol mol\(^{-1}\) at 25°C, which was based on in vitro measurements for \(N. \) tabacum leaves (von Caemmerer 2000; Galmes et al. 2006).

\(V_c \) and \(V_o \) were calculated from both the \(\text{CO}_2 \) gas exchange rate and the electron transport rate (\(J \)) on the basis of the NADPH consumption rate for the photosynthetic carbon reduction and oxidation cycles. \(V_c \) and \(V_o \) were given as:

\[
V_c = \frac{1}{6}[J + 4(A + R_d)]
\]

and

\[
V_o = \frac{1}{6}[J - 4(A + R_d)],
\]

where \(R_d \) is the mitochondrial respiration rate in light. \(R_d \) was assumed to be half of the dark respiration rate (Atkin et al. 1998; Yamori et al. 2006).

\(J \) was approximated by the following equation:

\[
J = \alpha \beta I(\Phi \text{PSII}),
\]

where \(\alpha \) is the absorbance of the leaf, \(\beta \) is the fraction of absorbed irradiance that reaches PSII, \(I \) is the incident irradiance, and \(\Phi \text{PSII} \) is the quantum yield of PSII. \(\alpha \) was measured with a quantum sensor equipped with an integration sphere (LI-1800, Li-Cor). \(\beta \) was calculated from both the \(\text{CO}_2 \) gas exchange rates and the electron transport rates measured under moderate PPFD (300 \(\mu \)mol m\(^{-2}\) s\(^{-1}\)) and non-photorespiratory conditions (2% \(\text{O}_2 \) and 2000 \(\mu \)mol mol\(^{-1}\) \(\text{CO}_2 \)). \(\Phi \text{PSII} \) was determined with chlorophyll fluorescence (Genty et al. 1989).

\(g_t \) was calculated as:

\[
g_t = \frac{k_k k_i}{k_c - k_i},
\]

where \(k_i \) and \(k_c \) represent the initial slopes of the \(A-\text{C}_1 \) and \(A-\text{C}_c \) curves, respectively. The initial slopes were obtained from linear regression analysis carried out using values of \(C_1 \) that were <200 \(\mu \)mol mol\(^{-1}\).

Calculation of \(g_t \) by the curve-fitting method

An estimation of \(g_t \) by the chlorophyll-fluorescence method is based on an assumption that \(J \) is not required by processes such as the Mehler reaction, the nitrogen assimilation cycle and cyclic electron flow around PSII (Epron et al. 1995; Miyake and Okamura 2003). In addition, \(g_t \) was calculated using the curve-fitting procedure developed by Ethier and Livingston (2004), which is independent of the validity of \(J \). The curve-fitting procedure is based on an assumption that a decrease in \(g_t \) reduces the curvature of the Rubisco-limited portion of the \(A-\text{C}_1 \) curve. Under Rubisco-limited conditions, \(A \) is given as:

\[
A = -b + \frac{\sqrt{b^2 - 4ac}}{2a}
\]

\[
b = \frac{(V_{\text{max}} - R_d)/g_i + C_i + K_c(1 + O_c/K_o)}{g_i}
\]

\[
c = R_d[C_i + K_c(1 + O_c/K_o)] - V_{\text{max}}(C_1 - \Gamma^*)
\]

where \(V_{\text{max}} \) is the maximal Rubisco carboxylation rate, \(K_c \) and \(K_o \) are the Michaelis–Menten constants of Rubisco for \(\text{CO}_2 \) and \(\text{O}_2 \), respectively, and \(\Gamma^* \) is the chloroplastic \(\text{CO}_2 \) compensation point. Eqn (8) was fitted to the Rubisco-limited portion of the \(A-\text{C}_1 \) curves (\(C_i <200 \mu \)mol mol\(^{-1}\)). \(K_c(1 + O_c/K_o) \) and \(\Gamma^* \) were assumed to be 601 \(\mu \)mol mol\(^{-1}\) and 38 \(\mu \)mol mol\(^{-1}\), respectively (Bernacchi et al. 2002). \(R_d \) was assumed to be half of the dark respiration rate. The curve-fitting procedure was carried out with non-linear least-square fits (Levenberg–Marquardt algorithm). \(R_d \) was fixed when fitting the data.

Measurement of the Rubisco, water-soluble protein, chlorophyll and nitrogen contents

After the photosynthesis measurement experiments, leaf disks were collected from the lamina, excluding the midribs, and were stored in a freezer at -80°C. The leaf materials (two leaf disks per sample) were ground in 0.75 mL of buffer containing 50 mM potassium phosphate (pH 7.4), 10 mM sodium ascorbate, 10 mM protease inhibitor cocktail (Nacalai Tesque, Kyoto, Japan) followed by mild centrifugation (×600g for 5 min at 4°C). The soluble protein content in the supernatant (water-soluble protein content) was determined using a protein assay reagent and BSA as a standard (Pierce Assay CBB solution; Nacalai Tesque). The chlorophyll from the leaf disks was extracted with \(\text{HCl} \) and \(\text{HClO}_4 \) and was subjected to SDS–PAGE. The SDS gel was stained with Coomassie Brilliant Blue R-250.

According to the method described by Makino et al. (1986), the stained bands corresponding to the Rubisco large subunits were eluted by using formamid, and the Rubisco content was determined spectrophotometrically using BSA as a standard (Protein Assay CBB solution; Nacalai Tesque). The supernatant was mixed with \(2 \times \) Laemmli buffer consisting of 125 mM Tris–HCl (pH 6.8), 4% (w/v) SDS, 10 mM EDTA and 1% (w/v) polyvinylpyrrolidone with a tablet of protease inhibitor cocktail (Nacalai Tesque, Kyoto, Japan) followed by mild centrifugation (×600g for 5 min at 4°C). The soluble protein content in the supernatant (water-soluble protein content) was determined using a protein assay reagent and BSA as a standard. The Rubisco content was determined spectrophotometrically using \(\text{CO}_2 \) as a standard (Porra et al. 1989). The total nitrogen content of the leaf disks was determined by the Kjeldahl digestion method (SuperKjel 1200/1250; ACTAC, Tokyo, Japan).

Measurement of aquaporin content

Western blotting was carried out using antibodies to radish plasma membrane aquaporins (anti-all PIPs and anti-PIP2s). The details of the antibodies have been described previously by Ohshima et al. (2001) and Suga and Maeshima (2004). The
anti-all PIPs were prepared using a conserved sequence of all the isoforms of the plasma membrane aquaporins in the N-terminal region (KDYNEPPAPLFEPGELSSWS) as an antigen peptide. The anti-PIP2s were prepared using a conserved sequence among the PIP2s isoforms in the C-terminal region (QFVLRASGSKSLGSFRSA) as an antigen peptide.

Aquaporins are highly hydrophobic proteins and are present in oligomeric forms in planta. The oligomeric forms are observed on SDS–PAGE, in particular when the proteins are dissociated from the membranes at a high temperature (Maeshima 1992). We carefully chose the dissociation protocol to prevent the aquaporins from forming the oligomers on SDS–PAGE. According to the method described by Maeshima (1992), the supernatant mixed with the Laemmli buffer was heated at 70°C for 5 min and was subjected to SDS–PAGE.

The resolved proteins were transferred onto polyvinylidene difluoride membranes (Hybond-P; GE Healthcare, Buckinghamshire, UK). The membranes were blocked with 5% de-fatted milk before reaction with the primary antibody. The blots were visualised using horseradish-coupled protein A and chemiluminescence reagents (ECL Advance western blotting Detection Kit; GE Healthcare). Images were obtained with an image analyser (LAS-3000; FUJIFILM, Tokyo, Japan). Bands near 30 kD, which correspond to plasma-membrane aquaporins in the monomeric form, were scanned with computer software (Multi Gauge ver 2.0; FUJIFILM). The number of pixels for each sample was determined and expressed as a value relative to that of the highest g; found in the present study.

Leaf anatomy

Leaf pieces (~1 mm × 3 mm; major veins avoided) were cut from the middle parts of the lamina with a razorblade. The pieces were fixed in 100 mM phosphate buffer (pH 7.2) containing 2.0% glutaraldehyde for at least 6 h at 4°C after vacuum infiltration and were post-fixed in 2% osmium tetroxide for 3 h. The pieces were dehydrated in an acetone and propylene oxide series, and were embedded in Quetol 651 resin (Nisshin EM, Tokyo, Japan). Leaf transverse sections (1 μm in thickness) were obtained using a microtome (RM2245; Leica Microsystems, Wetzler, Germany) and were stained with 0.5% toluidine blue. The sections were photographed with a digital camera linked to a microscope (BX50; Olympus, Tokyo, Japan).

S_{mes}/S_{las}, the S/S_{mes} ratio and the thicknesses of the leaf, mesophyll tissue and upper and lower epidermis were measured on light micrographs using a digitising pad (Evans et al. 1994; Syvertsen et al. 1995; Miyazawa and Terashima 2001).

To convert the lengths into surface area, curvature correction factors for the palisade and spongy tissues were obtained, assuming that the cells were spheroid in shape (Thain 1983).

Water permeability of leaf tissues

Water permeability of the leaf tissues was measured according to the method described by Terashima and Ono (2002). The abaxial epidermis was removed from the leaf disks (diameter 15 mm) using a pair of tweezers. The leaf disks were floated on 20 mL of distilled water in a Petri dish for more than 10 min with the adaxial surface facing upwards. Excess water on the leaf disks was absorbed using a piece of Kimwipe paper, and the disks were immediately weighed (initial FW (iFW)). The disks were floated on 20 mL of HgCl₂ solution in a Petri dish for a further 5 min and were subsequently floated on 20 mL of 1 M sorbitol solution for 60 s. The disks were immediately weighed again (dehydrated FW (dFW)). The adaxial surfaces always faced upwards when the leaf disks were floated on the solutions. Before weighing the leaf disks, the excess solution on the disks was absorbed using a piece of Kimwipe paper. The relative water loss was calculated as $(iFW - dFW)/iFW$.

HgCl₂ feeding

Fully-expanded, mature leaves were detached from the plants using a pair of scissors. The petioles were immediately immersed in 100 mM phosphate buffer (pH 7.2) containing 2.0% glutaraldehyde for at least 6 h at 4°C after vacuum infiltration and were post-fixed in 2% osmium tetroxide for 3 h. The pieces were dehydrated in an acetone and propylene oxide series, and were embedded in Quetol 651 resin (Nisshin EM, Tokyo, Japan). Leaf transverse sections (1 μm in thickness) were obtained using a microtome (RM2245; Leica Microsystems, Wetzler, Germany) and were stained with 0.5% toluidine blue. The sections were photographed with a digital camera linked to a microscope (BX50; Olympus, Tokyo, Japan).

S_{mes}/S_{las}, the S/S_{mes} ratio and the thicknesses of the leaf, mesophyll tissue and upper and lower epidermis were measured on light micrographs using a digitising pad (Evans et al. 1994; Syvertsen et al. 1995; Miyazawa and Terashima 2001).

To convert the lengths into surface area, curvature correction factors for the palisade and spongy tissues were obtained, assuming that the cells were spheroid in shape (Thain 1983).

![Fig. 1. Changes in volumetric soil water content in well-watered (solid lines) and drought-acclimated (dotted lines) tobacco plants. Data from the two different pots (upper and lower panels) are shown for each treatment.](image-url)
in Falcon tubes filled with 50 mL distilled water, and the bases of the petioles were cut again in distilled water. After obtaining the $A-C_i$ curves, C_a was returned to 360 μmol mol$^{-1}$. Subsequently, 250 mM HgCl$_2$ was added to the tubes. The final concentration of HgCl$_2$ in the tubes was 0.5 mM. The data were automatically logged at an interval of 5 min after HgCl$_2$ treatment. $A-C_i$ responses were obtained again at 2.5–3.0 h after HgCl$_2$ feeding.

Statistical analysis
All statistical analyses were carried out using the software package SPSS 14.0 (SPSS, Chicago, IL, USA).

Results
Soil water content
The volumetric soil water content fluctuated during the treatments (Fig. 1). In the drought treatments, the soil water content gradually decreased and levelled off at ~20% at 4 days after sufficient irrigation. The leaves of the plants subjected to drought wilted when the soil water content reached this level. The leaves recovered completely on the days after irrigation. In contrast, under WW conditions, the soil water content did not decrease to such low levels. The soil water content tended to fluctuate more sharply as plant size increased.

Changes in the photosynthetic characteristics in response to long-term drought
The maximum quantum yield of PSII (F_v/F_m) in the DA plants was ~0.8, indicating that the photosynthetic machinery in these plants was not severely damaged by the drought treatment. There were no significant differences in the leaf absorptance (α), the fraction of irradiance that reaches PSII (β), and the dark respiration rate on a leaf-area basis between the plants (Table 1). As shown by the $A-C_i$ and $A-C_c$ responses, the net photosynthesis rate on a leaf-area basis (A) and the

![Fig. 2](image-url) Changes in net photosynthesis rate (A) and electron transport rate (J) against CO$_2$ concentration in the substomatal cavities (C_i) and against the CO$_2$ concentration in the chloroplasts (C_c) in well-watered (□) and drought-acclimated (●) tobacco. C_c was calculated by the chlorophyll fluorescence method. The calculated internal conductance to CO$_2$ (g_i) is shown in Table 2. Data are represented as the mean of seven sample leaves. Non-rectangular hyperbolic curves were fitted to the data.

Table 1. The maximum quantum yield of PSII (F_v/F_m), leaf absorptance (α), fraction of absorbed irradiance that reaches PSII (β), and dark respiration rate on a leaf-area basis in well-watered and drought-acclimated plants

<table>
<thead>
<tr>
<th></th>
<th>Well-watered</th>
<th>Drought-acclimated</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_v/F_m</td>
<td>0.841 ± 0.014</td>
<td>0.825 ± 0.013</td>
<td>0.043</td>
</tr>
<tr>
<td>α</td>
<td>0.837 ± 0.010</td>
<td>0.830 ± 0.008</td>
<td>0.206</td>
</tr>
<tr>
<td>β</td>
<td>0.538 ± 0.017</td>
<td>0.54 ± 0.03</td>
<td>0.779</td>
</tr>
<tr>
<td>Dark respiration rate</td>
<td>1.7 ± 0.5</td>
<td>1.2 ± 0.5</td>
<td>0.070</td>
</tr>
</tbody>
</table>
electron transport rate (J) significantly decreased when the leaves were acclimated to long-term drought (Fig. 2). On average, the net photosynthesis rate measured at ambient CO$_2$ concentration (i.e. $AC_a = 360$) in the DA leaves was approximately half of that in the WW leaves (Fig. 3), and the WUE in the DA leaves was, on average, 30% higher than that in the WW leaves.

The average g_i values calculated by the chlorophyll-fluorescence method agreed with those calculated by the curve-fitting method (Table 2); hence, we used the g_i values calculated by the chlorophyll-fluorescence method for further analyses. On average, g_s in the DA leaves was approximately

![Fig. 3. Changes in net photosynthesis rate on a leaf-area basis ($A_{C_a=360}$) and water-use efficiency (WUE), both of which were measured at an ambient CO$_2$ concentration of 360 µmol mol$^{-1}$, against stomatal conductance to water vapour (g_s) or internal conductance to CO$_2$ (g_i) in well-watered (○) and drought-acclimated (●) tobacco plants. g_s was measured under ambient CO$_2$ concentration. g_i was calculated by the chlorophyll fluorescence method. WUE is defined as $A_{C_a=360}$ divided by the corresponding g_s.](image)

<table>
<thead>
<tr>
<th>Well-watered</th>
<th>Drought-acclimated</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i (µmol mol$^{-1}$)</td>
<td>230 ± 20</td>
<td>190 ± 30</td>
</tr>
<tr>
<td>C_i/C_s ratio</td>
<td>0.60 ± 0.06</td>
<td>0.51 ± 0.07</td>
</tr>
<tr>
<td>k_i (mol m$^{-2}$ s$^{-1}$)</td>
<td>0.135 ± 0.017</td>
<td>0.091 ± 0.014</td>
</tr>
<tr>
<td>k_c (mol m$^{-2}$ s$^{-1}$)</td>
<td>0.263 ± 0.011</td>
<td>0.20 ± 0.03</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the calculated internal conductance to CO$_2$ diffusion (g_i) in tobacco plants determined by the chlorophyll fluorescence method and the curve-fitting method

Data are the mean ± s.d. of seven sample leaves for each treatment. P indicates the significance value of t-tests between the two methods in each treatment.
one-third of that in the WW leaves (Fig. 3). The decrease in g_i was of a smaller magnitude compared with the changes in g_s. The decreases in g_s and g_i resulted in low C_i and low C_c/C_i ratios, respectively (Table 3).

As shown in Table 3, the area-based amounts of Rubisco, soluble protein, chlorophyll and nitrogen did not differ significantly between the treated leaves. In contrast, the initial slope of the A–C_c response, which is closely coupled with the Rubisco carboxylation capacity, was lower in the DA than that in the WW leaves. Taken together, these results indicate that significant reductions in $A_{C_c=360}$ in the DA leaves result from both low C_c and low activity of Rubisco.

Changes in leaf anatomical characteristics

Total leaf thickness was reduced when the leaves were acclimated to long-term drought (Fig. 4; Table 4). This decrease in total leaf thickness was accompanied by a decrease in mesophyll tissue thickness. There were no significant differences in the mesophyll surface area exposing the intercellular air space (S_{mes}) or in the fraction of mesophyll volume occupied by the intercellular air space (f_{ias}) between the DA and WW leaves. The S_c/S_{mes} ratio in the DA leaves was similar to that in the WW leaves. Together with the S_{mes} data, this result indicates that the chloroplast surface area (S_c) did not differ much between the treated leaves. The mesophyll cell density in the DA leaves tended to be higher than that in the WW leaves.

Changes in leaf aquaporin contents

Major bands larger than 30 kDa, which corresponds to the size of the monomers, were not detected using the anti-all PIPs or the anti-PIP2s in the leaves. Overall, the total plasma membrane aquaporin (all PIPs) content on a leaf-area basis was slightly lower in the DA leaves than in the WW leaves (Fig. 5). The relationships between g_i and all PIP contents on a leaf-area basis were obscure in both the WW plants ($r = -0.64, P = 0.12$) and in the DA plants ($r = -0.17, P = 0.72$). When all the data from both treatments were pooled, we did not find a significant correlation either ($r = 0.21, P = 0.46$). The protein levels of mercury-sensitive aquaporin isoforms (PIP2s) in the DA leaves were comparable to those in the WW leaves (Fig. 6). Interestingly, the electrophoretic mobility of the PIP2s in the DA plants increased slightly.

Effects of $HgCl_2$ on the water permeability of the leaf tissues and g_i

In the WW plants, the water permeability of the leaf tissues decreased by ~20% with treatment with 0.5 mM $HgCl_2$ and it remained unchanged with treatment with >0.5 mM $HgCl_2$ (Fig. 7a). In contrast, the water permeability of the DA leaves.

Table 4. Anatomical characteristics of the leaves of well-watered and drought-acclimated tobacco plants

<table>
<thead>
<tr>
<th></th>
<th>Well-watered</th>
<th>Drought-acclimated</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (μm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total leaf</td>
<td>320 ± 20</td>
<td>270 ± 30</td>
<td>0.002</td>
</tr>
<tr>
<td>Mesophyll tissue</td>
<td>280 ± 30</td>
<td>240 ± 20</td>
<td>0.003</td>
</tr>
<tr>
<td>Upper epidermis</td>
<td>23 ± 2</td>
<td>20 ± 4</td>
<td>0.058</td>
</tr>
<tr>
<td>Lower epidermis</td>
<td>17 ± 2</td>
<td>16 ± 2</td>
<td>0.768</td>
</tr>
<tr>
<td>S_{mes} ($m^2 m^{-2}$)</td>
<td>21 ± 3</td>
<td>21.4 ± 1.7</td>
<td>0.915</td>
</tr>
<tr>
<td>S_c/S_{mes} ratio</td>
<td>0.88 ± 0.04</td>
<td>0.91 ± 0.03</td>
<td>0.209</td>
</tr>
<tr>
<td>f_{ias} (%)</td>
<td>29 ± 2</td>
<td>26 ± 5</td>
<td>0.132</td>
</tr>
</tbody>
</table>

Fig. 4. Light micrographs of transverse sections of (a) well-watered and (b) drought-acclimated tobacco leaves. Scale bar = 50 μm.
Fig. 5. (a) Protein levels of total plasma membrane aquaporins (all PIPs) in tobacco leaves and roots. W, well-watered; D, drought-acclimated. For leaves and roots, 40μg and 2.5μg of water-soluble proteins, respectively, were loaded into each lane. The internal conductance to CO₂ (gᵢ) is shown below the corresponding bands. (b) Relationship between gᵢ and all PIP contents on a leaf-area basis in well-watered (C) and drought-acclimated (D) tobacco. gᵢ was calculated by the chlorophyll fluorescence method. All PIP were immunochemically determined using the radish anti-all PIPs. The amount of all PIPs for each sample is expressed as a value relative to that of the highest gᵢ observed in the present study.

Fig. 6. Protein levels of mercury-sensitive plasma membrane aquaporins (PIP2s) were immunochemically determined using radish anti-PIP2s in well-watered (W) and drought-acclimated (D) tobacco leaves. Water-soluble proteins (20μg) were loaded into each lane. The internal conductance to CO₂ (gᵢ) is shown below the corresponding bands.

Fig. 7. Effects of HgCl₂ on the water permeability of leaf disks without the abaxial epidermis in (a) well-watered and (b) drought-acclimated tobacco plants. Fully turgid leaf disks without the abaxial epidermis were treated with HgCl₂ solutions and weighed (initial FW (iFW)). Subsequently, the leaf disks were dehydrated in 1M sorbitol solution for 60s, and reweighed (dehydrated FW (dFW)). The iFW values were 49 ± 6 mg (n = 36, mean ± s.d.) and 45 ± 5 mg (n = 19) for well-watered and drought-acclimated leaves, respectively. Weight loss relative to the initial weight was calculated. A Sheffe’s test was used to evaluate the significant difference between the results of the mercury treatments. Data are represented as the means ± s.e. of 3–14 leaf disks. The number of sample leaf disks taken for each treatment is shown beside each plot. Different letters denote the mean significant difference at P < 0.05 for each treatment.
plants remained almost constant at all concentrations of mercury (Fig. 7b).

As shown in Fig. 8, the initial slope of the $A-C_i$ response in the WW leaflets decreased markedly when 0.5 mM HgCl$_2$ was fed to the petioles ($P<0.01$, t-test). Moreover, A at $C_i > 200 \mu$mol mol$^{-1}$ was lowered by HgCl$_2$ feeding to the WW leaflets, implying that the regeneration rate of ribulose-1, 5-bisphosphate was retarded owing to inhibitions of plastocyanin and Calvin cycle enzymes that contain sulfhydryl groups (Terashima and Ono 2002). However, the Rubisco carboxylation capacities would remain unaffected because the initial slopes of the $A-C_c$ responses did not change even after HgCl$_2$ treatment ($P=0.29$, t-test).

In the WW leaflets, g_i decreased by 30% when the mercury treatment was applied (Fig. 9). In contrast, in the DA leaflets, g_i was insensitive to the mercury treatment. After the mercury treatment, there was no significant difference in g_i between the WW and the DA leaflets. Similar results held true for changes in g_s.

Discussion

Effects of leaf anatomical characteristics and aquaporin activity on g_i

Our results suggest that the significant reductions in g_i in DA tobacco leaves did not result from leaf anatomical

![Fig. 8. Effects of HgCl$_2$ on $A-C_i$ and $A-C_c$ responses in (a, b) well-watered and (c, d) drought-acclimated tobacco plants. \bigcirc, responses before 0.5 mM HgCl$_2$ feeding; \bullet, responses after 0.5 mM HgCl$_2$ feeding. C_i and C_c indicate the CO$_2$ concentrations in the substomatal cavities and chloroplasts, respectively. C_c was calculated by the chlorophyll fluorescence method. Data are the mean ± s.d. of five and four sample leaflets for well-watered and drought-acclimated plants, respectively. Non-rectangular hyperbolic curves were fitted to the data.](image-url)
Mercury binds the cysteine residues in the cytoplasmic sites of aquaporins thereby inhibiting water transport (Tazawa et al. 1996; Suga and Maeshima 2004). In the desert succulent Agave deserti Engelm., root hydraulic conductivity becomes insensitive to HgCl2 treatment when the roots are grown under drought conditions (North and Nobel 2000). These researchers suggest that the aquaporin gating is closed by drought treatment, resulting in insensitivity of the root hydraulic conductivity to mercury. They also suggest that symplastic water transport via aquaporins becomes less important than apoplastic water transport in roots during long-term drought. Similarly, in tobacco, both \(g_i \) and water permeability in the DA leaves were insensitive to mercury treatment, whereas those in the WW leaves were markedly reduced by mercury treatment (Figs 7 and 9).

Stomatal conductance \((g_s) \) in the DA leaves was lower than that in the WW leaves (Figs 3 and 9). The transpiration rate was monitored during \(HgCl_2 \) feeding (2.5–3.0 h), just before measurement of the second \(A–C_i \) response. The cumulative transpiration amount during the mercury treatment did not differ considerably between the treated leaflets \((40 \pm 6 \text{ mol m}^{-2} \text{ (mean} \pm \text{s.d.) for the WW leaflets and 33} \pm 10 \text{ mol m}^{-2} \text{ for the DA leaves). The magnitude of the decrease in } g_i \text{ was independent of the cumulative transpiration amount, implying that the mercury insensitivity of } g_i \text{ in the DA leaves did not result from a difference in the amount of mercury accumulated in their leaves.}

A PIP1-type aquaporin identified in tobacco (NtAQP1) is insensitive to mercury (Biela et al. 1999). In contrast, the protein levels of the PIP2-type aquaporins (mercury-sensitive aquaporin isoforms) in the DA tobacco leaves were comparable to those in the WW leaves (Fig. 6). Phosphorylation of purified phospholamban decreases the electrophoretic mobility of the proteins in SDS–PAGE (Wegener and Jones 1984). As found for the DA leaves, the mobility of the PIP2s slightly increased, implying that the PIP2s are dephosphorylated and, hence, aquaporin gating is closed (Johansson et al. 1996, 1998). Consequently, our results suggest that the mercury insensitivity of \(g_i \) in the DA leaves is not caused by a lack of PIP2s, but rather by closed gating of PIP2s.

Relationship between \(g_i \) and aquaporin content

The variations in \(g_i \) were not clearly explained by the total plasma membrane aquaporin (all PIP) content on a leaf-area basis (Fig. 5). Immunohistological studies have revealed that PIPs are accumulated in the xylem parenchyma as well as in the spongy parenchyma in tobacco leaves (Otto and Kaldenhoff 2000) and in the phloem sieve elements and stomatal guard cells in spinach leaves (Frayse et al. 2005). In tobacco, a recent study showed that the inner chloroplast membranes contain NtAQP1 and the chloroplast NtAQP1 considerably affects the leaf CO2 transport, namely \(g_i \) (Uehlein et al. 2008). The obscure relationships between all PIP content and \(g_i \) might result from this heterogeneity in the aquaporins in the leaf tissues. Further studies are needed to determine which aquaporin isoform mainly contributes to CO2 transport and to what extent leaf aquaporins regulate not only CO2 transport, but also water transport.
Leaf aquaporin and internal conductance to CO₂

Water permeability and water-use efficiency

The water permeability, (iFW – dFW)/iFW, at zero mercury levels in the DA leaves was slightly lower than that in the WW leaves (Fig. 7), but there was no statistical difference between the treatments (P = 0.15, t-test). The DA leaves had the lower iFW (perhaps owing to the reduced leaf thickness), but they had similar Smes to the WW leaves (Fig. 7; Table 4). Therefore, when calculating water permeability as relative weight loss the water permeability of the DA leaves should be overestimated compared with the WW leaves. The absolute weight loss (i.e. iFW – dFW) in the DA leaves was 15% lower than that in the WW leaves. There was a modest significant difference in iFW – dFW between the treatments (P = 0.06, t-test), suggesting that the actual water permeability in the DA leaves is lower than that in the WW leaves.

In a leaf, water flows from the vascular vessels to the stomatal pores through two pathways: the mesophyll apoplastic and symplastic pathways (Jones 1992). The closed state of PIP2-type aquaporins in the mesophyll cells might reduce the water-flow via the symplastic pathway, which might decrease stomatal conductance and contribute to the increase in instantaneous WUE (Fig. 3).

Conclusions

In tobacco, the significant reduction in gₚ in the DA leaves did not result from leaf anatomical changes. Our results suggest that mercury-sensitive aquaporins (PIP2s) are in a closed state in DA leaves and deactivation of the PIP2s leads to a significant reduction in gₚ. Mesophyll CO₂ diffusion in the WW leaves is probably facilitated through the PIP2s, whereas diffusion in the DA leaves would be retarded by the closed gating of PIP2s.

Acknowledgements

S.-I. Miyazawa thanks Professor Ichiro Terashima for his constructive comments on early drafts of this manuscript and also Dr Hiroshi Yamamoto for his helpful suggestions. We also thank the anonymous reviewers for their advice. This work was supported by the Ministry of Economy, Trade and Industry (METI), Japan.

References

