Program in Ecology
420 Wyoming Hall
Phone: (307) 766-4828
E-mail: ecology@uwyo.edu
Web Address: uwacadweb.uwyo.edu/pie
Program Director: Stephen T. Jackson, Ph.D.

Degree Offered
Ph.D. in Ecology

The Program in Ecology prepares doctoral students to lead the discipline of ecology during the coming decades. The program is grounded in the natural history of organisms in their environment, but incorporates tools and perspectives from across the biological, physical, mathematical, computational, and earth sciences. Students develop conceptual, historical, and philosophical perspectives spanning the entire range of subdisciplines in ecology, while receiving advanced training in the subdiscipline of their individual interest. The program fosters long-term career development by exploring the linkages of ecology with other disciplines, and by scanning the ecological horizon for emerging questions, concepts, and approaches that will shape the field in years to come.

Faculty members from several departments and colleges participate in the Program in Ecology. Their interests span the full range of topics covered in the field of ecology, and students in the program reflect this diversity.

Program Specific Admission Requirements

Only students seeking a doctoral degree will be admitted into the program. Minimum criteria for admission to the Program in Ecology are:

- Minimum score of 900 on the Graduate Record Examination (GRE) general test
- Minimum undergraduate GPA of 3.0 Agreement by a member of the PIE faculty to sponsor the student, or to co-sponsor the student together with a PIE affiliate
- Admission to a home department at the University of Wyoming

All applications to the program will be reviewed by Graduate Affairs Committee, which has authority on admissions. Students applying to the program who lack a master's degree must show exceptional promise and commitment (e.g., through undergraduate or post-graduate research experiences, peer-reviewed publications, and/or success in competing for research fellowships). Such students are encouraged to consult with their prospective adviser on whether to apply directly to PIE or to master's programs in individual home departments of PIE faculty.

Students already admitted to doctoral programs in individual departments at the University of Wyoming may apply to transfer to the program. Transfer is not pro forma. Transfer applications are subject to the same criteria as for entering students, and admission to the program for transfer students must be approved by the Graduate Affairs Committee.

Program Specific Degree Requirements

Advisory Committee

Before the end of the second semester of study, the student should nominate a five-member advisory committee to the Office of the Registrar. At least three members of the committee, including the committee chair (usually the student's adviser), will be members of the PIE faculty. One other member, who will serve as Graduate Faculty representative, must be from outside the home department of the major adviser, although (s)he can be a faculty member in a department that participates in the program. The committee will advise the student on his/her program of graduate study, execute and evaluate the student's preliminary examination, evaluate the student's dissertation proposal and dissertation, and conduct the student's dissertation defense.

Program of Study

All students are required to take ECOL 5100 or equivalent. This course should be taken during the first year of residency. All students are required to take ECOL 5550 no sooner than the fourth and no later than the eighth semester of study. All students should take ECOL 5550 or its equivalent at least once a year, excepting years when they are enrolled in 5100 or 5550. Exceptions or substitutions of these requirements are subject to approval by the graduate affairs committee.

The program of study must include at least 6 credit hours aimed at developing a tool skill, which except for rare cases shall be in the quantitative/analytical domain (e.g., statistics, modeling, GIS, remote sensing, bioinformatics). Courses relating to research tools should be taken early in the student's residency to ensure that they can be used in thesis research and advanced studies. Specific coursework and tool-skill development for the student's program of study will be developed in consultation with and subject to approval by the student's advisory committee.

Admission to Candidacy

Admission to candidacy for the Ph.D. requires two steps: 1) providing evidence that the student is prepared to identify a research question, design an approach for investigating that question, and a plan for executing the approach, all in the format of an NSF-style research proposal, and 2) illustrating adequate proficiency in the subject matter of ecology through a process involving both written and oral exams.

Proposal

Students must submit a NSF-style proposal to their committee outlining their project, typically by the end of the fourth semester. Each committee member will provide feedback to the student on the proposed research and indicate approval of the proposal or request revision. The proposal must be approved by all committee members prior to starting the preliminary exams.

While this proposal should be a plan for actual dissertation research, unforeseen circumstances may require altering the student's dissertation work after the proposal has been approved by the committee. In the case of a major alteration, the student should reformulate a research plan and submit it to the committee in writing for committee approval.

Preliminary Exam

Passing the preliminary exam is the official admission to candidacy.

Written portion of the preliminary exam. The student will take the written exam portion of the preliminary exam no fewer than two weeks following approval of the research proposal. The goal of this exam is to test breadth of knowledge in ecology. The design of this exam will be coordinated by the graduate committee under the leadership of the adviser. Each written exam will cover the following topics:

- Ecological topics ranging from organismal/evolutionary to ecosystem-level perspectives, integrating concepts and perspectives from across the discipline, over a wide range of spatial and temporal scales.
- The philosophical and historical development of ecology.
- The conceptual background of the student's area of specialization.
The exam will consist of four to six questions developed collectively by the committee and organized by the student’s major professor. The exam will be open book; however, the answers will be solely the work of the student. Answers should be fully cited and collectively should be no longer than 30 pages double-spaced exclusive of references cited. Students will have one full week (seven days) to complete the exam. Committee members will indicate pass/fail within one week following completion of written exams. Four of five passing votes are required.

Oral Portion of the Preliminary Exam. No sooner than two weeks after successfully passing the written exam, the student may proceed to an oral exam administered by his/her graduate committee. Oral exams center around three goals from which questions will be derived:

To verify that the student is prepared, conceptually and methodologically, to carry out successful dissertation research.
To evaluate the student’s ability to conceptualize specific questions in a broad, integrative context.
To evaluate the student’s ability to think spontaneously and creatively and to articulate responses about unexpected or novel questions.

The advisory committee will discuss and organize specific questions based on these goals in a short session at the beginning of the exam period before admitting the student to the examination room and starting the exam. Following the exam each committee member will provide non-binding paper votes of pass/fail for each of the three goals of the oral exam. Following discussion of the student’s performance, committee members will each assign a grade of pass/fail for the overall exam. Four of five committee members must vote for passing the overall oral exam.

Students whose performance is unsatisfactory will be given one opportunity for retaking the oral examination. This retake will occur no later than the academic-year semester following the first examination.

Public Seminars
Students are required to give two oral presentations on their research. The purposes of these presentations are to provide the student with practice in oral presentations and to keep the PiE community informed of the student’s progress. The first will describe the student’s dissertation research proposal. This presentation will be given before the student submits his/her thesis proposal. The second presentation will summarize the student’s completed dissertation research, and will normally be given the same semester as the student’s dissertation defense. Under extraordinary circumstances (subject to approval by the Graduate Affairs Committee), this presentation may be given at an earlier time. These presentations must be open to the public, and may comprise part of a departmental or Program in Ecology seminar or brown-bag series.

Ecology (ECOL)
5100. Ecology as a Discipline. 3. Covers the range of ecological questions, processes, scales, and research approaches, in context of the history and philosophy of science in general and of ecology in particular. Aimed at first-year students in the doctoral program in Ecology, although students in other graduate programs are welcome. Prerequisite: graduate standing.
5350. Seminar in Ecology. 1-3. (Max. 12). Exploration of topical issues in ecology, based on discussions of relevant literature. Prerequisite: graduate standing and consent of instructor.
5380. Bayesian Data Analysis. 4. Bayesian statistical methods for analyzing data, with emphasis on ecological and biological data. Includes Bayes rule, basic Bayesian formulation (priors, posteriors, likelihoods), single- and multiple-parameter models, hierarchical models, generalized linear models, multivariate models, mixture models, models for missing data, merging statistical and process models, and introduction to computation methods. Cross listed with BOT/STAT 5380. Prerequisite: at least 2 semesters of calculus and one semester of statistics.
5550. Ecology as a Scientific Profession. 2. A capstone that prepares doctoral students for success and leadership in their careers as professional ecologists. Intended for students enrolled in the doctoral Program in Ecology in their second or third year. Prerequisite: graduate standing.

5620. Advanced Topics in Ecology. 1-4. (Max. 12). Provides advanced treatment of specific topics in ecology that are not covered in regular courses. Prerequisites: graduate standing and consent of instructor.
5745. Terrestrial Ecosystem Ecology. 3. Advanced course examines fundamental ecosystem functions and their relationship to ecosystem structure using a systems approach. We study cycles of carbon, water and nutrients through ecosystem components with an emphasis on interactions among plants, soil, and the atmosphere. Current readings focus on responses of terrestrial ecosystems to global climate change and human disturbance. Cross listed with BOT 5745. Prerequisite: one course in ecology.
5775. Forest Ecology. 4. Integrative study of the structure, function, and ecological diversity of forested ecosystems, and the physical factors that influence this diversity, including emergent properties of energy flow and nutrient cycling. Special emphasis is given to understanding forest disturbances and succession, and implications for impacts of management and sustainability are discussed throughout. Cross listed with RNEW 5775 and BOT 5775. Prerequisite: LIFE 3400.
5780. Research in Ecology. 1-6 (Max. 12). Designed for doctoral students pursuing exploratory research before they have determined a dissertation project, and for students to pursue independent research that will not comprise part of their dissertation. Research must be conducted under supervision of an Ecology Faculty member or Affiliate. Prerequisite: admission to doctoral Program in Ecology.
5920. Continuing Registration: On Campus, 1-2 (Max. 16). Prerequisite: graduate standing.
5940. Continuing Registration: Off Campus, 1-12 (Max. 16). Prerequisite: graduate standing.
5980. Dissertation Research. 1-12 (Max. 48). Designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. Prerequisite: enrollment in a graduate level degree program.
Degrees Offered

The Helga Otto Haub School of Environment and Natural Resources offers two major options for graduate students, including the graduate minor in environment and natural resources and the interdisciplinary master’s degree major in environment and natural resources (ENR), both of which are available to all graduate students, regardless of discipline. Students pursuing the ENR dual major must also complete the major requirements for a master’s degree in another UW department. A third option is available only to students who are admitted into the University of Wyoming College of Law. University of Wyoming law students may apply to the Haub School for admission to the joint JD/MA in Environment and Natural Resources program. The Haub School of Environment and Natural Resources (Haub School) is designed to move beyond the strictly disciplinary identification of environmental and natural resource problems to the interdisciplinary design and management of their long-term solutions. The school seeks to attract outstanding graduate students from a variety of disciplines, who are eager to pursue careers that engage other professionals, policymakers, and the public in finding innovative ways to resolve complex environmental and natural resource issues.

Program Specific Admission Requirements

The interdisciplinary ENR major program is available to any master’s degree student enrolled in the university, subject to the approval of the student’s home department and primary adviser. Primary responsibility for student guidance and program formulation resides with the home academic department. The ENR dual major is generally intended for master’s students.

To pursue a minor in ENR, students must first be admitted to another master’s or doctoral degree program offered at the University of Wyoming. The ENR minor is generally intended for doctoral students. Admission to the joint JD/MA in environment and natural resources degree requires an application to the Haub School. The JD/MA application includes transcripts, LSAT scores, three letters of recommendation, a personal statement, and an interview. Applications may be submitted to the Haub School during any semester. Please contact the Haub School directly for specific application guidelines.

Program Specific Major Requirements

Master of (Science or Art in Program)/Environment and Natural Resources

15 credit hours of a student’s coursework must be applied toward the ENR interdisciplinary major. Six of these hours must come from the ENR Capstone (ENR 5000 and 5900) courses. An additional 9 credit hours must be completed in approved courses in three of the four distribution categories listed below. To add breadth to their academic training, students are required to complete courses in the three distribution categories most unlike their primary discipline. Also, to ensure an interdisciplinary character to the program, at least 6 of the 9 required credit hours must come from outside the individual student’s home academic department. These distribution menus are subject to change, so contact the Haub School for current curriculum requirements.

A. ENR Policy, Economics, & Law

AGEC 4700 Economics of Range Resources
AGEC 4710 Natural Resource Law and Policy
AGEC 4720/5890 Water Resource Economics
AGEC 4750/5890 Natural Resource Planning Economics
AGEC 5630 Advanced Natural Resource Economics
ECON 4400 Environmental Economics
ECON 4410 Natural Resource Economics
ECON 4420 Seminar in ENR Economics for Scientists
ECON 5400 Advanced Resource and Environmental Economics

GEOG 4040 Conservation of Natural Resources
GEOG 4080 Management of Major River Basins
GEOG 5200 Land Use Planning
GEOG 5750 Public Land Management
LAW 6660 Environmental Law
LAW 6860 Water Rights
POLS 4052 Federal Land Politics
POLS 5051 Environmental Politics and Administration
SOC 4110 Sociology of International Development
SOC 5600 Global Population Issues

B. ENR Science and Engineering

ATSC 4010 Atmospheric Processes
ATSC 5880 Atmospheric Science Problems
BOT 4745/5745 Terrestrial Ecosystem Ecology
BOT 5700 Vegetation Ecology
BOT 5780 Biogeochemistry
CHE 4000 Environment, Technology, and Society
ENVE 5010 Environmental Engineering Principles
ENVE 5895 Environmental Engineering Seminar
GEOG 4450/5450 Fluvial Geomorphology
GEOG 4460 Biogeography
GEOG 4470/5470 Fire Ecology
GEOG 5060 Landscape Ecology
GEOL 4490 Geochemistry
GEOL 4880 Earth Surface Processes
GEOL 5444 Geohydrology
GEOL 5777 Geochemistry of Natural Waters
PATB 5140 Principles of Toxicology
REWM 4280 Wildland Hydrology
REWM 4700 Wildland Watershed Management
REWM 4710 Watershed Water Quality Management
REWM 4850 Rangeland Vegetation Management
REWM 5000 Rangeland Resource Management
ZOO 4425/5425 Genetic Markers
ZOO 5300 Principles of Wildlife Ecology and Management
ZOO 5310 Fisheries Management
ZOO 5430 Ecology of the Greater Yellowstone Ecosystem
ZOO 5550 Wetland Ecology
C. Human Dimensions
AMST 4640 Art and Ecology
AMST 5300 American Culture and the Public Sector
AMST 5400 American Built Environment
ANTH 5310 Environmental Anthropology
ENGL 4480 Regional Literature of the US: The West
GEOG 4500 American Landscapes
GEOG 4530 Images of Wyoming and the West
GEOG 5540 Topics in Cultural Ecology
HIST 5475 American Environmental History
PHIL/RNEW 4340 Topics in Environmental Ethics
REWM 4900 Rangeland Management Planning
SOCI/WMST 4580 Women and Third World Development

D. Quantitative/Qualitative Methods
EDRE 5550 Action Research
EDRE 5600 Education Research I: Survey Research
EDRE 5640 Intro to Qualitative Research in Education
GEOG 4200/4210 Geographic Information Sciences I/II
GEOG 4280/5280 Quantitative Methods in Geography
GEOG 4300/5300 GPS for Natural Resource Management
GEOG 4880 Spatial Modeling
GEOL 5111/BOT 4111 Remote Sensing
REWM 5200 Rangeland Analysis for Watersheds & Ecosystems
STAT 5050 Statistical Methods for the Biological Sciences
STAT 5070 Statistical Methods for the Social Sciences
STAT 5080 Statistical Methods for the Agricultural and Natural Resource Sciences
STAT 5450 Biological Sampling and Estimation of Animal Abundance

Minor in Environment and Natural Resources

In addition to the degree requirements of the student’s home department, students must also complete 12 credit hours toward the ENR minor. Six of these hours are completed in the ENR Capstone (ENR 5000 and 5900) courses. An additional 6 hours are completed in two of three distribution categories, including policy, science and engineering, and human dimensions. Students are required to complete their distribution requirements in the categories most unlike their primary discipline. Courses that meet the policy, science and engineering, or human dimensions requirements are any that the student’s graduate adviser, Haub School director, and the student agree on. Student completing a graduate minor in ENR must submit an “Addendum for Minor to the Program of Study” form to the Office of the Registrar prior to graduation. The Addendum must be signed by the Haub School director or assistant director.

Juris Doctor/Masters of Art in Environment and Natural Resources

ENR Capstone Series (6 credit hours)
- ENR 5000 Approaches to Environment and Natural Resources Problem-Solving
- ENR 5900 ENR Assessment Practice

ENR Distribution Courses (9 credit hours)
- ENR Science and Engineering (one class from category C)
- ENR Human Dimensions (one class from category C)
- ENR Quantitative/Qualitative Methods (one class from category D)

Internship (3 credit hours)
College of Law Courses (12 credit hours)
- LAW 6510 Administrative Law
- LAW 6660 Environmental Law
- LAW 6735 Native American Natural Resources Law
- LAW 6780 Mining Law
- LAW 6790 Oil and Gas
- LAW 6800 Public Lands
- LAW 6860 Water Rights
- LAW 6870 Hazardous Waste and Water Pollution
- LAW 6890 Land Use Law

Plan B paper
For more information on these and other programs, contact:
Haub School of Environment and Natural Resources
804 East Fremont Street
Laramie, WY 82072
Phone: (307) 766-5080
Fax: (307) 766-5099
E-mail: senr@uwyo.edu

Environment and Natural Resources (ENR)
5000. Approaches to Environment and Natural Resources Problem-Solving. 3. Explores important environmental policy, collaborative and adaptive decision-making and the integration of diverse disciplines in the study and resolution of complex ENR challenges. This is the first course in the ENR Capstone series (along with ENR 4900) and the students should take both capstone courses in the same academic year. Dual listed with ENR 4000. Prerequisite: USP WA course.

5500. Risk Analysis. 3. Introduces basic concepts of risk analysis, including risk perception, identification, assessment, communication, management, and policy. Provides quantitative treatment of risk assessment procedures, fundamental mathematical models, and the concepts of variability and uncertainty; and practical experience in risk analyses conducted by teams of students. Emphasizes environment and natural resource examples. Prerequisites: USP WA 1000 or 1400, introductory statistics and familiarity with Excel spreadsheets.

5600. Campus Sustainability. 3. Uses campus as a setting to explore long-term environmental, economic, and social sustainability theory and practice. Students design and implement a semester-long project to improve sustainability of the UW campus. This is an interdisciplinary course and is appropriate for students of all disciplines. Dual listed with ENR 4600. Prerequisite: ENR 4890. USP WA course.

5890. Topics in Environment and Natural Resources. 1-6 (Max. 12). Special topics in environment and natural resources are offered under this number. The specific subject matter varies each year because the course is normally taught by faculty who wish to present a specialized topic of interest to ENR and other students. Check class schedule for specific topics offered each year. Dual listed with ENR 4890. Prerequisite: ENR 5000 or consent of instructor.

5900. Solving Multidisciplinary Problems in ENR. 3. Participation in a multidisciplinary research team to solve a real or simulated problem in environment and natural resources. Dual listed with ENR 4900. Prerequisite: graduate standing and ENR 5000.
Food Science and Human Nutrition

Phone: (307) 766-2224 or (307) 766-4145
Web Address: www.uwyo.edu/anisci or www.uwyo.edu/family

Degree Offered
M.S. in Food Science and Human Nutrition

The interdisciplinary food science and human nutrition master’s degree program affords students the opportunity to pursue graduate work in the area of human nutrition and/or food science. After admission to the program, students will choose a major department and work with a faculty member from that department. Students choosing the interdisciplinary program in food science and human nutrition will gain expertise in theory as well as research in the areas of food microbiology, meat science and food chemistry, human nutrition and metabolism, food product development, and community nutrition. All students will be exposed to laboratory as well as classroom learning experiences.

Program Specific Admission Requirements
Recommended prerequisites for students entering the program:
- One semester of organic chemistry (may include laboratory)
- Human or animal anatomy and physiology
- Introductory statistics
- Coursework in nutrition

Students may be required by their graduate committee to take courses in these areas if not completed as part of their undergraduate programs.

Program Specific Degree Requirements
Master of Science in Food Science and Human Nutrition

Program Specific Admission

- Students may be required to take more than the minimum of 30 hours, either because they have to satisfy prerequisites for some courses, or because a student’s committee determines that more than 30 hours will be needed for the student to reach his/her professional objective.
- A thesis is required.
- All students are required to take courses in biochemistry, laboratory methodology, and statistics.
- In addition, at least one credit of graduate-level seminar is required.
- Students may request their area of thesis research in food science or in human nutrition.
- Students may use the experimental animals and facilities within the animal science department.

Molecular and Cellular Life Sciences

203 Animal Science/Molecular Biology Complex
Phone: (307) 766-3300
E-mail: mcls@uwyo.edu
Web Address: www.uwyo.edu/mcls

Program Director: David Fay, Ph.D.
Admissions Director: Peter Thorsness, Ph.D.

Degree Offered
Ph.D. in Molecular and Cellular Life Sciences

Molecular and Cellular Life Sciences

This interdisciplinary program with more than 40 faculty participants spans a wide range of research topics, such as:
- Biotechnology, bioengineering, biomaterials, and pharmacology
- Cell biology and signaling
- Genetics and development
- Genomics, proteomics, and computational biology
- Microbiology and infectious disease
- Structural biology and biophysics

Coursework focuses on core courses in biochemistry and molecular biology, with electives that include such diverse courses as:
- Topics in Genomics
- Biophysics
- Microbial Physiology and Metabolism
- Mass Spectrometry and Analytical Chemistry
- Biomedical Engineering
- Mammalian Endocrinology
- Cell Culture and Virology
- Introduction to Bioinformatics
- Protein Structure and Function
- Microbial Genetics
- Computational Biology
- Plant Physiology

Program Specific Admission Requirements

Admission to MCLS is a two-step process. The first level of evaluation is carried out by the MCLS admissions committee. This step does not require any fee but does require that all requested materials be submitted as described below. Applicants who are chosen for admission to the MCLS program will then complete the final application step through the University of Wyoming Admissions office. This latter step does require a $50 processing fee by the university along with the completion of several additional forms. Students are then officially notified by the university of their acceptance into the MCLS program.

We encourage students to submit their completed applications at the very latest by February 1 of each calendar year. However, because our review of applications will begin in the late fall, early submissions are encouraged and may stand a greater likelihood of success. Also note that we will continue to review new applications received after February 1 in the event that additional slots are available.
Food Science and Human Nutrition

Program Specific Degree Requirements

MCLS doctoral students must fulfill the minimum requirements outlined by the university. In addition, students must obtain a high level of proficiency in the core foundations of the molecular and cellular life sciences through required courses in biochemistry/molecular biology, scientific literature analysis proficiency, and the MCLS cornerstone course. Because of the broad range of research interests pursued by MCLS faculty and students, considerable flexibility will be exercised regarding the specific nature of the graduate-level elective courses that students may take.

Students must successfully complete four eight-week rotations in MCLS laboratories of their choice during the first year.

Students must pass a comprehensive assessment exam at the end of the first year. Towards the end of the second year, students will undertake a qualifying examination in order to be formally admitted to graduate degree candidacy. This exam will have both written and oral components and will cover areas of science that are relevant to the students’ research.

The research and coursework progress of MCLS students will also be monitored and evaluated every year by the MCLS curriculum committee. In addition, a research-specific dissertation committee will advise and evaluate the research progress of MCLS students beginning in the second year.

Students must attend weekly outside seminars on topics in the molecular life sciences for the durations of their studies.

Students must annually present their work at the Graduate Student Symposium.

For more information, please see the program’s Web site at: www.uwyo.edu/MCLS.

Neuroscience

Phone: (307) 766-6446
E-mail: flynn@uwyo.edu
Web Address: www.uwyo.edu/neuroscience
Program Director: Francis W. Flynn, Ph.D.

Degrees Offered

M.S. & Ph.D. in Neuroscience

The Graduate Neuroscience Program offers training leading to the M.S. and Ph.D. degrees in neuroscience. The Neuroscience Program emphasizes systems and integrative approaches, and our goal is to provide the students with the necessary background to be broadly trained research neuroscientists and carry out independent research in neuroscience. The Neuroscience Program emphasizes continuing interaction with faculty from several departments and we have a low student to faculty ratio. You will emerge from this program with a problem-oriented, rather than discipline-bound, approach to research.

The Neuroscience Program is designed to enable graduate students to acquire competence in the various disciplines necessary for research and teaching careers in the neurosciences. The current interests of the neuroscience faculty include auditory neurophysiology, behavioral neuropharmacology, neuroendocrinology, neuroethology, neurodegeneration, somatosensory anatomy and physiology, pain research and cortical development and plasticity.

Program Specific Admission Requirements

University minimum requirements;

Bachelor’s degree in biological sciences from an accredited institution;

Admission to the doctoral Neuroscience Program is based on GRE scores, transcripts, letters of recommendation, and your personal statement describing your areas of interest and experience. Admission is open to all students in the biological sciences who meet the minimum requirements.

You will be best prepared for our program if you have successfully completed courses in chemistry, general zoology/biology, physiology, psychological psychology or animal behavior, and biochemistry. Students may be admitted with deficiencies in some of the areas. If so, the student’s advisory committee will determine what additional work is necessary during the first year to correct any deficiency.

Program Specific Degree Requirements

Master’s Program

After acceptance into the program, each student would select, or be assigned a major adviser and two other faculty advisers, all from the Neuroscience Program faculty. They will serve as the student’s graduate committee, devising a set of course requirements (26 credit hour minimum) to best suit the student’s educational goals and overseeing the design, execution, and approval of the student’s thesis research.

In addition to the usual university requirements for the M.S. degree, an original research thesis (4 hours of thesis research; 5960) on a neuroscience problem and final oral examination will be required. Specific course requirements will include 1) Introduction to Neuroscience (NEUR 5280), 2) participation in at least two semesters in the Graduate Neuroscience Seminar (NEUR 5115; the topic and instructor changes each semester), 3) thesis research.

Students are required to take a minimum of two of the following courses: Neurophysiology (NEUR 5685), Structure and Function of the Nervous System (NEUR 5100), Neural Mechanisms of Behavior (ZOO 4290), and Cell Physiology (NEUR 5670). Students are required to earn a minimum grade of B for the required courses. Additional electives include: Pharmacology I and II (PHCY 6230), Molecular & Cellular Basis of Disease (HM 6520), and Statistics.

Students are required to obtain a B or better in required courses.

The thesis is the final, written product of the research project. The thesis must be submitted to the student’s committee at least two weeks before the intended date of final examination. To finalize the master’s program and project, one electronic copy of the thesis is submitted to the Office of the Registrar along with the completion of requirements and certificate of approval forms by the graduation deadline.
Doctoral Program

All doctoral neuroscience students are required to complete a 30 hour program of core courses that includes the following required courses: Introduction to Neuroscience, Structure and Function of the Nervous System and Neurophysiology. Students are required to take one course in Statistics (e.g. STAT 5050, STAT 5210) and the course that meets this requirement will be arranged with the student’s committee. The statistics requirement must be met by the end of the second year. The Neuroscience Program is a research-oriented program and students are expected to take a minimum of 2 to 3 credit hours of research per semester. Students are also expected to enroll in an on-going Seminar in Neuroscience each semester. The Neuroscience Seminar, which meets weekly and is attended by students and faculty members, provides an opportunity for intellectual and social exchange. The topic and the faculty member directing the seminar changes each semester. The remainder of the 30 hour requirement for the doctor of philosophy degree is selected from designated courses in physiology, pharmacology, molecular biology, and psychology.

A grade of B or better is required for all neuroscience courses.

A student is expected to have a graduate adviser at all times. The faculty adviser will be a participating member of the neuroscience faculty and is on the Graduate Faculty. The adviser is responsible for directing the student’s research and academic coursework. During the second year, the student will have an advisory committee. The advisory committee will consist of at least three neuroscience faculty members and an outside member. Normally, the student’s adviser will chair the committee and help identify members of the committee who best match the student’s area of interest. The role of the advisory committee is to oversee all aspects of the student’s education after the first year.

In the student’s third year, the advisory committee will set and evaluate the student’s qualifying examination. After completion of the preliminary examination, the committee will evaluate the student’s dissertation proposal and, eventually, the completed dissertation.

The dissertation is the single most important component of the graduate program. It reports the results of the student’s research. As oral defense of the dissertation, the student will deliver a formal 50 minute seminar on original research from the dissertation. The seminar will be followed by an examination by the student’s advisory committee.

Neuroscience (NEUR)

5100. Structure and Function of the Nervous System 4. Aimed at understanding the structure and interconnections of neurons in the brain and how structure gives rise to the complex functions mediated by the brain. This is an essential feature of neuroscience. Covers gross anatomy of the brain, followed by detailed consideration of the divisions of the brain and their functional significance. Cross listed with ZOO 5100. Prerequisite: admission to the graduate neuroscience program or graduate standing.

5160. Degeneration and Regeneration in the Nervous System 2. Important neurodegenerative diseases of man and animals are discussed in terms of: impact on society, clinical findings, pathology, disease mechanisms and potential preventive and treatment strategies. There are lectures, class discussions and a written project. Cross listed with PATB 5160. Prerequisite: graduate standing.

5280. Introduction to Neuroscience 3. Examines the basic properties of neurons and from there identifies determinants of brain development and how neuronal circuits are formed. How neuronal circuits underlie processing sensory information, coordinated movement, complex functions (e.g. sleep, learning) and homeostasis are discussed. Cross listed with ZOO 5280. Prerequisite: ZOO 3115 or equivalent.

5685. Neurophysiology 3. Designed to investigate the structure and function of nervous systems, drawing information from both vertebrate and invertebrate organisms. Topics such as sensory systems, motor coordination and central integrative mechanisms will be covered in addition to the basic neurophysiology of nerve cells. Cross listed with ZOO 5685. Prerequisite: one course in physiology, chemistry, physics.

5715. Seminar in Neuroscience 1-2 (Max. 20). A continuing seminar. All students in the graduate neuroscience program are expected to register for this seminar each semester. The interdisciplinary approach to the nervous system is used employing work from physiology, neuroanatomy and neurochemistry, psychology, pharmacology and biochemistry. Cross listed with ZOO 5715. Prerequisite: admission to the graduate neuroscience program or graduate standing.

5800. Research in Neuroscience 1-16 (Max. 16). The research must be conducted under the supervision of one of the neuroscience program faculty. Laboratory opportunities for research include neuroendocrinology, behavioral neuroscience, sensory neurophysiology, neuroanatomy, neuropharmacology, neurotoxicology, neural cell biology, and neurochemistry. Prerequisite: admission to the graduate neuroscience program or graduate standing.

5920. Continuing Registration: On Campus 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5980. Dissertation Research 1-16 (Max. 16).
graduate assistantship assigned to the program. Post-doctoral positions provide advanced training in research and teaching.

Both the research and teaching aspects of the program reflect a truly interdisciplinary approach. Research activities range from directly applied to fundamental. Animals used for investigation can include livestock and laboratory species. Modern laboratories are designed for hormonal, chemical, and molecular analysis of biological samples, light, electron and confocal microscopy, incubation of cells, tissues and small animal experimentation. Well-equipped large animal handling and surgical facilities are located a short distance from campus at Red Buttes Research Center and the Animal Science Livestock Center.

Program Specific Admission

Requirements

GRE composite score of 900 and 1,000 for M.S. and Ph.D. students, respectively.
GPA of 3.00 (with A=4.00).
TOEFL score of 540 for students whose native language is not English.

Program Specific Degree

Requirements

Requirements are based on the university minimum requirements.

Water Resources

College of Agriculture and Natural Resources
Department of Renewable Resources
8 Agriculture Building
Phone: (307) 766-6658
E-mail: katta@uwyo.edu
Web Address: www.uwyo.edu/RenewableResources/water_resources_option.htm
Program Director: K.J. Reddy

Degrees Offered

M.A. or M.S. in (Program Name)/Water Resources

The Graduate School cooperates with various academic departments across the university to provide master of arts or master of science degree programs that contain multidisciplinary training in water resources. The master’s degree offered through these affiliations is awarded as a major with each of the sponsoring department’s graduate programs. The water resources interdisciplinary major will be acknowledged on the graduate transcript and thereby certify to potential employers that the candidate has completed an in-depth multidisciplinary course program in the broad area of water resources.

The educational underpinnings of this program include the following:

The purpose of the program is to provide multidisciplinary education and to impart a multidisciplinary perspective to candidates.
Training is to be consistent with the rigor of professional water resources demands.
The interdisciplinary major program is flexible so as to meet the candidates’ individual professional objectives.

Primary responsibility for student guidance and graduate program formulation resides with the sponsoring department and sponsoring major professor. Once accepted, each candidate’s graduate committee will contain at least one member drawn from the Water Resources Curriculum Committee.
Please refer to latest updated information on the Web site listed above:
K. J. Reddy, chair, Renewable Resources
Don McLeod, Agriculture and Applied Economics
Carol Frost, Geology and Geophysics
William Griibb, Geology
Wayne Hubert, Zoology and Physiology
Drew Johnson, Civil and Architectural Engineering
David Legg, Renewable Resources

Upon acceptance to the program, the sponsoring department must assign a member of the Water Resources Curriculum Committee to the candidate’s graduate committee. The Water Resources Curriculum Committee’s representatives on the candidate’s graduate committee shall aid in formulating deficiency requirements, course program design, academic performance criteria, and research objectives throughout the candidate’s tenure in the program.

Program Specific Admission

Requirements

University application and fee;
Application fee is valid for three years;
Official documentation indicating bachelor’s degree earned (not necessary if UW is the most recent institution attended);
Potential candidates are encouraged to apply for admission to this program by contacting the participating department and by specifying at the initiation that they desire admission to the water resources interdisciplinary major.

Their credentials will be evaluated by the sponsoring department and the department recommends admission of the individual into the program to the Graduate School.

Program Specific Degree

Requirements

The academic program of study undertaken by the candidate must be designed to enhance the student’s background and expertise through formal graduate level coursework in the areas of: (1) technical hydrology, (2) natural resources economics and/or law, and (3) water quality. To insure a minimum multidisciplinary character, the course program must contain nine hours of coursework with at least 3 hours from each of the aforementioned areas and at least 6 of those credit hours must be from outside the student’s sponsoring department, along with a 1 credit hour seminar on water resources organized through the Department of Renewable Resources. Only Plan A master’s degree programs, which require the writing of a thesis in the water resources area, are acceptable for the water resources degree option.

A. Hydrology (3 hours)

CE 4800 Hydrology ..3
CE 4820 Groundwater and Drainage Engineering ..3
CE 5810 Groundwater Hydrology3
GEOG 5050 Fluvial Geomorphology3
GEOL 5444 Geohydrology3
GEOL 5550 Numerical Methods
Groundwater Geology3
GEOL 5570 Advanced Geohydrology3
REWM 5285 Wildland Hydrology3
REWM 5280 Stream Habitat Mgt3
SOIL/MATH 5110 Modelling Flow
Transport in Soil and Groundwater Systems4

B. Law/Natural Resource Economics (3 hours)

AGEC 4710 Natural Resources Law & Policy ..3
AGEC 4720 Water Resource Economics3
AGEC 5630 Advanced Natural Resource Economics ..3
ECON 4400 Environmental Economics3
ECON 4410 Natural Resource Economics3
ECON 5400 Advanced Resource & Environmental Economics ..3
LAW 6660 Environmental Law3
LAW 6860 Water Rights3
C. Water Quality (3 hours)
BOT 5740 Ecosystems Analysis4
CE 5430 Biological Principles in
Environmental Engineering3
GEOL 4490 Geochemistry3
GEOL 5450 Water Quality Modeling3
GEOL 5777 Geochemistry of Natural Waters3
REWM 4710/5710 Watershed Water Quality Management3
SOIL 4130/5130 Chemistry of the Soil Environment4
ZOO 4440 Limnology3

D. One-Hour Seminar in Water Issues
REWM 5250. Seminar in Water Resources .1

Each student in the water resources interdisciplinary major program will be required to complete this course once during their graduate program. As part of the requirements for the seminar: (a) students will be required to present a seminar on a current water resource issue in Wyoming and to develop an executive summary of their issue to distribute to class participants. Each student is also required to participate in a discussion group following each seminar which stresses the interdisciplinary nature of the issue; (b) during the course of a student’s graduate program, he/she will be required to present one seminar for the seminar series (preferably on some aspect of their thesis research). This presentation does not have to occur during the semester that the student is officially signed up for seminar credit.

Agricultural Economics/ Water Resources
Department of Agricultural and Applied Economics
206 Agriculture Building
Phone: (307) 766-2386
E-mail: ag-econ@uwyo.edu
Web Site: www.uwyo.edu/agecon/

The objective of this program is to provide students with specialized study in water resources and to signify this specialization by the designation of the water resources interdisciplinary major on the transcript.

Coursework and Thesis

Students must complete the 24 credit hour agricultural and applied economics including M.S. core requirements plus 4 thesis hours and 9 credit hours in water resources approved courses.

Achieve a cumulative 3.0 GPA in the AGEC M.S. core requirements.

The candidate’s graduate committee, nominated by the major professor, the student and the department head and appointed by the Graduate School, determine the final program of study and thesis research topic, which must be in the water resources area.

Presentation of research results at a formal public seminar.

Completion of an oral examination covering the student’s thesis research administered by the graduate committee.

Oral Exam Requirement
In addition to coursework and a Plan A Thesis, students must pass a final oral examination. The student’s committee may also require a written examination.

Interdisciplinary Component
nine hours
(see Water Resources degree requirements)

Rangeland Ecology and Watershed Management (REWM)
REWM 5250. Seminar in Water Resources
1. Objective is to develop interaction among students from the various water resource disciplines to enhance their perspective on how water problems are addressed within an interdisciplinary environment. Prerequisite: graduate standing.

Botany/Water Resources
Department of Botany
114 Aven Nelson Building
Phone: (307) 766-2380
Web Address: www.uwyo.edu/botany

In addition to the general requirements for admission to the existing master’s program in botany, the master of science in botany/water resources interdisciplinary major requirements will include the following variations:

Coursework and Thesis

16 semester hours are required in botany, plus 9 semester hours in water resources courses. Other courses in mathematics, physics, chemistry, and statistics also may be required as the special program and undergraduate preparation require.

Due to the various, potential subspecializations that students might follow in connection with a botany/water resources interdisciplinary major, no particular botany courses are prescribed. An appropriate array of courses for the desired specialty will be determined by agreement between the advisory committee, graduate student adviser, student, and with the approval of the Water Resources Curriculum Committee.

For the water resources interdisciplinary major, a Plan A Thesis is required. The student must present his or her research in a seminar before the department, and must pass an oral exam on the thesis research.

Interdisciplinary Component
9 hours
(see Water Resources degree requirements)

Civil Engineering/Water Resources
Department of Civil and Architectural Engineering
3074 Engineering Building
Phone: (307) 766-5255
E-mail: ceinfo@uwyo.edu
Web Address: www.eng.uwyo.edu/civil/

The purpose of this program is to broaden the students’ master of science program in the water resource area in civil engineering.

Plan A Thesis Requirement

Only students with a M.S. Plan A thesis option are eligible. The student’s graduate committee will include at least one member of the Water Resources Curriculum Committee.

Coursework and Thesis

Each student must complete a minimum of 28 hours of graduate level coursework and a thesis under Plan A (4 credit hours) to qualify for the master of science in civil engineering/water resources.

The student must obtain at least 18 credit hours of graduate level coursework in engineering, emphasizing a concentration of core courses in a particular area of emphasis in civil engineering. The core course areas of emphasis for this program are hydrologic and hydraulic engineering. The particular set of courses for a given area of emphasis will be designated by the faculty in the water resources area for these areas of emphasis with the approval of the Civil Engineering Graduate Committee.
Interdisciplinary Component

9 hours
A. Technical Hydrology (3)
GEOL 5444 Geohydrology..............3
GEOL 5550 Numerical Methods in
Groundwater Geology I..............3
GEOL 5577 Geochemistry of Natural
Waters3
MOLB 4410 Water Microbiology........3
MOLB 4500 Microbial Ecology.........3
ZOO 4440 Limnology3

Plan A Thesis Requirement

Only Plan A thesis students are eligible for the master of science in entomology/water resources. In addition to coursework and a Plan A thesis, students must pass a final written and oral examination. The student’s graduate committee will include at least one member of the Water Resources Curriculum Committee to help ensure adherence to the master of science in entomology/water resources degree requirements and that research efforts are in the water area.

Geography/Water Resources

Department of Geography

207 Arts and Sciences Building
Phone: (307) 766-3311
Web Address: www.uwyo.edu/geog

The master of arts in geography/water resources is consistent with traditional emphases of interdisciplinary coursework and studies of the Rocky Mountain-Great Plains environment.

Prerequisites

15 credit hours in geography, including: 3 hours in Maps and Mapping, 3 hours in Human Geography, and 3 hours in Physical or Environmental Geography. These credits will not count toward the master’s degree.

Plan A Thesis Requirement

Only students with a Plan A thesis option are eligible. In addition to coursework and a Plan A thesis, students must pass a final oral examination. The student’s committee may also require a written exam. The student’s graduate committee will include at least one member of the Water Resources Curriculum Committee.

Coursework and Thesis

Each student must complete a minimum of 26 credit hours of graduate level coursework and 4 thesis credit hours of ENTO 5960 to qualify for a master of science degree in entomology/water resources. Specific coursework will be determined by the student’s graduate committee; however, each student is required to enhance his/her background and expertise in the water resources area through specialized coursework and a seminar as shown below.

A. ENTO 5678 Aquatic Entomology (3)
B. Interdisciplinary component (3)
(see Water Resources degree requirements)
Admission Requirements

In addition to the department admission requirements, the undergraduate degree program earned by the incoming candidate must meet the minimum undergraduate requirements for the UW geology curriculum in mathematics, physics, and chemistry. The transcript should also demonstrate a strong background in physical geology.

Plan A Thesis Requirement

Only students with a Plan A thesis option are eligible. Students must follow the same program requirements as stated under Geology and Geophysics department section. The student’s graduate committee will include at least one member of the Water Resources Curriculum Committee.

Interdisciplinary Component

9 hours
(see Water Resources degree requirements)

Rangeland Ecology and Watershed Management/ Water Resources

Department of Renewable Resources
2013 Agriculture C Building
Phone: (307) 766-3114
E-mail: renewableresources@uwyo.edu
Web Site: www.uwyo.edu/uwrenewable

The purpose of this program is to enhance the cross-disciplinary linkage between range and forest management and water resources, and to provide students with a degree program in rangeland ecology and watershed management which emphasizes the important issues in water resources.

Coursework and Thesis

Soil Science/Water Resources
Department of Renewable Resources
2013 Agriculture C Building
Phone: (307) 766-3114
E-mail: renewableresources@uwyo.edu
Web Address: www.uwyo.edu/uwrenewable

The purpose of this program is to enhance the cross-disciplinary linkage between soil science and water resources, and to provide students a soil science degree program which emphasizes the important issues in water resources.

Coursework and Thesis

Each student must complete a minimum of 26 credit hours of graduate level coursework and 4 thesis credit hours of SOIL 5960 to qualify for a master of science degree in soil science/water resources. Specific coursework will be determined by the student’s graduate committee; however, each student is required to enhance his/her background and expertise in the water resources area through specialized coursework and a seminar as shown below.

A. Core courses - Students must take or have taken equivalent courses in the four soils disciplines: physics, pedology, chemistry, and microbiology.
SOIL 5100 Soil Physics (4)
SOIL 5120 Genesis, Morphology and Classification of Soils (3)
SOIL 5130 Chemistry of the Soil Environment (3)
SOIL 5140 Soil Microbiology (4)
B. Enhancement courses - Students must take at least one of the following courses:
SOIL 5110 Modeling Flow Transport in Soil and Groundwater Systems
SOIL 5150 Forest and Range Soils
SOIL 5160 Soil Fertility and Fertilizers
SOIL 5170 Analytical Methods for Ecosystems Research
C. Interdisciplinary component
9 hours
(see Water Resources degree requirements)
D. REWM 5250 Sem in Water Resources1
E. SOIL 5720. Graduate Seminar in Soil Science ..1

Plan A Thesis Requirement

Only Plan A thesis students are eligible for the master of science in soil science/water resources. In addition to coursework and a Plan A thesis, students must pass a final oral examination. The student’s graduate committee will include at least one member of the Water Resources Curriculum Committee to help ensure adherence to the master of science in soil science/water resources degree requirements and that research efforts are in the water area.

Zoology and Physiology/ Water Resources

Department of Zoology and Physiology
428 Biological Sciences Building
Phone: (307) 766-4207
E-mail: zprequest@uwyo.edu
Web Address: www.uwyo.edu/zoology

The purpose of this program is to broaden the master of science program in the water resources area by having students take 10 semester hours of coursework associated with water resources.

Coursework and Thesis

Each student must complete a minimum of 26 hours of graduate level coursework and 4 hours of Plan A thesis credit to qualify for the master of science in zoology and physiology/water resources. Specific coursework requirements will be determined by the student’s graduate committee. The student must obtain at least 10 credit hours as indicated. Depending upon the student’s undergraduate background and career interests, the graduate committee may require that these 10 credits be part of, or in addition to, the 26 credit hours required for a master of science in zoology and physiology.

Interdisciplinary Component

9 hours
(see Water Resources degree requirements)
The Willard C. and Elaine N. Rhoads Scholarship for Graduate Students in Water Resources at the University of Wyoming

The Willard C. and Elaine N. Rhoads Scholarship for Graduate Studies in Water Resources was established to honor Willard Rhoads, a member of the Research Review and Priorities Committee for the Wyoming Water Resources Center and a long-time member of the Wyoming Water Development Commission. Funds for the Rhoads Scholarship were donated to the University of Wyoming by Mrs. Rhoads and her family and friends, with some matching funds provided by the university. Two annual awards for the academic year will be made in the amount of $1,000 to a master’s degree candidates for use in furthering research on Wyoming’s water resources.

Eligibility Requirements and Evaluation Procedures

The applicant must be accepted into the interdisciplinary water resources major program administered jointly by the Graduate School and the student’s academic department.

The applicant must agree to take a minimum of 9 credit hours (including thesis credits) in each of the two semesters for which the award applies.

Applicants for the scholarship can apply more than once, with the exception of past recipients.

The recipient will be chosen by a selection committee appointed by the Water Resources Curriculum Committee.

Applicants meeting the eligibility requirements above will be judged on the basis of promise of academic excellence as evident in grades for graduate level courses, and a recommendation from the student’s graduate adviser.

Funds for the academic year will be dispersed to the recipient equally in the fall and spring semesters for half of the total amount.

Application Guidelines

Applicants meeting the above requirements should submit the following:

Application deadline is April 1.

A letter from the applicant listing the name of the scholarship for which he/she is applying, which includes a statement that the applicant agrees to enroll for a minimum of nine hours of graduate level courses (including thesis credits) in each of the two semesters for which the award applies, and a statement of academic and career goals related to water research. The applicant must also state the purpose for which the scholarship funds will be used.

An official transcript of grades for graduate level courses earned at the University of Wyoming or other institutions.

A note from the Graduate School or the academic department, verifying that the applicant has been accepted into a water resources interdisciplinary major program.

A confidential letter of recommendation from the applicant’s graduate adviser addressing the applicant’s promise for attaining academic and career goals through his/her research in water resources. Up to two additional letters of recommendation can be provided at the applicant’s discretion.

The applicant should arrange for all materials to be sent to:

K.J. Reddy
Chair, Rhoads Scholarship Committee
Department of Renewable Resources
Dept. 3354, 1000 E. University Ave.
Laramie, WY 82071-3354

Water Resources Program

Executive Committee Members:
K.J. Reddy, Chair, Renewable Resources
Don McLeod, Agricultural and Applied Economics
Carol Frost, Geology and Geophysics
William Gribb, Geography
Wayne Hubert, Zoology and Physiology
Drew Johnson, Civil and Architectural Engineering
David Legg, Renewable Resources