The College of Agriculture and Natural Resources offers a wide variety of course work in agriculture, natural resources, molecular biology, and family and consumer sciences. The curriculum provides a sound background in basic sciences and the choice of a number of fields in which to specialize. Students are trained in principles which apply throughout the world, with special emphasis on agriculture and natural resources found in the Rocky Mountain region.

Laboratory work is stressed in all programs because of its importance in agricultural and natural resource professions. Students receive excellent training from case studies and practical experience provided at research and extension centers. Other facilities include modern laboratories and classrooms, an abattoir, meat processing rooms, farm shop, greenhouses, and wool laboratory.

In addition to the academic departments, the college includes the Agricultural Experiment Station and the Extension Service. Materials and techniques resulting from this effective triple combination benefit both students and staff in the never-ending search for problem-solving information. The close relationship between teachers, researchers, and extension workers creates a learning atmosphere that encourages the development of the finest students.

Programs of Study

Undergraduate Degrees

Bachelor of Science
- Agricultural business
- Agricultural communications
- Agroecology
- Animal and veterinary sciences
- Microbiology
- Molecular biology
- Rangeland ecology and watershed management

Bachelor of Science in Family and Consumer Sciences

Bachelor of Applied Science
- Organizational leadership

Graduate Degrees

Master of Arts
- Molecular biology

Master of Science
- Agricultural and applied economics
- Agricultural economics/water resources
- Animal and veterinary sciences
- Entomology
- Entomology/water resources
- Family and consumer sciences
- Food science and human nutrition
- Molecular biology
- Plant sciences
- Rangeland ecology and watershed management
- Rangeland ecology and watershed management/water resources
- Reproductive biology
- Soil science
- Soil science/water resources

Doctor of Philosophy
- Animal and veterinary science
- Entomology
- Molecular and cellular life sciences
- Molecular biology
- Plant sciences
- Rangeland ecology and watershed management
- Reproductive biology
- Soil science

The following certificates and/or degrees in the College of Agriculture and Natural Resources are available through Distance Education:
- Certificate: Early Childhood Program Director
- Bachelor of Applied Science
- Online bachelor’s degrees: Family and Consumer Sciences (Professional Child Development Option)

For more information, contact the College of Agriculture and Natural Resources Office of Academic and Student Programs.

The College of Agriculture and Natural Resources also offers a graduate certificate in reclamation and restoration ecology. For more information, contact the Department of Ecosystem Science and Management.

Basic Education Core

All undergraduates in College of Agriculture and Natural Resources curriculums are required to follow the basic education core as noted below.

Core Components (USP 2015) Hrs.
- First-Year Seminar (FYS) 3
- Quantitative Reasoning (Q) 3
- Communication 1 (COM1) 3
- Communication 2 (COM2) 3
- Communication 3 (COM3) 3
- Human Culture (H) 6
- Physical & Natural World (PN) 6
- U.S. and Wyoming Constitutions (V) 3
- Subtotal (min. core requirements) 30
- Hours for major, support areas and electives as determined by division 90-98

Total Hours 120-128

Core Components (USP 2003) Hrs.
- Intellectual Community (I) 1-3
- Writing 1 (WA) 3
- Oral Communication (O) 3
- Quantitative Reasoning 1 (QA)* 3
- Quantitative Reasoning 2 (QB) 3
- Science (S, SB, SP, SE) 4-8
- Cultural Context (C, CH, CS, CA) 9
- U.S. and Wyoming Constitutions (V) 3
- Physical Activity and Health (P) 1
- Subtotal (min. core requirements) 30-36
- Hours for major, support areas and electives as determined by division 79-91

Total Hours 120-128

*Core Components are mutually exclusive of each other; hence, two core components may not be fulfilled by the same course. Except for the QA, core courses may have topics from the embeddable components list included in their curriculum, where appropriate.

Courses taken for S/U

A maximum of 20 elective hours with a grade of S (satisfactory) may be included as part of the total credit requirements for graduation; but no S/U hours may be used to satisfy university, major requirements or required electives, unless the course is offered for S/U grading only.
Minors in Agriculture and Natural Resources

Minors provide a formalized recognition of concentrated study in a specific subject area. A minor degree offers recognition for academic achievement outside of the students’ major course curriculum and gives students a concentration of work in the chosen minor area.

A minors program can enable students to enhance and expand career opportunities. A minor will also improve the possibility of admission to graduate programs in any chosen major, minor, or related field of study.

Minors Available in the College of Agriculture and Natural Resources Include:

Agricultural business
Agroecology
Animal and veterinary science
Apparel design
Equine
Farm and ranch management
Forest resources
General agricultural economics
Horticulture
Human development and family sciences
Human nutrition
Insect biology
Interior design
International agricultural economics
Molecular biology
Museum studies
Natural resource economics
Plant protection
Rangeland ecology and watershed management
Reclamation and restoration ecology
Soil science

Agricultural Communications Major

A wide variety of courses in agriculture, communications, and journalism provides students with basic preparation for positions as broadcasters, editors or writers for farm and home organizations, state and federal agencies, magazines, newspapers, radio and television stations, and commercial businesses. Communication skills are also distinct assets in agricultural sales, research, service and teaching.

Students enrolled in agricultural courses acquire up-to-date and knowledgeable backgrounds of the subject matter. Courses in communication and journalism develop proficiencies demanded by employers of communication professionals.

Minimum Requirements for Agricultural Communications Majors (B.S.)

| Hrs. |
| University Studies Program requirements | 30 |
| Communications/journalism core | 24 |
| COJO 1000, 1040, 2010, 2100 and minimum of 12 hours of communication/journalism elective. (Minimum grade of C required) |
| Agriculture core requirements | 42 |
| At least 18 hours must be lower division (Ag 1000-2000) elective courses, and at least 24 hours must be upper division (Ag 3000-4000) elective courses and include AGR4 4975. |
| Supporting course requirement | 4 |
| STAT 2050 or 2070 |
| Additional hours for major and electives | 20 |
| Total Hrs. | 120 |

Students wishing to pursue an area of emphasis in the agricultural communications option are encouraged to also select a minor. The college currently offers a variety of minors, and any of these can help to better prepare students for employment or graduate work.

Agricultural communication majors may also complete an internship in their field. A variety of opportunities are available and students can work with their advisor to determine an appropriate internship for their area of emphasis.

Agriculture (AGRI)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [Q8Q]).

Project based work that includes practice applications of Extension programming. Directed by Extension faculty around matching topics of youth development, rangeland resources, food safety and nutrition, community development, or profitable and sustainable agriculture. Local issues are addressed in the context of applied research for public good.

2100. International Experiences in Natural Resources. 1-3 (Max. 3).

Cultural and environmental topics in another country through classroom sessions, self study, and a visit to the host country. Topics discussed include similarities and differences in natural resource and environmental issues, history, traditions, and cultural norms, focusing on the host country and the United States.

3000. Discovering and Utilizing Ideas and Information. 3. [I,L] (none)

Learning in this area guides students to accessing, evaluating, and utilizing information and ideas; communicating information and ideas effectively and responsibly; civic engagement for individual, organizational and community problem-solving, and applying new skills, knowledge, and perspectives in a contemporary society. Prerequisites: WA and junior status.

4350. Problem Solving in Organizational Settings. 3.

Students apply organizational leadership perspectives and methods to the resolution of a variety of simulations and real world problems. The course will emphasize leadership development as a tool for individual, organizational and community problem solving. Prerequisites: junior or senior standing and COM2.

4500. International Experiences in Agriculture. 1 (Max. 3).

Learn about agricultural customs in another country through classroom lectures, written assignments, and a visit to the host country during the spring break period. Topics discussed include the influence of foreign agriculture on U.S. economies and agricultural practices, focusing on the host country. Prerequisites: completion of WA course and junior standing.

4520. Field Practicum: Extension Work. 1-4 (Max. 8).

Provides practical experiences to those wanting to pursue a career with Cooperative Extension Service. Interns are matched with county-based personnel for hands-on learning experiences across the state. Develop working knowledge of CES’s mission to provide the citizens of Wyoming with education and applied research. Dual listed with AGRI 5520. Prerequisite: must pass volunteer screening process.

4600. Developing Organizational Leadership. 3. [none] (COM3)

A senior capstone experience for Bachelor of Applied Science students, bringing together reading, research, writing, and communication skills to focus on a major project. Leadership skills and approaches to organizational problem-solving are deepened using the structural, human resource, political, and symbolic frames to change and improve leadership and organizational culture. Prerequisites: COM1, COM2, AGR1 3000, and senior status.

4700. Elements of Leadership. 3.

Focuses on a basic understanding of theory and practice. Will develop self-awareness and provide a foundation for continued development of leadership skill in the workplace, the community and the home. Dual listed with AGR1 5700. Prerequisite: Restricted enrollment. Prior approval required.
Department of Agricultural and Applied Economics

206 Agriculture Building, (307) 766-2386
FAX: (307) 766-5544
Web site: www.uwyo.edu/agecon
E-mail: ag-econ@uwyo.edu
Department Head: Benjamin S. Rashford

Professors:

CHRISTOPHER T. BASTIAN, B.S. University of Wyoming 1987; M.S. 1990; Ph.D. Colorado State University 2004; Professor of Agricultural Economics 2017, 2005.

ROGER COUPAL, B.S. Utah State University 1978; M.S. University of Arizona 1985; Ph.D. Washington State University 1997; Professor of Agricultural Economics 2015, 1997.

L. STEVEN SMUTKO, B.S. Colorado State University 1978; M.C.R.P. North Dakota State University 1982; Ph.D. Auburn 1995; Spicer Chair of Collaborative Practice, Professor of Agricultural Economics 2009.

Associate Professors:
MARIAH D. EHMKE, B.S. Kansas State University 1997; M.S. Ohio State University 2001; Ph.D. Purdue University 2005; Associate Professor of Agricultural Economics 2012, 2005.

KRISTIANA M. HANSEN, B.A. Reed College 1996; M.S. University of California, Davis 2003; Ph.D. 2008; Associate Professor of Agricultural Economics 2016, 2009.

CHIAN A. JONES-RITTEN, B.S. Northern Arizona University 2003; M.A. Colorado State University 2007; Ph.D. 2011; Associate Professor of Agricultural Economics 2013.

BENJAMIN S. RASHFORD, B.S. University of Wyoming 1999; M.S. 2001; Ph.D. Oregon State University 2006; Associate Professor of Agricultural Economics 2012, 2006.

JOHN RITTEN, B.S. Arizona State University 2001; M.B.A. New Mexico State University 2004; Ph.D. Colorado State University 2008; Associate Professor of Agricultural Economics 2015, 2008.

Assistant Professor:
VARDGES HOVHANNISYAN, B.S. Armenian State University of Economics 1999; M.S. Armenian State Agrarian University 2002; Ph.D. University of Wisconsin-Madison 2012; Assistant Professor of Agricultural Economics 2015.

Academic Professionals:

COLE EHMKE, B.A. Bethany College 1997; M.S. University of Sydney, Australia 1999; Associate University Extension Educator 2011, 2005.

LETICIA HENDERSON, B.S. New Mexico State University 2010; M.S. 2012; Assistant Lecturer 2019.

BRIAN LEE, B.S. University of Wyoming 2010; M.S. 2012; Research Scientist 2012.

AMY NAGLER, B.A. University of Wyoming 1996; M.S. 2002; Assistant Research Scientist 2016.

Temporary Lecturer:
JIM THOMPSON, B.A. Occidental College; M.A., Ph.D. University of Illinois-Chicago.

Professors Emeritus:
Nicole Ballenger, Edward Bradley, Larry J. Held, James J. Jacobs, Dale Menkhaus, Carl Olson, Alan C. Schroeder, David T. Taylor, Glen D. Whipple

The Department of Agricultural and Applied Economics offers three options within the agricultural business bachelor of science degree program. They are agribusiness management, farm and ranch management, and livestock business management. All three options focus on the development of critical thinking, research, and communication skills for students interested in

1. agricultural operations,
2. small rural businesses,
3. community economics,
4. financial institutions,
5. agricultural and natural resources development, and
6. other pursuits where applied economic tools will be useful.

The agricultural business curriculum is designed to enable our students to:
1. communicate effectively economic, agricultural, business decision-making and natural resource concepts,
2. fit into a business, agency, or academic environment and use economic concepts to quantify and analyze relevant issues, and
3. be familiar with issues related to agriculture, natural resources, and rural communities.

A brief description of minimum course requirements for each of the four options in agricultural business is given below. In addition, professional advisers will work with students to tailor a curriculum to individual interests and goals.

Agribusiness Management Option

This curriculum is for students preparing for careers in the agribusiness field. Applied agricultural economics courses are supplemented with marketing, management, finance and other courses from the College of Business and production-oriented courses from other departments in the College of Agriculture and Natural Resources.

Minimum Course Requirements for Agribusiness (B.S.) Majors within the Agribusiness Management Option

<table>
<thead>
<tr>
<th>Course Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Seminar (FYS)</td>
<td>3</td>
</tr>
<tr>
<td>Writing</td>
<td>9</td>
</tr>
<tr>
<td>ENGL 1010 COMI, Communication II (COM2), AGEC 4965 or AGEC 4970 (COM3)</td>
<td>9</td>
</tr>
<tr>
<td>Quantitative (Q) (required for major)</td>
<td>7</td>
</tr>
<tr>
<td>MATH 1400</td>
<td>2350</td>
</tr>
<tr>
<td>Science (PN)</td>
<td>6</td>
</tr>
<tr>
<td>Human Culture (H)</td>
<td>6</td>
</tr>
<tr>
<td>U.S. & Wyoming Constitutions (V)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>24</td>
</tr>
<tr>
<td>1010, 1020, 3400, 4050 or MKT 3210 (count for either upper-division AGEC or business credit, but not both), 4060, 4500; either 4450 or 4830 or 4840 or 4880; 3 hours of AGEC electives</td>
<td>6</td>
</tr>
<tr>
<td>Supporting Agriculture</td>
<td>9</td>
</tr>
<tr>
<td>AG College hours other than Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Computers</td>
<td>3</td>
</tr>
<tr>
<td>Supporting Economics</td>
<td>6</td>
</tr>
<tr>
<td>ECON 3010 and 3020</td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>15</td>
</tr>
<tr>
<td>ACCT 2010 and 2020; 9 hours of 3000-4000 level business courses</td>
<td>25</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 120

1. A minimum of 42 credits must be at the 3000 and 4000 level for graduation. At least 30 of the 42 credits must be earned from UW.
2. Recommend or equivalent COM1 course.
3. Credits earned in USP approved science courses offered within the College of Agriculture and Natural Resources shall also serve as Supporting Agriculture credits.
4. H requirement cannot be fulfilled with AGEC or ECON courses; USP-approved H language courses are recommended.
5. 24 credit hours in Ag Econ beyond those earned to satisfy University Studies requirements. 18 of these 24 credit hours must be at the 3000-4000 level.
6. COSC 1200 recommended, or IMGT 2400.

Farm and Ranch Management Option

This curriculum is for students intending to become operators or professional managers of farms, ranches or feedlots. It is also well suited for students interested in the field of agricultural finance, or a minor in biological fields such as agroecology or range management.

In this option, courses in farm and ranch management, finance, and marketing are supplemented by courses in crops, range management, veterinary sciences and animal science, with electives in other areas.

Minimum Course Requirements for Agricultural Business (B.S.) Majors within the Farm and Ranch Management Option

<table>
<thead>
<tr>
<th>Course Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Seminar (FYS)</td>
<td>3</td>
</tr>
<tr>
<td>Writing</td>
<td>9</td>
</tr>
<tr>
<td>ENGL 1010 COMI, Communication II (COM2), AGEC 4965 or AGEC 4970 (COM3)</td>
<td>9</td>
</tr>
<tr>
<td>Quantitative (Q) (required for major)</td>
<td>7</td>
</tr>
<tr>
<td>MATH 1400</td>
<td>2350</td>
</tr>
<tr>
<td>Science (PN)</td>
<td>6</td>
</tr>
<tr>
<td>Human Culture (H)</td>
<td>6</td>
</tr>
<tr>
<td>U.S. & Wyoming Constitutions (V)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>24</td>
</tr>
<tr>
<td>1010, 1020, 3400, 4050 or MKT 3210 (count for either upper-division AGEC or business credit, but not both), 4060, 4500; either 4450 or 4830 or 4840 or 4880; 3 hours of AGEC electives</td>
<td>6</td>
</tr>
<tr>
<td>Supporting Agriculture</td>
<td>9</td>
</tr>
<tr>
<td>AG College hours other than Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Computers</td>
<td>3</td>
</tr>
<tr>
<td>Supporting Economics</td>
<td>6</td>
</tr>
<tr>
<td>ECON 3010 and 3020</td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>15</td>
</tr>
<tr>
<td>ACCT 2010 and 2020; 9 hours of 3000-4000 level business courses</td>
<td>25</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 120

1. A minimum of 42 credits must be at the 3000 and 4000 level for graduation. At least 30 of the 42 credits must be earned from UW.
2. Recommend or equivalent COM1 course.
3. Credits earned in USP approved science courses offered within the College of Agriculture and Natural Resources shall also serve as Supporting Agriculture credits.
4. H requirement cannot be fulfilled with AGEC or ECON courses; USP-approved H language courses are recommended.
5. 24 credits in Ag Econ beyond those earned to satisfy University Studies requirements. 18 of these 24 credit hours must be at the 3000-4000 level.
6. COSC 1200 recommended, or IMGT 2400.

Livestock Business Management Option

This curriculum is for students intending to work in any sector of the livestock and meat industry, ranging from input suppliers, to ranches, feedlots, meat packing companies, marketing and sales agents, futures/commodities exchange groups, policy makers, and international trade organizations. In this option, courses in farm and ranch management, agricultural finance, marketing, and trade are supplemented with courses in animal science, biology, range management, food science, data analysis, and other disciplines. Students may pursue a minor in Animal Science as part of this option, but can choose the non-minor version instead. Students will gain a broad understanding of both the business and science of the livestock industry.

Minimum Course Requirements for Agricultural Business (B.S.) Majors within the Livestock Business Management Option

<table>
<thead>
<tr>
<th>Course Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Seminar (FYS)</td>
<td>3</td>
</tr>
<tr>
<td>Writing</td>
<td>9</td>
</tr>
<tr>
<td>ENGL 1010 COMI, Communication II (COM2), AGEC 4965 or AGEC 4970 (COM3)</td>
<td>9</td>
</tr>
<tr>
<td>Quantitative (Q) (required for major)</td>
<td>7</td>
</tr>
<tr>
<td>MATH 1400</td>
<td>2350</td>
</tr>
<tr>
<td>Science (PN)</td>
<td>6</td>
</tr>
<tr>
<td>Human Culture (H)</td>
<td>6</td>
</tr>
<tr>
<td>U.S. & Wyoming Constitutions (V)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>28</td>
</tr>
<tr>
<td>1010, 1020, 3400, 4050 or MKT 3210 (count for either upper-division AGEC or business credit, but not both), 4060, 4500; either 4450 or 4830 or 4840 or 4880; 3 hours of AGEC electives</td>
<td>6</td>
</tr>
<tr>
<td>Supporting Agriculture</td>
<td>9</td>
</tr>
<tr>
<td>AG College hours other than Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Computers</td>
<td>3</td>
</tr>
<tr>
<td>Supporting Economics</td>
<td>6</td>
</tr>
<tr>
<td>ECON 3010 and 3020</td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>15</td>
</tr>
<tr>
<td>ACCT 2010 and 2020; 9 hours of 3000-4000 level business courses</td>
<td>25</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 120

1. A minimum of 42 credits must be at the 3000 and 4000 level for graduation. At least 30 of the 42 credits must be earned from UW.
2. Recommend or equivalent COM1 course.
3. Credits earned in USP approved science courses offered within the College of Agriculture and Natural Resources shall also serve as Supporting Agriculture credits.
4. H requirement cannot be fulfilled with AGEC or ECON courses; USP-approved H language courses are recommended.
5. 24 credits in Ag Econ beyond those earned to satisfy University Studies requirements. 18 of these 24 credit hours must be at the 3000-4000 level.
6. COSC 1200 recommended, or IMGT 2400.
Additional Quantitative Skills.................10
STAT 2050 or 2070; COSC 1200 or IMGT 1400 or AGRI 1010; AGEC
4230 or 4840 or STAT 3050 or IMGT
1400 or 3400 or MATH 2355 or ACCT
2010 or 2020

Biology of Livestock............................17
LIFE 2020, 3050, FDSC 2040, 3060,
ANSC 4540

Additional Biology of Livestock (for Animal
Science minor)................................19
ANSC 2010, 3010, 3100, 4210, PATB
410, ANSC 3150 or 4220 or 4230 or
4240

Or Additional Biology of Livestock (for non-
minor) .. 20
ANSC 1010, 2020, 4050, REWM 2000,
4100, REWM 4000 or PATB 4110

Supporting Economics...........................3
ECON 3020

Electives ...3-4

Total Hrs. 120

1 A minimum of 42 credits must be at the 3000 and 4000
level for graduation. At least 30 of the 42 credits must be
earned from UW.

2 Must earn a “C” or better.

3 PN and H may not be fulfilled by AGEC or ECON
courses.

4 31 credits in Ag Econ beyond those earned to satisfy
University Studies requirements; 21 of these 31 credit
hours must be earned at the 3000-4000 level.

5 AGEC 4840 may not be double-counted towards both
Agricultural Economics and Quantitative Skills.

6 Suggest COSC 1200 for most, or IMGT 2400 (for
advanced users).

7 Must earn a “C” or better in all courses required in the
minor to earn the minor.

Environmental and Natural Resources

Students interested in natural resource or
environmental issues or careers may complete
any of the four options within agricultural
business offered by the department with an
environment and natural resource emphasis.
Inquiries about environment and natural
resource concentrations in agricultural busi-
ness should be directed to the Department of
Agricultural and Applied Economics.

Minor Programs

The department also offers five minor pro-
grams. These five minors are to give students
majoring in other undergraduate curricula in
the university a concentration of work in any
of the specialized undergraduate curricula of-
fered by the department or in general agricul-
ture economics. Each minor requires 27 hours
in prescribed course work including 6 hours in
supporting agriculture. Students need to plan
their course work to meet course prerequisites.

Agricultural Business Minor. AGEC
1010, 1020, 4050 or MKT 3210, and 4060;
ACCT 2010; 6 additional hours in upper-level
agricultural economics courses; 6 hours in
supporting agriculture courses.

Farm and Ranch Management Minor.
AGEC 1010, 1020, 2020 and 4640; 9 addi-
tional hours in upper-level agricultural eco-
nomics courses; 6 hours in supporting agri-
culture courses.

International Agriculture Minor.
AGEC 1010, 1020, 3860 and 4880; 6 addi-
tional hours in upper-level agricultural eco-
nomics courses; 3 hours in foreign language;
6 hours in supporting agriculture courses.

Natural Resource Economics Minor.
AGEC 1020, 3750, 4700, 4720; choose 9 ad-
ditional hours from: AGEC 4450, 4600, 4710,
ECON 2400, 4400, 4410, 4520 (note: College
of Business prerequisites), ENR 4500.

General Agricultural Economics Mi-
nor. AGEC 1010, 1020 and 15 additional
hours in agricultural economics courses with
12 hours at the upper-level; 6 hours in sup-
porting agriculture courses.

Graduate Study

The Department of Agricultural and Applied
Economics offers graduate work leading to the
Master of Science degree. Students may choose
among major options in the areas of
agricultural and applied economics and
agricultural business. The Plan A agricultural
economics major emphasizes research with any
of the following focus areas:
production economics and management,
marketing and market analysis,
resource and environmental economics,
international agriculture, and
economic and rural development.

The Plan B agricultural business option
offers advanced skills to students who desire
professional careers in the business sector.
Students in the agricultural business option
may concentrate their coursework and writing
in management, marketing, or finance. Dual
majors in water resources, and environment
and natural resources are also offered.

Finally, the Department offers a graduate
minor in applied economics. This program
is for currently enrolled graduate students
in other disciplines seeking a foundation in
economics as well as their major discipline.

Program Specific Admission
Requirements

Undergraduate major in agricultural eco-
nomics or economics is not required.

Students may be required to complete
program prerequisite courses, without gradu-
ate credit, that were not completed in their
undergraduate education.

Specifically, students who have not com-
pleted at least one course in calculus, statistics,
and intermediate microeconomic theory may
be required to complete these courses without
graduate credit during their first semester in
residence.

Program Specific Degree Requirements

Master of Science in Agricultural Economics

The following courses constitute the M.S.
in Agricultural Economics core requirements
and are required of all Plan A candidates (22
hours).

Economic Theory
AGEC 5310 Theory of Producer Behavior...3
AGEC 5630 Advanced Natural Resource
Economics ..3
AGEC 5710 Advanced Agricultural Market
Theory ..3
AGEC 5740 Theory of Consumer
Behavior ..3

Quantitative Methods
AGEC 5230 Intermediate Econometric
Theory ..3
AGEC 5320 Quantitative Methods in
Agricultural Economics3

Research
AGEC 5650 Communicating Research.......3
AGEC 5880 Advanced Seminar................1

Plan A (thesis):

Minimum of 30 credit hours including
AGEC M.S. core requirements, thesis hours
and electives.

No more than three hours of AGEC
coursework numbered below 5000-level count
toward the 30 hour requirement.

Achieve a cumulative 3.000 GPA in the
AGEC M.S. core requirements.

The student’s graduate committee, nomi-
nated by the major professor, the student,
and the department head determine the final
program of study and thesis research topic.

Presentation of research results at a formal
public seminar.

Completion of an oral examination cover-
ing the student’s thesis research administered
by the student’s graduate committee.
Plan B (non-thesis):

Minimum of 32 hours of coursework;
Non-thesis business analysis paper accepted by the student’s graduate committee.

Minimum of 13 credit hours of agricultural economics coursework numbered at the 5000-level are required, including:
- AGEC 5310
- AGEC 5740
- AGEC 5880
- AGEC 5630 or 5710
- AGEC 5320 or 5230

In addition, students are required to complete 3 credit hours from each of the following three areas:

- **Management:**
 - AGEC 4060, 4640 or 5460; or MGT 4410, 4420, 4440, 4470, or 4520
- **Marketing:**
 - AGEC 4050, 4830, 4840, 4880, or 5710; or MKT 4240, 4430, 4520, or 4540
- **Finance:**
 - AGEC 4500; or FIN 4510, 4520, 4610, 4810; or ECON 4740

Remaining credit hours will be filled with electives.

The student’s graduate committee, nominated by the major professor, the student and the department head determine the final program of study and business analysis topic.

Presentation of the business analysis paper at a formal public seminar.

An internship experience is strongly encouraged as part of the agricultural business option (AGEC 5990).

Master of Science in Agricultural Economics/ Water Resources; Plan A (thesis):

Students must complete the 20 credit hour agricultural and applied economics M.S. core requirements plus 4 thesis hours and 15 credit hours in environment and natural resources, as approved by the student’s committee and the ENR academic adviser.

Achieve a cumulative 3.000 GPA in the AGEC M.S. core requirements.

The student’s graduate committee, nominated by the major professor, the student and the department head determine the final program of study and business analysis topic, which must be in the area of environment and natural resources.

Presentation of research results at a formal public seminar.

Completion of an oral examination covering the student’s thesis research administered by the student’s graduate committee.

Graduate Minor in Applied Economics:

Graduate standing.

- AGEC 4640, AGE C 5310 or 5740, AGE C 5320 or 5230, and 6 additional credits of approved courses.

Committee selection for the student’s major thesis or dissertation committee should include at least one faculty member from AGEC.

Agricultural Economics (AGEC)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QBdrQ]).

1010. Principles of Macroeconomics. 3. [CSdH] An introductory course on why economics matters. We examine why countries like the US are rich, while others are poor. We explore economic booms & busts, and policies to avoid them. We address GDP growth, unemployment and inflation, government debt, deficits, tax policy, and whether robots will take our jobs. Cross listed with ECON 1010.

1020. Principles of Microeconomics. 3. [CSdH] You make tradeoffs — your time and money are limited. Microeconomics evaluates how people think about tradeoffs and how we create value through markets, institutions, and policy. Economic incentives influence choices to consume and produce goods and services. Market failure creates a role for government to protect health, culture, and nature. Cross listed with ECON 1020.

1101. First-Year Seminar. 3. [none]FYS

2020. Farm and Ranch Business Management. 4. Discusses economic principles, business methods and science applied to organization and operation. Includes measurements of size of business; rate and efficiency of production. (Normally offered spring semester)

3030 [3020]. Applied Economic Decisions. 3.

3400 [4400]. Agricultural Law. 3. [WBdnone] Surveys legal issues and principles of practical concern to agriculture and examines legal institutions authorized to carry out laws affecting agriculture. Prerequisite: WA/ COM1 and junior standing. (Normally offered fall semester)

3420. Applied Equity Investing. 3.

3750 [4750]. Natural Resource Planning and Economics. 3. Economic concepts and rudimentary analytical tools are applied to federal, state and local natural resource planning and management programs. The value of economic input into natural resource policy is examined. Evaluating tradeoffs and resolving conflicts play a particularly important role in the course content. Cross listed with ENR 3750. Prerequisite: QA/Q, WA/COM1 and junior standing.

3860 [4860]. World Food, Ag, & Development. 3. [GdH] Explores economic approaches to improving nutrition, agriculture production, and the environment in developing regions of the world. Students gain understanding of complex conditions surrounding food security; institutions involved with food policy, aid, and production; environmental factors influencing agricultural production; inequality; and international cultural and so-
Students complete negotiations, role-plays, and questionnaires. Cross listed with ENR 4450. Dual listed with AGEC 5450. Prerequisite: completion of USP O/COM2 requirement; junior standing.

4460 [5460]. Agriculture and Economic Development. 3. Examines the roles of agriculture in the transformation of the economics of underdeveloped countries. Examines development theories, case studies and analytical techniques. Prerequisites: AGEC 1010, 1020 and a G course.

4500 [650]. Agricultural Finance. 3. Principles of financial management; compounding and discounting; leverage and capital budgeting and alternatives in resource control. Prerequisite: AGEC 1020 or equivalent. (Normally offered spring semester)

4550. Negotiation Analysis. 3. Focuses on using an analytical perspective for maximizing joint gains between negotiators. Students learn analytical techniques to prepare for negotiation, evaluate options and proposals during a negotiation, and evaluate negotiated outcomes with respect to maximization of joint gains and fairness criteria. Dual listed with AGEC 5550; Cross listed with ENR 4550. Prerequisite: QA/Q.

4600. Community Economic Analysis. 3. [none]H Analysis of regions and rural communities; their problems, socioeconomic characteristics, land use and economic development. Provides training in regional economic analysis, fiscal impact analysis and benefit cost analysis. Dual listed with AGEC 5600. Prerequisite: ECON 3010, 3020, and MATH 1400.

4640. Advanced Farm/Ranch Management. 3. Tools of management decision-making applied to problems of farm-ranch management and resource acquisition and use. Prerequisites: AGEC 1020, 2020 and MATH 1400. (Normally offered fall semester)

4660. Community and Economic Development. 3. Community development from an interdisciplinary perspective, integrating theory, concepts and methods from sociology, economics, political science, and community development. Students learn how community theory can be used to design and support effective economic development programs. Includes readings, lectures, guest lectures, field trips and community analysis projects. Dual listed with AGEC 5660. Prerequisite: AGEC/ ECON 1010, 1020, and junior standing.

4700. Economics of Range Resources. 3. Applies economic and decision theory to management and allocation of public and private range resources. Prerequisite: AGEC 1020 or equivalent. (Normally offered spring semester)

4710. Natural Resource Law and Policy. 3. Legal and economic examination of laws intended to resolve environmental conflicts. Surveys economic rationales both for private property and government intervention in environmental disputes; content of selected environmental laws in the U.S.; and basic principles of environmental mediation. Prerequisites: AGEC 1020, ECON 1020 or equivalent and 3 hours of business law or agricultural law. (Normally offered fall semester of even-numbered years)

4720. Water Resource Economics. 3. Presents principles and procedures appropriate to water resource allocation and development decisions. Studies agricultural, recreational, industrial and other uses of water. Prerequisite: AGEC 1020 or equivalent; QB course, WB course; senior standing.

4830. Agricultural Commodity Markets. 3. Economics of price determination for agricultural commodities and development of pricing strategies in cash and futures markets. Prerequisite: AGEC 1020 or equivalent. (Normally offered fall semester)

4840. Agricultural Market Analysis. 3. Applies economic theory to an analysis of economic organization and operation of agricultural markets, including price behavior. Prerequisite: MATH 1400 and ECON 3020. (Normally offered spring semester of odd-numbered years)

4880. International Agricultural Trade, Markets and Policy. 3. [G×(none)] International agricultural commodity markets, product markets and market channels are characterized and examined. Presents economic theory relevant to description and analysis of international markets. Characterizes and analyzes historical and contemporary U.S. commercial trade policy and agricultural policy and their effect on markets. Prerequisites: ECON 3020 and junior or senior standing. (Normally offered spring semester of even-numbered years)

4890. Special Topics in ______. 1-3 (Max. 6). Accommodates seminar series or course offering by visiting faculty whose subject matter is not included in other courses. Prerequisite: junior standing and/or consent of instructor. (Offered based on sufficient demand and resources)

4910. Problems in Agricultural Economics. 1-3 (Max. 6). Consists of supervised study and investigation on topics of current importance in agricultural economics. Prerequisite: 12 hours in AGEC or ECON and consent of instructor.

4930. Agricultural Economics Internship. 1-6 (Max. 6). Provides practical agricultural business firm and/or agency experience.
Develops working knowledge of how basic economic concepts are used by firms and agencies in policy and procedures development and decision making by the organization.
Prerequisites: 10 hours of AGEC and approval of faculty supervisor.

4965. Agribusiness Entrepreneurship. 3. [WC◆COM3] Designed for students preparing to launch or work on an entrepreneurial venture. Students develop a business plan, synthesizing knowledge of agricultural economics, agribusiness management and finance, human resources and accounting. Emphasis is placed on advancing student professional communication abilities for agribusiness management careers. Prerequisites: senior standing, WB/COM2 writing course and AGEC 2020, or AGEC 4500, or AGEC 4060, or FIN 3250.

4970. Technical Communication for Agribusiness. 3. [(none)◆COM3] This course is the senior capstone for agribusiness majors. Students will use written, oral, and digital communication appropriate for the discipline to complete a technical report and oral presentation on a complex topic affecting agriculture or natural resources.

5200. Gender and Race in the Economy. 3. Focuses on the role gender and race play in the economy; specifically the way that gender and race affect economic outcomes for individuals in the United States. Cross listed with WMST 5200. Dual listed with AGEC 4200. Prerequisites: AGEC 1020 or equivalent, or SOC 1000, or WMST 1080, and WB/COM2.

5230. Intermediate Econometric Theory. 3. Covers simple and multiple regression models, problems of estimation, hypothesis and diagnostic testing, dummy variables, autoregressive and distributed lag models, and time-series analysis. The objective is to understand the underlying theory of econometric modeling and obtain operational ability to construct, estimate, and test econometric models. Dual listed with AGEC 4230; cross listed with ECON 5230. Prerequisites: ECON 3020, STAT 2050 and MATH 2350.

5310. Theory of Producer Behavior. 3. Economic models of optimization as they apply to firm-level production decisions. Topics include the properties of production functions, theories of linear and non-linear optimization, firm decision making under perfect and imperfect competition and firm decision making under uncertainty. Prerequisites: ECON 3020, STAT 2050 and MATH 2350.

5320. Quantitative Methods in Agricultural Economics. 3. Covers mathematical programming and simulation techniques for solving applied problems in agricultural economics. Emphasizes the formulation of economic research problems in quantitative terms and the use of computer software packages to derive solutions. Prerequisites: ECON 3020, STAT 2050 and MATH 2350.

5450. Negotiation. 3. Examines how to use negotiation to resolve conflict and get agreement. Describes conflict; outlines ways to address conflict; examines different negotiation strategies and the impact of cognitive bias, power, ethics, and individual and cultural differences; and explores mediation practices. Students complete negotiations, role-plays, and questionnaires. Cross listed with ECON 5450. Dual listed with AGEC 4450. Prerequisite: completion of USP O/COM2 requirement; junior standing or consent of instructor.

5550. Negotiation Analysis. 3. Focuses on using an analytical perspective for maximizing joint gains between negotiators. Students learn analytical techniques to prepare for negotiation, evaluate options and proposals during a negotiation, and evaluate negotiated outcomes with respect to maximization of joint gains and fairness criteria. Dual listed with AGEC 4550; Cross listed with ECON 5550. Prerequisite: QA/Q.

5600. Community Economic Analysis. 3. Analysis of regions and rural communities; their problems, socioeconomic characteristics, land use and economic development. Provides training in regional economic theory, regional economic analysis, fiscal impact analysis and benefit cost analysis. Prerequisite: consent of instructor.

5630. Advanced Natural Resource Economics. 3. An in-depth treatment of theoretical issues, quantitative techniques, and institutional arrangements in the natural resource field. Topics include welfare economics, property rights, market failure and externalities, and benefit cost analysis. Prerequisites: ECON 3010 and 3020, STAT 2050 and MATH 2350.

5650. Communicating Research. 3. Focuses on the broad methods, and written and oral communication of research in applied economics. Topics include formulating a research question, organizing a manuscript, editing for clarity and conciseness, building effective figures and tables, finding and citing literature, developing and delivering effective presentations, and upholding research ethics. Prerequisites: graduate standing.

5660. Community and Economic Development. 3. Community development from an interdisciplinary perspective, integrating theory, concepts and methods from sociology, economics, political science, and community development. Students learn how community theory can be used to design and support effective economic development programs.

Includes readings, lectures, guest lectures, field trips and community analysis projects. Dual listed with AGEC 4660. Prerequisite: AGEC/ECON 1020 or SOC 2090 and junior standing.

5710. Advanced Agricultural Market Theory. 3. Theoretical foundations of the study of agricultural markets and how business is conducted in those markets. Topics include pure competition, industrial organization concepts related to imperfect competition including game theory, principal-agent theory, transaction costs economics, intermediary theory, and welfare implications of alternative agricultural market structures. Prerequisites: ECON 3020 and MATH 2350.

5740. Consumer Behavior and Prices Analysis. 3. Focuses on microeconomic consumer theory and its application. Topics include utility theory, market demand theory, expected utility theory, and econometric applications. Prerequisites: ECON 3020, MATH 2350 and STAT 2050.

5880. Advanced Seminar. 1-2 (Max. 2). Involves reporting to the seminar group on research methods and results obtained in the investigation of a topic or question relevant to the field of agricultural economics. Prerequisite: 9 credits in AGEC and/or ECON.

5890. Advanced Problems in Agricultural Economics. 1-3 (Max. 6). Supervised study and research on current problems in marketing, farm and ranch management, policy prices, land economics or finance. Prerequisite: graduate standing in AGEC or ECON.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate status.

5920. Continuing Registration: On Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5960. Thesis Research. 1-12 (Max. 24). Graduate level course designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisite: enrolled in a graduate degree program.

5990. Internship. 1-12 (Max. 24). Prerequisite: graduate standing.
Department of Animal Science
101 Animal Science/Molecular Biology Bldg., (307) 766-2224
FAX: (307) 766-2355
Web site: uwyo.edu/anisci
Department Head: Bledar Bisha – Interim

Professors:
DANIEL C. RULE, B.S. University of California, Davis 1977; M.S. 1980; M.S. Washington State University; Ph.D. Iowa State University 1984; Professor of Animal Science 1999, 1987.

Associate Professors:
BLEDAR BISHA, D.V.M. Agricultural University of Tirana-Albania 1999; M.S. Iowa State University 2004; Ph.D. 2009; Assistant Professor of Animal Science 2013.
PAUL A. LUDDEN, B.S. University of Nebraska-Lincoln 1991; M.S. Purdue University 1994; Ph.D. University of Missouri-Columbia 1997; Associate Professor of Ruminant Nutrition 2004, 1998.

Assistant Professors:
HANNAH C. CUNNINGHAM-HOLLINGER, B.A. St. Olaf College 2012; M.S. University of Wyoming 2014; Ph.D. 2018; Assistant Professor of Animal Science 2019.
WHIT STEWART, B.S. Brigham Young University-Idaho 2008; M.S. Oregon State University 2010; Ph.D. New Mexico State University 2015; Assistant Professor of Animal Science 2017.

Academic Professional Lecturers:
McKENZIE K. HARRIS, B.S. University of Wyoming 2015; M.S. Texas A&M University 2017; Assistant Lecturer in Animal Science 2018.
JENNIFER A. INGWERSON, B.S. University of Nebraska-Lincoln 2005; M.S. Iowa State University 2014; Academic Professional Lecturer in Animal Science 2014.
SIERRA JEPSEN, B.S. The Ohio State University 2017; Assistant Lecturer in Animal Science 2019.

Adjunct Professors:
Kristi Cammaack, Jeff Chandler, Thomas Hansen, John Johnston, Tom McDonald, Peter Nathanielsz, Mark Nijland, Heywood Sawyer, Donal Skinner, D. Paul Thomas, Meijun Zhu

Professors Emeriti:
Ray Field, Frank Hinds, Doug Hixon, Steven W. Horn, Conrad Kercher, Richard J. McCormick, Gary Moss, William Murdoch, Johannes Nel, Bibeke Ray

The Department of Animal Science offers a variety of courses in animal and food science. The department uses modern laboratories and excellent animal facilities including a livestock teaching arena and a meat processing facility.

The Department of Animal Science and the Department of Veterinary Science have a combined curriculum, under Animal and Veterinary Science (ANVS). The curriculum has options in production, range livestock, business, communication, animal biology, pre-veterinary medicine, meat science and food technology, and equine science. The curriculum leads to a wide variety of career opportunities for animal and veterinary science graduates.

Animal and veterinary science

The Department of Animal Science and the Department of Veterinary Sciences have combined their efforts to offer several degree options leading to the bachelor of science degree in animal and veterinary science. Courses in animal science, food science, and pathobiology are the core offerings in the various options.

Agriculture, in its broadest definition, is the nation’s largest industry. Livestock production is Wyoming’s largest agricultural enterprise. Animal agriculture and its associated industries offer many opportunities for the interested student. Whether a student is interested in production livestock, allied fields such as meat science, business or animal health, or wants to apply to a college of veterinary medicine, the degree tracks offered will form the basis for a challenging career in animal agriculture/biology. The various options provide maximum flexibility to meet the changing needs of students and their employers. For students interested in pursuing advanced research, M.S. and Ph.D. degrees are offered.

Several degree options allow for specialization and graduate or professional school preparation. A brief description of each option and the educational opportunities they provide is given with the course requirements.

A grade of C or better must be earned in the following courses when the courses are required in the individual option for completion of the degree: ANSC 3010, 3100, 4120, 4540, 4630; FDSC 3060, PATB 4110, PATB 4111, LIFE 1010, 2022.

Students are encouraged to participate in activities related to their degree option. The university has livestock, horse and meats judging teams. Each team travels and participates in at least one major exposition a year. Each year, the Academic Quadrathlon competition is held, combining practical and classroom skills for students. Field trips, as practical teaching aids in many classes, are scheduled throughout the year. Internships are available to gain practical experience. Student organizations such as the Block and Bridle Club, Food Science Club, Microbiology Club, Range Club, the Pre-vet Club, Wyoming Collegiate Cattlemen’s Association, and the Ranch Horse Team provide additional educational and recreational opportunities.

Production Option

This option provides a strong background in livestock production and management. Students interested in livestock production should enroll in this option.

Animal and Veterinary Science.........................
Required courses: ANSC 1010, 2020, 3010*, 3100*, 4120*, 4540*, 4630* (COM3) and two courses selected from ANSC 3150, 4220, 4230, 4240, or 4250; PATB 4110*

Agricultural Sciences.................................
Required courses: FDSC 2040, 3060*; AGEC 1020, 2020; REWM 2000
Other math/science courses..........................
Required courses: LIFE 1010* (PN), 2022*, 3050; CHEM 1000 (PN), ANSC 2010 or CHEM 2300, MATH 1400 (Q); STAT 2050 or 2070
Animal and Veterinary Science

Careers in the livestock agribusiness industry. Students interested in careers in the livestock agribusiness industry should enroll in this option.

Animal and Veterinary Science

Required courses: ANSC 1010, 3010*, 3100*, 4120*, 4220, 4230 or 3150, 4540*, 4630* (COM3); PATB 4110*

Rangeland Ecology and Watershed Management

Required courses: REWM 2000, 2400, 4000, 4330; LIFE 3400

Agricultural Sciences

Required courses: FDSC 2040, 3060*; AGEC 1020, 2020

Other math/science courses

Required courses: LIFE 1010* (PN), 2022*, 3050; CHEM 1000 (PN), ANSC 2010 or CHEM 2300, MATH 1400 (Q); STAT 2050 or 2070

Other communication courses

ENGL 1010* (COM1) and a COM2* course

Other University Studies courses

First-Year Seminar* (FYS), 2 courses in Human Culture (H), and U.S. and Wyoming Constitutions (V)

Required credits 128**

Animal Biology Option

This option within the major requires more complete and stringent basic sciences. Students may complete premedical requirements or other pre-professional allied health requirements while completing a B.S. degree that prepares them for alternate career choices. Selected courses provide opportunity for more complete exposure in both biological sciences and pathobiology. Possible alternatives to professional schools include graduate school admission or employment by government or industry in research, promotion or sales.

Because of the variation in pre-professional requirements for different professional programs, students are encouraged to determine the specific requirements of the programs in which they are interested.

Animal and Veterinary Science

Required courses: ANSC 1010, 3010*, 3100*, 4120*, 4630* (COM3); PATB 4400

Agricultural Sciences

Required courses: FDSC 3060*; MIRC/MOLB 2021 or 2240; MOLB 3610 and 4100 or MOLB 4600 and 4610

Other math/science courses

Required courses: LIFE 1010* (PN), 2022*, 3050; CHEM 1020 (PN), 1030, 2300 or CHEM 2420 and 2440; PHYS 1050, 1110, or 1120; ZOO/PSYC 3600; MATH 1400, 1405, or 1450; STAT 2050 or 2070

Other communication courses

ENGL 1010* (COM1) and a COM2* course

Other University Studies courses

First-Year Seminar* (FYS), 2 courses in Human Culture (H), and U.S. and Wyoming Constitutions (V)

Required credits 128**

Business Option

Students desiring a strong background in business in addition to the basic courses in agricultural sciences and management should enroll in this option. Graduates will be qualified for careers in the livestock agribusiness industry.

Animal and Veterinary Science

Required courses: ANSC 1010, 2020, 3010*, 3100*, 4120*, 4540*, 4630* (COM3) and two courses selected from ANSC 3150, 4220, 4230, 4240, or 4250; PATB 4110*

Agricultural Economics and Business

Required courses: AGEC 1010, 1020, 3860 or 4880; AGEC 4060 or MGT 3210; AGEC 4050 or MKT 3210; ACCT 2010

Agricultural Sciences

Required course: FDSC 3060*

Other math/science courses

Required courses: LIFE 1010* (PN), 2022*, 3050; CHEM 1000 (PN), ANSC 2010 or CHEM 2300, MATH 1400 (Q); STAT 2050 or 2070

Other communication courses

ENGL 1010* (COM1) and a COM2* course

Other University Studies courses

First-Year Seminar* (FYS), 2 courses in Human Culture (H), and U.S. and Wyoming Constitutions (V)

Required credits 128**

Meat Science and Food Technology Option

Students taking this option will have an excellent background for entering the meat industry. The food industry is the largest employer in this country and offers a wide variety of career opportunities.

Animal and Veterinary Science

Required courses: ANSC 1010, 3010*, 3100*, 4050, 4630* (COM3); PATB 4110*
Pre-Veterinary Medicine Option

This option is especially designed to prepare students for application to colleges of veterinary medicine. There is a strong emphasis on the biological, biomedical and physical sciences. This curriculum is also appropriate for students wishing to pursue graduate school opportunities, other professional school applications, or careers in many areas of agribusiness. A minimum of three years of formal course work is required before one can apply to a college of veterinary medicine. Students accepted before completion of their BS degree can transfer credits back to UW to complete their degree requirements. Wyoming does not have a college of veterinary medicine. Faculty advisers insure that students meet the variable pre-veterinary requirements for application to colleges of veterinary medicine in their home state or region.

Animal and Veterinary Science

Required courses: ANSC 3010*, 3100*, 4120*; one course selected from ANSC 3150, 4220, 4230, or 4250; PATB 4110*, 4400, 4500, 4710

Agricultural Sciences

Required courses: MICR/MOLB 2021, 2220; MOLB 3610

Other math/science courses

Required courses: LIFE 1010* (PN), 2022*, 3050; CHEM 1020 (PN), 1030, 2420, 2440; PHYS 1110, 1120; MATH 1400 (Q), 1405 (Q); STAT 2050 or 2070

Other communication courses

ENGL 1010* (COM1) and a COM2* course

Suggested courses

ENGL 4050, 4132, 4150, 4260, 4540; FDSC 3060; PATB 4001, 4130, 4170, 4360; ANSC/PATB 4111

Equine Science Option

This option provides a strong background in equine production and management. Students interested in equine should enroll in this option.

Animal and Veterinary Science

Required courses: ANSC 1010, 1030, 3010*, 3100*, 3150*, 3250, 4120, 4132, 4250*, 4540*, 4630* (COM3); ANSC/PATB 4111*

Agricultural Sciences

Required courses: FDSC 3060; AGEC 2020; REWM 2000

Horsemanship

2 advisor/department head approved courses

Other math/science courses

Required courses: LIFE 1010* (PN), 2022*, 3050; CHEM 1000 (PN), ANSC 2010 or CHEM 2300, MATH 1400 (Q); STAT 2050 or 2070

Other communication courses

ENGL 1010* (COM1) and a COM2* course

First-Year Seminar* (FYS), 2 courses in Human Culture (H), and U.S. and Wyoming Constitutions (V)

Equine Science Option

Required credits 128**

* A grade of C or better must be earned in these courses for successful completion of degree.

** Required credits: 128 total credit hours, 42 credit hours or more at the 3000-level or above.

Equine Science Minor

The courses required for this minor must be taken for a letter grade and the student must receive a grade of C or better in each course. Courses required are: ANSC 3100, 3150, 4120, 4540; FDSC 3060; PATB 4111 and at least one of the following: ANSC 3150, 4220 or 4230. The Department of Animal Science or Veterinary Sciences undergraduate minor adviser may be contacted by students needing assistance or having questions.

Graduate Study

The Departments of Animal Science and Veterinary Science offer programs leading to the M.S. (Plan A and Plan B) and Ph.D. degrees in animal and veterinary science. A M.S. degree in food science and human nutrition is offered in cooperation with the Department of Family and Consumer Sciences. The Department of Animal Science also participates in the interdisciplinary M.S./Ph.D. Reproductive Biology Program which has morphed into Biomedical Science Program.
Program Specific Degree Requirements

Master’s Program - Plan A (thesis)

The student, major professor, and graduate committee determine the program of study and research project, which meets the needs of the individual student. The candidate's graduate committee should be established and functioning by the time the student has completed 12 semester hours of formal coursework. The master of science program should be approved and filed by the end of the student's second semester of graduate study in animal science. This committee shall also determine if the student is making satisfactory progress to be advanced to a candidate for a master's degree or continued in a doctoral program by the end of the student's third semester following matriculation.

The student can specialize in breeding, food science and human nutrition, nutrition, physiology, meat science, reproduction or wool for coursework and thesis/dissertation project. In addition, supporting coursework is available in agricultural economics, biochemistry, microbiology, range management, genetics, statistics, and other areas of interest to the individual. In certain cases it is possible to develop a joint research project between animal science and another department.

Students may use the research facilities and herds of beef cattle, sheep, and swine at the university livestock center near the university or at one of the university research and extension centers in the state. Research laboratories are located on campus and include a modern meat processing facility.

The Plan A program is a 30 hour program, 26 hours of coursework and 4 hours of thesis research.

Master’s Program - Plan B (non-thesis)

The Plan B program requires a coursework-intensive, non-thesis master of science program for those students whose career paths may not require a thesis research program.

The program requires 32 hours of coursework in addition to an acceptable non-thesis research paper as defined by the student's graduate committee.

Doctoral Program

The program requires 72 hours. Students must follow minimum graduate requirements.

Animal Science (ANSC)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB•Q]).

- **1009. Introduction to Animal Science for 4-H/Youth.**
 - 4. Introduction to the field of animal science, including meat and dairy products, nutrition, reproduction, breeding and genetics, livestock selection, and diseases and health of domestic livestock species, with application to the management of beef cattle, sheep and wool, dairy cattle, swine, and horses. Intended for high school undergraduates.

- **1010. Introduction to Animal Science.**
 - 4. Introduction to the field of animal science, including meat and dairy products, nutrition, reproduction, breeding and genetics, livestock selection, and diseases and health of domestic livestock species, with application to the management of beef cattle, sheep and wool, dairy cattle, swine, and horses. (Normally offered fall semester)

- **1030. Equine Management.**
 - 3. An overview of the horse industry and proper way to manage horses. (Normally offered spring semester)

- **1070. Livestock Fitting and Showing.**
 - 1. Teaches fitting and showing techniques for domestic livestock. Students will have the opportunity to fit an animal of their choice and participate in the Little International Livestock Show at the Animal Science Livestock Center. (Normally offered fall semester)

- **1101. First-Year Seminar.**
 - 3. ([none] FYS)

- **2010. Domestic Animal Metabolism.**
 - 3. Integrates cellular and whole-animal metabolism through introduction to metabolic regulation. Introduces students to the nomenclature, structures and functions of cellular metabolites and vitamins. Knowledge of chemical structure will be applied to cellular reactions in various tissues of domestic animals. Ruminants and non-ruminants will be contrasted. **Prerequisite:** CHEM 1000. (Normally offered fall semester)

- **2020. Feeds and Feeding.**
 - 4. Nutrient classification and use, feed value, ration formulation and feeding domestic animals. (Normally offered spring semester)

- **2035. Companion Animal Nutrition.**
 - 3. Nutrition and biology of digestion of companion/pet animals. Fundamentals of nutrition and the nutrients, as well as appropriate terminology will be covered, with direct application to companion animals. (Normally offered spring semester)

- **2070. Livestock Behavior and Handling.**
 - 2. Teaches basic behavior of livestock species including cattle, swine, sheep and goats. Apply knowledge to effectively learn humane handling techniques and facility design for low-stress management. **Prerequisite:** ANSC 1010.

- **3010. Comparative Anatomy and Physiology of Domestic Animals.**
 - 4. Teaches comparative anatomy and physiology of digestion, circulation, production, reproduction and environment of farm animals. **Prerequisites:** LIFE 1010 and 2022, or concurrent registration with LIFE 2022. (Normally offered spring semester)

- **3100. Principles of Animal Nutrition.**
 - 3. Description of the nutrients, nutrient digestion and absorption, and nutrient function within the body of various domesticated animals. **Prerequisite:** CHEM 2300 or ANSC 2010. (Normally offered spring semester)

- **3150. Equine Nutrition and Physiology.**
 - 3. Provides general knowledge of nutrition, physiology and biochemistry of exercise and reproductive processes of equine. **Prerequisite:** 4 hours of biology. (Normally offered fall semester)

- **3250. Equine Behavior and Welfare.**
 - 3. To familiarize students with an equine interest about behavior, learning, and welfare issues associated with management and training of equine. **Prerequisites:** ANSC 1030, ANSC 3150. (Normally offered fall semester)

- **3355. Introduction to Wool Evaluation.**
 - 2. Objectively evaluate raw wool characteristics and quality determining factors across various wool grades and breed types. Particular emphasis will be given to how quality determining factors influence replacement selection and the end product produced. Competitive wool judging format will be used to enhance organizational skills, wool judging terminology, oral articulation skills. **Prerequisite:** ANSC 1010.

- **3450. Collegiate Wool Judging.**
 - 1. Students representing the university in regional and national wool intercollegiate contests are selected from this course. **Prerequisite:** ANSC 3355.

- **3545. Introduction to Livestock Evaluation.**
 - 3. Objectively evaluate livestock species including cattle, sheep, swine, and goats for both market and breeding standards. Improve communication skills and terminology through oral and written reasons. Gain an understanding of expected progeny differences and how they relate to selection and livestock production. **Prerequisite:** FDSC 2040 or instructor approval.

- **3550. Advanced Livestock Evaluation.**
 - 1-2 (Max. 3). Students representing the university in national and regional contests are selected from this course. Requires field trips. **Prerequisite:** ANSC 3545.
3555. Equine Evaluation and Selection. 3 (Max. 6). Objectively evaluate equine for performance and breeding purposes according to breed standards and or discipline. Emphasis will be placed on learning how conformation relates to overall function and longevity of equine. Competitive horse judging team criteria will be used to build organizational skills, equine terminology, and communication skills. Prerequisites: ANSC 1010 and ANSC 1030.

3560. Advanced Equine Evaluation and Selection. 1-2 (Max. 3). Objectively evaluate equine for halter and performance according to breed standards and or discipline. Competitive horse judging team criteria will be used to build organizational skills, equine terminology, and communication skills. Students will compete as members of the Collegiate Horse Judging Team and represent University of Wyoming at national horse judging competitions. Prerequisites: ANSC 3555.

3650. Exploring Graduate Study in Animal Science. 1. Gives undergraduates the opportunity to explore graduate studies in Animal Science. Discussions center on graduate program searches, applications, and interviews as well as graduate student responsibilities and career possibilities. Undergraduates are paired with graduate student mentors, participate in data collection, and attend departmental seminars. Prerequisite: consent of instructor, junior standing and 3.000 GPA or higher recommended.

4050. Animal Growth and Development. 3. Explores aspects of animal growth and development, with a focus on skeletal muscle, adipose, soft connective tissues, and bone. Addresses genetic, endocrine, nutritional, and environmental impacts on tissue development and growth. Dual listed with ANSC 4950. Prerequisite: LIFE 2022. (Normally offered spring semester)

4061. Cell Signaling. 3. Cell signaling pathways in animal growth and development. Defines how cells respond to external stimuli. Includes: G-protein couple signaling, calcium signaling, growth factor associated signaling, redox signaling, lipid related signaling, and apoptosis. Dual listed with ANSC 5061. Prerequisite: MOLE 3610 or an equivalent biochemistry or cell biology course. (Normally offered fall semester)

4100. Nutritional Management. 3. Integration and application of the principles of nutrition. Addresses nutrient requirements, feed composition and nutritional value, in addition to feeding management strategies for various classes of farm animals. Provides practical nutritional experience through laboratory. Dual listed with ANSC 3100. Prerequisite: ANSC 3100.

4111. Equine Health and Disease. 3. To familiarize students with identification, prevention and treatment of diseases in horses through proper health management techniques. Dual listed with ANSC 5111. Cross listed with PATB 4111. Prerequisites: ANSC 1030, ANSC 3150. (Normally offered spring semester)

4120. Principles of Mammalian Reproduction. 3. Overview of the anatomy, physiology, endocrinology and biochemistry of reproductive processes in male and female mammals. Dual listed with ANSC 5120. Prerequisite: a course in systemic anatomy and physiology/endocrinology. (Normally offered fall semester)

4130. Management of Reproduction. 3. Lecture-laboratory course. Introduces methods of manipulating reproduction within livestock management systems. Includes artificial insemination, diagnosis of pregnancy, induction and control of estrus and ovulation, induction of parturition, embryo transfer and control and prevention of diseases. Prerequisite: ANSC 4120. (Normally offered spring semester)

4132. Equine Reproduction. 2. Introduces methods of manipulating reproduction within equine management systems. Includes artificial insemination, diagnosis of pregnancy, induction and control of estrus and ovulation, parturition, embryo transfer, and control and prevention of equine reproductive diseases. Prerequisites: ANSC 4120 and ANSC 3150. (Normally offered spring semester)

4150. Physiology of Ruminant Digestion. 3. Anatomical structure, function and symbiotic relationship of ruminant digestive system. Dual listed with ANSC 3150. Prerequisite: ANSC 3100. (Normally offered fall semester)

4210. Wool Structures and Properties. 2. Chemical structure and reactions of wool fiber, as well as physical properties as related to structure. Prerequisite: CHEM 2300 or equivalent.

4220. Advanced Beef Production and Management. 3. Integrates animal breeding, nutrition and reproductive physiology in beef production management schemes. Emphasizes analysis and decision making. Consists of two hours of lecture and two hours of lab, with approximately one-half of labs meeting at Animal Science Livestock Center. Prerequisites: ANSC 3100, 4120, 4540. (Normally offered spring semester)

4230. Advanced Sheep Production Management. 3. Integrates animal breeding, nutrition and reproductive physiology in sheep production management schemes. Prerequisites: ANSC 3100, 4120, 4540. (Normally offered spring semester)

4240 [3330]. Advanced Swine Production and Management. 3. Integrates animal breeding, nutrition and reproductive physiology in swine production management schemes. Consists of two hours of lecture and two hours of lab, with at least one-half of labs meeting at Animal Science Livestock Center. Prerequisites: ANSC 3100, 4120, or 4540.

4250. Advanced Equine Production and Management. 3. A capstone course for students wanting to pursue a career in the equine industry with main focus on equine management. Business applications, health, facilities, and management will be explored in depth. Integrates equine breeding, nutrition, and reproductive physiology in equine production management schemes. Prerequisites: ANSC 1030, 3100, 4120, and 4540. (Normally offered spring semester)

4260. Mammalian Endocrinology. 3. Introduces principles of endocrinology, role of endocrine systems in regulating metabolism, growth, reproduction and lactation in mammals. Dual listed with ANSC 5260. Prerequisite: ANSC 3010, ZOO 3115, or equivalent. (Normally offered fall semester)

4500. Problems in Animal Science. 1-3 (Max. 6). Provides opportunity for students to conduct supervised research in breeding, genetics, management, nutrition and physiology. Prerequisite: 6 hours in animal science and consent of instructor.

4540. Principles of Animal Breeding. 3. Discusses genetic principles underlying animal improvement; introductory population genetics; heritability; systems of mating; and selection. Dual listed with ANSC 5540. Prerequisite: STAT 2050 or 2070. (Normally offered fall semester)

4550. Internship in Animal Science. 2 (Max. 8). Provides opportunities to acquire experience in a field of interest to the student. Offers learning experiences that are difficult, if not impossible, to realize in classroom settings. Following off-campus educational experience, students are more able to evaluate potential career opportunities and select additional classes on-campus to complement career direction. Offered S/U grade only. Prerequisite: sophomore standing; 2.500 GPA.

4630. Topics and Issues in Animal Science. 3. [WC]<COM3] Writing-intensive course that focuses on writing projects related to current topics and issues in animal science. Emphasizes writing skills, strategies, information gathering and critical judgment. Assignments include short and long papers, resumes, letters of transmittal, and oral presentations. Prereq-
5150. Physiology of Ruminant Digestion. 3. The anatomical structure, function, and symbiotic relationship of the ruminant digestive system. Dual listed with ANSC 4150. Prerequisite: ANSC 3100. (Normally offered fall semester)

5180. SAS Applications in Agriculture. 2. Use of PC Statistical Analysis (SAS) software for analysis of data generated using experimental designs common to the agricultural sciences. Course will emphasize applied programming and interpretation of results. Prerequisite: STAT 5080 or equivalent.

5260. Mammalian Endocrinology. 3. Introduction to the principles of endocrinology. The role of endocrine systems in regulating metabolism, growth, reproduction, and lactation in mammals are discussed. Dual listed with ANSC 4260. Prerequisite: graduate standing. (Normally offered fall semester)

5510. Mineral Metabolism. 3. Lectures on current mineral nutrition topics with student reports on recent journal articles. Prerequisite: ANSC 3100.

5540. Principles of Animal Breeding. 3. Discusses genetic principles underlying animal improvement; introductory population genetics; heritability; systems of mating; and selection. Dual listed with ANSC 4540. (Normally offered fall semester)

5550. Investigations in Animal Nutrition. 2-3 (Max. 6). Special problems involving nutritional research with domestic or laboratory animals. Prerequisite: ANSC 3100 and consent of instructor.

5580. Wool Problems Analysis. 1-5 (Max. 10). Scientific papers on assigned topics. Prerequisite: STAT 2050.

5770. Lipid Metabolism. 3. An in-depth study of lipid metabolism and regulation of genes and enzymes involved in transport, synthesis, mobilization, and oxidation of lipids with application to ruminant and non-ruminant species as well as to humans. Cross listed with FSCS 5770. Prerequisite: ANSC 3100 or MOLB 3610 or FCSC 4145.

5780. Investigations in Animal Breeding. 1-3 (Max. 6). Assigned problems involving genetic and physiological research with domestic or laboratory animals. Prerequisite: ANSC 4550.

5865. Advanced Seminar in Nutrition. 1-2 (Max. 2). Preparation and presentation of seminars on a variety of topics relating to animal nutrition, metabolism, and livestock production. Prerequisite: graduate standing.

5870. Reproductive Biology Seminar. 1 (Max. 12). A graduate seminar designed to examine a variety of topics relating to the physiological processes of reproduction in mammals. Prerequisite: graduate standing.

5880. Advanced Topics. 1-3 (Max. 6). Special topics will be offered based on interest of students and faculty. Credit hours are variable 1-3 and are repeatable. Prerequisite: graduate standing.

5890. Advanced Seminar. 1-2 (Max. 6). Preparation, presentation, and discussion of assigned reports. Invitational lectures by visiting guests.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate status.

5920. Continuing Registration: On Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5959. Enrichment Studies. 1-3 (Max. 99). Designed to provide an enrichment experience in a variety of topics. Note: Credit in this course may not be included in a graduate program of study for degree purposes.

5960. Thesis Research. 1-12 (Max. 24). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisites: enrolled in a graduate degree program.

5961. Graduate Project. 1-2 (Max. 4). Limited to those students enrolled in a Plan B graduate program. Students should be involved in non-course scholarly activities in support of the Plan B project. Prerequisites: must be enrolled in Plan B program and have departmental approval.

5980. Dissertation Research. 1-12 (Max. 48). Graduate level course designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. Prerequisite: enrollment in a graduate level degree program.

5990. Internship. 1-12 (Max. 24). Prerequisite: graduate standing.
Food Science

Food science is the application of basic sciences to the processing, quality control, storage, distribution and consumer use of food products. The microbiological, chemical and physical characteristics of foods as related to food processing and product quality are studied. Major emphasis is placed in the area of animal food products.

Food Science and Human Nutrition

Degree Offered

M.S. in Food Science and Human Nutrition

The interdisciplinary food science and human nutrition master’s degree program, jointly sponsored by the departments of Animal Science and Family and Consumer Sciences, affords students the opportunity to pursue graduate work in the areas of human nutrition and/or food science. Prior to admission to the program, students will select the major department (Animal Science or Family and Consumer Sciences) that best suits their desired research area(s). Students choosing the interdisciplinary program in food science and human nutrition will gain expertise in theory as well as research in some combination of the areas of human nutrition and metabolism, food product development, and community nutrition, food microbiology, meat science and food chemistry. All students will be exposed to laboratory as well as classroom learning experiences.

Program Specific Admission Requirements

Recommended prerequisites for students entering the program:

• One semester of organic chemistry (may include laboratory)
• Human or animal nutrition, anatomy and physiology
• Introductory statistics

Admission requirements include:

• A bachelor’s degree based on a four-year curriculum from an institution accredited by one of the regional associations of the Commission on Institution of Higher Education or equivalent.
• A grade point average of 3.00 or higher in the previous degree.
• A Graduate Record Exam (GRE) score. The GRE is considered in the admissions process, with a required minimum score of 150 on the Verbal section and 141 on the Quantitative section.

• For international students whose native language is not English, a minimum TOEFL score of 76 or an official IELTS score of 6.5.
• International students must also provide evidence of adequate financial resources.

For more information please visit UW’s graduate admissions website https://www.uwyo.edu/admissions/graduate/.

Application packets for fall entry are due no later than March 1. Applications may be considered throughout the year if space in a program area is available.

To apply please complete the online application at the UW Office of Admissions application website http://www.uwyo.edu/admissions/apply.html and submit the following:

• Transcripts from all institutions attended
• Official GRE scores
• Names and contact information for at least 3 people who will provide letters of recommendation about the applicant’s preparedness and/or qualifications for the desired graduate degree program
• A statement of intent that includes: research interests, future goals related to the program of interest, why the applicant is seeking this degree, prior work related experience.
• A brief resume or curriculum vitae
• International applicants must provide: official TOEFL or IELTS scores and evidence of adequate financial resources.

For more information, please contact the Department of Family and Consumer Sciences at 307-766-4145 or fam-conssci@uwyo.edu, or the Department of Animal Science at 307-766-2224 or animalscience@uwyo.edu.

Program Specific Degree Requirements

One semester of biochemistry (may include laboratory)

Human or animal nutrition, anatomy and physiology

Statistics

A minimum of 30 credit hours is required for this degree. Students may be required to take more than the minimum number of credit hours, either because they have to satisfy prerequisites for some of their graduate-level courses, or because a student’s committee determines that more than 30 hours will be needed for the student to reach his/her professional objective. The student’s program of study must include at least one credit hour of graduate-level seminar. A thesis is required. Students may request their area of thesis research be in food science or in human nutrition.

Students may use facilities such as the meat processing laboratory, sensory evaluation rooms, experimental kitchens, and a variety of modern facilities for research involving small animals and human subjects. Laboratory instruments including high performance liquid chromatographs, indirect calorimetry, electrophoresis equipment, densitometers, gas chromatographs, ultracentrifuges, scintillation counters, differential scanning calorimeters, and histological equipment are available.

See the Food Science (FDSC) and Family and Consumer Sciences (FCSC) section of this catalog for course listings.

Food Science (FDSC)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB|Q]).

1101. First-Year Seminar. 3. (none) FYS

1410. Food and Our Well Being. 3. Introductory course dealing with current questions and concerns about foods. Considers food composition, effects of food processing, food labeling, diet, degenerate diseases and general health. Students become familiar with foods and food industry. (Normally offered fall semester)

2040. Principles of Meat Animal Evaluation. 3. Live animal and carcass evaluation of beef, sheep and swine. Slaughter, meat inspection and anatomy are discussed. (Normally offered spring semester)

3060. Principles of Meat Science and Muscle Biology. 3. Principles of muscle, adipose, and connective tissue growth, structure and metabolism; conversion of muscle into meat; fresh meat properties and quality; chemical properties of meat; meat microbiology, preservation and storage; meat by-products; HACCP. Prerequisites: CHEM 1000 and LIFE 1010. (Normally offered fall semester)

3061. Livestock Slaughter Practicum. 1. Students learn and practice proper techniques of livestock slaughter. Prerequisite: 4 credits of biological sciences. (Normally offered fall semester)

Meat Processors nomenclature and fabrication procedures. **Prerequisite:** 4 credits of biological sciences. (Normally offered spring semester)

Course: 3063. Meat Processing. 2. Principles of applicable meat protein chemistry, heat transfer and other processing parameters applicable to production of sausage, cured meat, and other processed products. A variety of processed meat products will be manufactured in lab. **Prerequisite:** FDSC 3060 or concurrent registration. (Normally offered spring semester)

Course: 3545. Introduction to Meat Judging. 3. USDA grading standards, value pricing, yield and quality attributes of meat are used to evaluate products. Improve communication skills and terminology through oral and written reasons. Requires field trips. **Prerequisite:** FDSC 2040. (Normally offered fall semester)

Course: 3550 [2100]. Advanced Meat Judging. 1-2 (Max. 3). Students representing the university in national and regional contests are selected to form this course. Requires field trips. **Prerequisite:** FDSC 3545.

Course: 3720 [4720]. Applied Food Chemistry. 3. Study of chemistry and composition of nutrients in raw and processed foods. **Prerequisite:** CHEM 2300 or ANSC 2010. (Normally offered spring semester)

Course: 4090. Food Microbiology. 3. Discusses microorganisms and theory of their growth and survival in relation to spoilage and preservation of foods and health hazards in foods. Dual listed with FDSC 4100. **Prerequisite:** MOBL 2210. (Normally offered spring semester)

Course: 4100 [610]. Laboratory Techniques in Food Microbiology. 1. Lab techniques used in food microbiology. Dual listed with FDSC 5100; cross listed with MICR 4100. **Prerequisite:** FDSC 4090 or 5090, taken concurrently. (Normally offered spring semester)

Course: 4800. Problems in Food Science. 1-3 (Max. 6). Examines special problems related to quality control, formulation and processing of meat, poultry and dairy foods. Offers research techniques and instrumentation in foods. **Prerequisites:** 6 hours in FDSC, 6 hours in chemistry and consent of instructor.

Course: 4900. Food Safety. 3. Issue-oriented lecture/discussion course. Includes topics such as what is safe food, what makes food unsafe and how safety of a food is determined. Presents laws and regulations on food safety. In addition to a text, area experts are invited to discuss important issues. **Prerequisite:** 6 hours of biological science. (Offered fall semester of odd-numbered years)

Course: 4990. Undergraduate Teaching Practicum. 1-2 (Max. 4). Participation of undergraduates in the teaching of FDSC courses under the supervision of faculty/staff. Offered Satisfactory/Unsatisfactory only. **Prerequisite:** junior standing or consent of instructor.

Course: 5090. Food Microbiology. 3. Discusses microorganisms and theory of their growth and survival in relation to spoilage and preservation of foods and health hazards in foods. Dual listed with FDSC 4090. **Prerequisite:** MOBL 2210. (Normally offered spring semester)

Course: 5100. Food Microbiology Laboratory. 1. Laboratory techniques used in food microbiology. Dual listed with FDSC 4100. **Prerequisite:** MOBL 4090 or 5090, taken concurrently. (Normally offered spring semester)

Course: 5880. Advanced Problems and Topics. 1-3 (Max 6). Designed to allow graduate students to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** graduate standing and consent of instructor.

Course: 5890. Seminar in Food Science and Nutrition. 1. A seminar course on topics in food science and human nutrition. Dual listed with FDSC 4890. **Prerequisite:** graduate standing.

Course: 5900. Practicum in College Teaching. 1-3 (Max. 16). **Prerequisite:** advanced degree candidacy.

Course: 5959. Enrichment Studies. 1-3 (Max. 99). **Prerequisite:** graduate standing.

Course: 5960. Thesis Research. 1-12 (Max. 24). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. **Prerequisite:** enrollment in a graduate degree program.

Course: 5980. Advanced Problems and Topics. 1-3 (Normally offered spring semester)

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.

Course: 5990. Internship. 1-12 (Max. 24). Participation of students whose coursework is completed and who wish to pursue advanced research problems and advanced topics and to obtain experience in the teaching process. **Prerequisite:** junior standing or consent of instructor.
The Department of Ecosystem Science and Management offers two programs leading to a Bachelor of Science degree. These are Rangeland Ecology and Watershed Management and Agroecology (an interdepartmental program offered through the Department of Ecosystem Science and Management and the Department of Plant Sciences). The coursework requirements necessary for obtaining an agroecology degree are described in the Department of Plant Sciences section of this publication. Either degree can also be obtained as an affiliate degree in conjunction with the School of Environment and Natural Resources. Six minor degree programs are offered through the department: Insect Biology, Rangeland Ecology and Watershed Management, Soil Science, Agroecology, Forest Resources, and Reclamation and Restoration Ecology. Obtaining a minor to complement a B.S. major degree program provides credentials and knowledge that can expand career opportunities.

The degree programs reflect the department's diverse expertise in natural resource and agriculture sciences. Students completing degrees offered through the department are well prepared for careers in natural resource management and sustainable agriculture (e.g., range management, watershed management, restoration ecology/reclamation of degraded land, wildlife habitat management, biocontrol/integrated pest management, soil science and various types of environmental consulting) or other science careers.

Student Learning Outcomes

The goal of the Department of Ecosystem Science and Management is to provide students with a comprehensive knowledge in several different areas in addition to their specific area of study. These expectations ensure that students may take these learned skills and successfully apply them in their post-graduate endeavors. Assessments in all areas are based on knowledge, skills, and attitude.

These areas include:

- Oral communication encompasses all the abilities necessary for effective expression and sharing of information, ideas, and feelings in a format including verbal and nonverbal symbols.
- Proficiency in written communication will ensure that students will be able to write for different audiences, from expressive writing to technical writing, using a range of sophistication in language.
- Professional behavior involves attaining high standards of behavior and appropriate attitudes, not only through acquiring knowledge and experience, but a lifelong commitment to learning and achievement.
- Competency in critical thinking and problem solving will enable students to engage in reasonable, reflective thinking focused on deciding what to believe or do.
- Computer and information literacy ensures that students will be viewed as trainable and adaptable in a computerized work environment. Proficiency in this area also enables students to effectively access online information, and skillfully make use of it.

The results in these different areas will aid the department in:

- Planning instructional strategies to address student strengths and weaknesses;
- Evaluating and describing overall student achievement;
- Counseling students for academic and career options; and
- Evaluating the effectiveness of instructional programs.

Minor in Forest Resources

The primary goal of the Forest Resources minor degree program is to develop a working knowledge of the processes that influence provision of the key products derived from forest lands. Courses taken in fulfillment of a major degree program will also be able to be applied to a minor degree program.

Minimum Requirements 20
RNEW 2100, SOIL 4150, RNEW 4775, and RNEW 4540. Choose one from RNEW 3100, REWM 4285, REWM 4700, or GEOG 4420; choose one from GEOG 2550 or REWM 4103; choose one from REWM 2000, ZOO 2450, RNEW 3000, or GEOG 4470.
Minor in Reclamation and Restoration Ecology

This program covers the use of basic and applied ecological concepts to rehabilitate and restore processes and functions to disturbed ecosystems.

Required Courses ... 14
LIFE 3400, SOIL 2010, REWM 4200, 4580, RNEW 4990
Planning and Policy (choose one) 3
AGEC 4710, ENR 3000, GEOG 4040, 4750, REWM 4051, 4052, 4900
Below-Ground Processes (choose one) 3-4
CE 4800, 4820, SOIL 4100, 4120, 4140, 4150, 4160
Above-Ground Processes (choose one) 2-4
BOT 4700, 4111, ENTO 4678, 4685, GEOG 4200, REWM 4285, 4540, 4700, 4710, 4850, ZOO 4550
Total 22-25

Graduate Study

The Department of Ecosystem Science and Management is an interdisciplinary department made up of five disciplinary areas: entomology, rangeland ecology, soil sciences, agroecology, and watershed management. The department offers the master of science and doctor of philosophy degrees in entomology, rangeland ecology and watershed management, and soil science. A water resources dual major may be obtained in conjunction with each of these master's degrees. For the rangeland ecology and watershed management degrees, thesis and dissertation problems may be developed in aspects of range ecology, wildlife habitat, reclamation of disturbed lands, watershed management, utilization and improvement of rangelands, and many other facets of range and forest ecology management. For the entomology degrees, thesis and dissertation problems may be developed in many areas of basic and applied aspects of insect ecology. For the soil degrees, thesis and dissertation problems may be developed in many basic and applied aspects of soil science. The degree programs reflect the department’s diverse expertise in natural resource and agriculture sciences. Students completing degrees offered through the department are well prepared for careers in natural resource management and sustainable agriculture (e.g., range management, watershed management, restoration ecology/reclamation of degraded land, wildlife habitat management, biocontrol/integrated pest management, soil science and various types of environmental consulting) or other science careers.

A graduate certificate in reclamation and restoration ecology may be obtained after completion of a B.S. degree or in conjunction with an M.S. or Ph.D. degree.

At present, no program for graduate degrees in agroecology is offered; however, some courses at the graduate level are available. Responsibility for this program is shared with the Department of Plant Sciences.

Program Specific Admission Requirements

Admission is contingent upon a faculty member being willing to assume responsibility for working with the student as an adviser. Applicants are encouraged to initiate correspondence with faculty who share similar research interests as part of the process of securing faculty advising commitment.

In special circumstances, and with the faculty adviser’s support, a student may be admitted in a provisional status with continued enrollment dependent upon meeting performance requirements specified at the time of admission.

Program Specific Graduate Assistantship Information

Current graduate assistantship availability, subject of study, and remuneration can be determined by checking: www.uwyo.edu/esi. Prospective students are also encouraged to directly correspond about future opportunities for graduate assistantships with faculty that share similar research interests.

Program Specific Degree Requirements

Master of Science in Entomology

Program A (thesis)

The master of science degree normally is offered under Program A which requires at least the university minimum degree requirements and an oral final examination.

Program B (non-thesis)

Requires 30 hours of graduate credit to include 9 hours of required courses, 11 hours of required electives, and 10 hours of other electives.

A Plan B master of science will be a terminal degree program in the Department of Ecosystem Science and Management. Students completing this option will not qualify for a subsequent Ph.D. program in Department of Ecosystem Science and Management at the University of Wyoming.

Master of Science in Entomology/Water Resources

Please refer to the Water Resources section of this Catalog for degree requirements.

Master of Science in Rangeland Ecology and Watershed Management

Program A (thesis)

The master of science degree normally is offered under Program A which requires at least the university minimum degree requirements and an oral final examination.

Program B (non-thesis)

Plan A is available under special circumstances and requires 30 hours of graduate coursework.

Plan B candidates must also prepare one professional paper (i.e., content and form compatible with publication in a scientific journal) or, if the adviser requests, two professional papers in selected topic areas.

An oral defense of the thesis is required.

Plan B master of science will be a terminal degree program in the Department of Ecosystem Science and Management. Students completing this option will not qualify for a subsequent Ph.D. program in Department of Ecosystem Science and Management at the University of Wyoming.

Master of Science in Rangeland Ecology and Watershed Management/Water Resources

Please refer to Water Resources section of this Catalog for degree requirements.

Master of Science in Soil Science

Program A (thesis)

Plan A requires the university minimum degree requirements and an oral final examination.

Program B (non-thesis)

Plan B is available and requires 30 hours of graduate coursework.

An oral defense of the paper(s) is required.

Master of Science in Rangeland Ecology and Watershed Management/Water Resources

Please refer to Water Resources section of this Catalog for degree requirements.
Doctoral Programs

Doctor of Philosophy in Entomology

Candidates must complete the minimum requirements for the doctor of philosophy degree, plus a preliminary examination (written and oral) covering knowledge related to the discipline (taken after most coursework complete) and an oral final examination.

Doctor of Philosophy Program in Hydrology

Water Resources/Environmental Science and Engineering (WRESE) is an interdisciplinary Ph.D. program that fulfills an important need by organizing a rigorous Ph.D.-level curriculum, with sufficient numbers of relevant, frequently-offered courses to serve the needs of Ph.D. students affiliated with program faculty.

The program's Ph.D.-level coursework is essential and forward-looking in areas such as aquatic chemistry, transport in natural systems, hydrometeorology, land-atmosphere interactions, eco-hydrology, hydrogeology, vadose zone hydrology, hydrologic applications of stable isotopes, limnology, hydrologic modeling, hydrological and water quality effects on aquatic organisms, hydroclimatology, hydrologic remote sensing and watershed hydrology.

Doctor of Philosophy in Rangeland Ecology and Watershed Management

Candidates must complete the minimum requirements for the doctor of philosophy degree, plus a preliminary examination (written and oral) covering knowledge related to the discipline (taken after most coursework complete) and an oral final examination.

Doctor of Philosophy in Soil Science

Candidates must complete the minimum requirements for the doctor of philosophy degree, plus a preliminary examination (written and oral) covering knowledge related to the discipline (taken after most coursework complete) and an oral final examination.

Doctor of Philosophy in Ecosystem Science and Management/Applied Economics

The course requirements for the PhD program in Ecosystem Science and Management (ESM) with a concentration in Applied Economics are highly flexible to accommodate a wide variety of student backgrounds and interests. Students can major in any PhD program within ESM including Rangeland Ecology and Watershed Management (REWM), Soil Science (SOIL), and Entomology (ENTO) following the ESM admission procedures. The student’s graduate committee, with the approval of the Department Heads and College Dean, determine the final program of study. Acknowledging flexibility, each student’s program of study is expected to meet the following minimum requirements:

A minimum of 72 credit hours of coursework. The credit hour requirement can include:

- Up to 48 credit hours transferred from approved graduate courses earned while pursuing an M.S. degree (no more than 4 credit hours of thesis);
- A minimum of 12 credit hours of approved ESM (REWM, SOIL, ENTO) courses;
- A minimum of 18 credit hours of approved AGEC or ECON courses, with at least 12 credit hours at the 5000-level.

At least 42 of the 72 credit hour requirement must be earned in formal coursework.

No more than 12 credit hours of 4000-level courses can count towards the 72 credit hour requirement.

In addition to the degree requirements listed, students pursuing this option will also meet the following general requirements:

- Enroll in, and complete, the graduate minor in Applied Economics.
- Include co-chairs, one from ESM and one from AGEC, on the graduate committee.
- Participate in a meaningful teaching experience to be coordinated by the student’s major professor.
- Complete a preliminary examination covering knowledge related to both ESM and AGEC.
- Present research results at a formal public seminar.
- Complete a final oral examination covering the student’s thesis research administered by the graduate committee.

Graduate Certificate Program

Reclamation/Restoration Ecology Graduate Certificate

The Reclamation/Restoration Ecology (RRE) graduate certificate prepares the student to use basic and applied ecological concepts to reclaim and/or restore processes and functions to disturbed ecosystems. Reclamation and/or restoration of disturbed ecosystems requires an understanding of the edaphic, biotic, hydrologic, geologic, and topographic factors comprising these ecosystems, including the complex interrelationships that support and perpetuate ecosystem function. The graduate certificate will be granted to students who have completed a B.S. in an appropriate science-oriented discipline or are currently enrolled in an M.S. or Ph.D. program.

The graduate certificate will also be available to professionals working in reclamation/restoration oriented fields seeking to upgrade their training in reclamation and restoration ecology. Those interested in the graduate certificate will be required to complete the course work listed below as well as write a synopsis paper with a formal presentation advertised as an open forum seminar.

Required Certificate Courses:

- Reclamation and restoration ecology courses
 - REWM 4200, REWM 5580
 - 6 hours Reclamation problems
 - SOIL 5565 or REWM 5640
 - 4 hours Reclamation process course (choose one)
 - BOT 5700, BOT 5730, BOT 5780, PLNT 5070, PLNT 5470, GEOL 5444, GEOL 5570, REWM 5280, REWM 5710, RNEW 5540, SOIL 5100, SOIL/MATH 5110, SOIL 5120, SOIL 5130, SOIL 5140, SOIL 5150, ZOO 5550
 - 3 hours Planning/policy courses (choose one)
 - ENR 4900, ENR 5900
 - 3 hours Minimum total credits needed: 16 hours

Courses of instruction in the department are offered in agroecology, entomology, rangeland ecology and watershed management, renewable resources, and soil science.

Ecosystem Science and Management (ESM)

4990. Topics. 1-4 (Max 8). Topics pertaining to ecosystem science and natural resource management. Intended to accommodate instruction in various specialized subjects being offered for the first time or not offered on a regular basis. Students may enroll in more than one section of this course provided topics are different. Prerequisites: Appropriate to the particular topic will be specified in the course advertisement.

5995. Topics. 1-4 (Max 8). Topics pertaining to ecosystem science and natural resource management. Intended to accommodate instruction in various specialized subjects being offered for the first time or not offered on a regular basis. Students may enroll in more than one section of this course provided topics are different. Prerequisites: Appropriate to the particular topic will be specified in the course advertisement.
Renewable Resources

(RNEW)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB◊Q]).

1000. Wyoming Wildlands: Science and Stewardship. 3. [none]◊PN] Introduces students to the breadth of Wyoming natural resources and ecosystems. In this class we investigate the science and management of the Wyoming landscape. Students are introduced to the rangelands, wildlife, forests, watersheds, and disturbed lands of Wyoming with an emphasis on understanding the ecology and natural history of the region. Throughout the course, students are exposed to how the extensive ecosystems of the West are managed by public and private groups and how human decisions change the landscape.

2100 [BOT 2100]. Forest Management. 3. Principles of forest management. Topics include the laws affecting forest management, methods of harvesting wood from forests, fire and insect management, the effects of disturbances on stream flow and nutrient cycling, and the challenges of developing management plans for forests. Cross listed with ENR 2100. Prerequisite: LIFE 1001 or 1010.

2345. Natural Resource Ethics. 3. [CH,D◊(none)] Introduction to ethics in context of natural resource extraction, use, conservation, preservation, and distribution. Ethical frameworks include teleological and deontological theories primarily applied to human needs and wants. Concepts and applications of environmental justice are addressed, including private property, sustainability, and obligations to future generations. Cross listed with ENR/PHIL 2340.

3000. Tropical Ecology. 3. Examines the characteristics of tropical ecosystems, how they evolved, their value to humans, their present status, and current issues relating to biodiversity, deforestation, extinction, and conservation. Prerequisite: LIFE 1001 or 1010.

4130. Applied Remote Sensing for Agricultural Management. 3. Covers remote sensing concepts and applications related to croplands, rangelands, forests, and water. Students learn techniques for monitoring plant growth and vigor, monitoring rangelands, distinguishing invasive species, categorizing forest fires, and mapping water bodies. Students integrate remotely sensed data with other geospatial data. Cross listed with AECL/GIST 4130. Prerequisite: QA course and 9 credit hours in student’s major field and junior/senior standing or permission of instructor.

4400. Invasive Plant Ecology. 3. Ecological impacts of invasive, non-indigenous plant species, the ecological, genetic and evolutionary hypotheses for invasiveness, as well as management strategies for invasive plant species. Dual listed with RNEW 5400; cross listed with AECL 4400. Prerequisite: LIFE 3400.

4730. Plant Physiological Ecology. 4. Acquaints advanced students with environmental factors which affect the establishment and growth of plants. Emphasizes adaptive mechanisms. Dual listed with RNEW 5730. Cross listed with BOT 4730. Prerequisite: one course in physiology and one course in ecology. (Normally offered spring semester)

4775. Forest Ecology. 4. Integrative study of the structure, function, and ecological diversity of forested ecosystems, and the physical factors that influence this diversity, including emergent properties of energy flow and nutrient cycling. Special emphasis is given to understanding forest disturbances and succession, and implications for impacts of management and sustainability are discussed throughout. Cross listed with BOT 4775. Prerequisite: LIFE 3400.

4800. Undergraduate Research. 1-3 (Max. 18) Undergraduate student research can be an important component in the intellectual and professional development of future scientists and land managers. Undergraduate students working with a faculty member in a research capacity can register for up to 3 credit hours per semester. The student and faculty member will identify an academic outcome that is associated with their research effort, such as a research paper, oral presentation, or poster session at an appropriate venue. Instructor’s permission required.

4990. Topics in:________. 1-4 (Max. 8). Special topics pertaining to renewable natural resource management. Intended to accommodate instruction in various specialized subjects not offered on a regular basis. Students may enroll in more than one section of this course provided topics are different. Dual listed with RNEW 5990. Prerequisite: consent of the instructor to pursue study of the topic.

5200. Spatial Analysis of Watersheds and Ecosystems. 3. Covers topics related to analysis of spatial and temporal processes at watershed and ecosystem scales using Geographic Information Systems (GIS). Topics include land classification and suitability analysis, interpolation techniques, terrain analysis, model integration, and visualization. Sources of potential error and ramifications are examined. Prerequisite: GEOG 4210 or equivalent.

5400. Invasive Plant Ecology. 3. Ecological impacts of invasive, non-indigenous plant species, the ecological, genetic and evolutionary hypotheses for invasiveness as well as management strategies for invasive plant species. Dual listed with RNEW 4400; cross listed with AECL 5400. Prerequisite: LIFE 3400.

5500. Stable Isotope Ecology. 3. Application of stable isotope measurements to organismal and ecosystems. Lectures address the theory underlying the use of stable isotopes at natural abundance levels as tracers and integrators of important physiological and ecological processes. Laboratory exercises provide hands on experience with stable isotope ratio measurements. Prerequisite: graduate classification in a natural science or agriculture discipline.

5540. Shrubland Ecology. 3. Ecology of shrub-dominated lands and shrub species in grasslands. Location, importance and environmental constraints of shrub distributions. Topics include herbivory, woody plant invasions, competitive interactions, monitoring and population dynamics. Emphasizes familiarity with scientific literature. Prerequisite: RNEW 3000, BOT 4700.

5545. Shrub Ecology Trip. 2. Field study in North American shrublands of western US ecosystems. Participants learn from researchers, managers, field activities, required readings and written assignments. Participants will be camping and a fee is required. Prerequisite: RNEW 5540.

5730. Plant Physiological Ecology. 4. Acquaints advanced students with environmental factors which affect the establishment and growth of plants. Emphasizes adaptive mechanisms. Lecture with inclusive hands-on laboratory. Dual listed with RNEW 4730; cross listed with BOT 4730/5730. Prerequisite: one course in physiology and one course in ecology.

5990. Topics In Renewable Resources. 1-4 (Max. 8). Special topics pertaining to renewable natural resource management. Intended to accommodate instruction in various specialized subjects not offered on a regular basis. Students may enroll in more than one section of this course provided topics are different. Dual listed with RNEW 4990.

Environment and Natural Resources Affiliate Degrees

Bachelor of Science degrees in either the Agroecology or the Rangeland Ecology and Watershed Management offered through the Ecosystem Science and Management Department may also be obtained as affiliate degrees with the School of Environment and Natural Resources (i.e., the degree titles would be En-
Ecosystem Science and Management

Entomology Minors Programs

Because of the pervasiveness of insects, the entomology minors programs provide a vital link among the life and environmental sciences at the University of Wyoming. Students will be prepared to serve society not just through the vital industry of agriculture, but through contributions to basic biology, human and animal health, ecosystem management, wildlife conservation and a myriad of other ways.

Minor in Insect Biology

This minor is intended for students who have an interest in insects as organisms, including their basic biology, ecology and evolution. As insects dominate biological diversity, they are essential to most ecological systems, and have unique physiological systems. Students majoring in zoology, botany, molecular biology, biology or similar fields will find the study of these organisms a rewarding and valuable (if not essential) element of the life sciences.

In terms of biological diversity, at least 75 percent of all species are insects, with over 800,000 known species and another 10-50 million yet to be described. Insects are increasingly used as biomarkers of environmental health. Many industries now recognize that insects may be the world’s richest, untapped natural resource, with billions of dollars of unexploited goods and services. Accessing these resources requires trained entomologists. Such training demands an academic setting, such as the University of Wyoming, where collections are maintained, productive faculty are involved in quality research and teaching, and the latest methodologies are available and taught, the necessary scientific literature is readily accessible and a curriculum available that allows the student to pursue this field.

Minimum requirements..............................13
Choose one from ENTO 1000 or 1001, then choose from ENTO 4678, 4682, 4684, 4686, 4687, and 4884 to meet the minimum 13 credit hour requirement.

Insect Biology/Entomology Graduate Study

The department offers graduate work leading to the Master of Science and Doctor of Philosophy in entomology and an affiliated graduate option in water resources. Department faculty have active programs in insect ecology (biological control, population biology and plant-insect interactions), systematics (taxonomy, phylogeny and evolution) and pest management (biological control, biometrics and sampling, and pest management on humans, livestock, crops and rangeland).

Entomology (ENTO)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB4\Q]).

1000. Insect Biology. 3. [SB\PN] Introduces insects and related arthropods. Introduces aspects of insect biology, behavior, life history and diversity, as well as many ways that insects affect humans.

1001. Insect Biology. 4. [SB\PN] Covers same lecture material as ENTO 1000, but includes a laboratory.

1150. Pesticide Safety and Application. 1. Introduces various types and safe methods of pesticides application. Subsequent to completion, students may take the certification test administered by the Wyoming Department of Agriculture. Cross listed with CROP 1150. Offered S/U only. (Normally offered the week prior to spring semester)

4300. Insect Ecology. 3. Examines concepts of insect ecology and their application to the management of agricultural and rangeland insect pests. Control of rangeland weeds using insects in also examined. Covers population dynamics, predator-prey and insect-plant interactions, biological control and integrated pest management. Prerequisite: ENTO 1000 or LIFE 1003 or LIFE 1020 or consent of instructor.

4678. Aquatic Entomology. 3. Emphasizes biology, ecology, distribution, and taxonomy of aquatic insects. Includes aquatic insects as indicators of pollution. Students must make and identify a collection of immature aquatic insects. Dual listed with ENTO 5678. Prerequisite: ENTO 1000, 1001. (Normally offered fall semester of even-numbered years)

4682. Insect Anatomy and Physiology. 5. Studies structure and function of the insect body, particularly emphasizing the relationship between anatomical features and their cellular/biochemical functions. Dual listed with ENTO 5682. Prerequisite: ENTO 1000. (Normally offered spring semester of even-numbered years)

4684. Classification of Insects. 4. Studies insect orders, families and taxonomic treatises. Requires collection of adult insects representing 100 families, or equivalent museum project, for completion of course requirements. Dual listed with ENTO 5684. Prerequisite: ENTO 1000. (Normally offered fall semester of odd-numbered years)

4686. Problems in Entomology. 1-3 (Max. 6). Individual library, laboratory or field study of insects. Prerequisite: 4 hours of biological science and 3 hours of entomology.

4687. Insect Evolution. 3. Examines major events of insect evolution including origins, fossils, wings and flight, metamorphosis, extinct orders, diversification patterns of modern orders, climate change, plate tectonics, coevolution with plants, parasitism, social behavior, and origin of modern faunas. Dual listed with ENTO 5687. Prerequisite: ENTO 4684 required; ENTO 4670, 4682 recommended.

4884. Insect Behavior. 3. Examines the behavior of insects, including foraging, mating and social behavior. The course focuses on the applied as well as the fundamental aspects of behaviors, and both the strategic and physiological bases of behavior. Dual listed with ENTO 5884. Prerequisite: ENTO 1000.

5080. Statistical Methods for the Agricultural and Natural Resource Sciences. 3. Brief review of statistical principles. Use of SAS programming. Numerous analysis of variance techniques along with commonly used experimental designs. Multiple mean comparisons, linear contrasts, power of F test, simple linear regression, polynomial regression, analysis of covariance, and some categorical data techniques for student in the agriculture and natural resources sciences. Credit cannot be earned in more that one of the following courses: STAT 2100, 3050, 5050, 5060, 5070, 5080. Cross listed with STAT 5080. Prerequisite: STAT 2050 or equivalent.

5300. Applied Insect Ecology. 3. Examines concepts of insect ecology and their application to the management of agricultural and rangeland insect pests. Control of rangeland weeds using insects is also examined. Covers population dynamics, predator-prey and insect-plant interactions, biological control and integrated pest management. Dual listed with ENTO 4300. Prerequisite: ENTO 1000 or 9 hours of biology or ecology related coursework.

5601. Insects for Teachers: Collection and Identification of Insects. 1. Designed for school teachers K-12. Basic concepts such as insect classification, insect habitats, insect metamorphosis, and destructive and beneficial insects are discussed with emphasis on the presentation of these concepts in the school
classroom. Half of the class is devoted to field trips, laboratories, workshop activities, and films. Each student will make an insect collection, and learn how to preserve, mount, and identify specimens to order level. Course may be taken independently of ENTO 5602. Identical to NASC 4790. Prerequisite: junior standing. Offered summer term only.

5602. Insects in the Classroom: Insects and Their Ways. 1. Designed for school teachers K-12. Basic concepts of insect structure and function (insect morphology, insect physiology, insect ecology, and insect behavior) are discussed with emphasis on the presentation of these concepts using living insects in the classroom. Half of the class is devoted to field trips, laboratories, workshop activities, and films. Each student will design, conduct, and write-up an experiment with insects. Course may be taken independently of ENTO 5601. Identical to NASC 4790. Prerequisite: junior standing. Offered summer term.

5678. Aquatic Entomology. 3. Biology, ecology, distribution and taxonomy of aquatic insects will be emphasized. Additional material covered will include aquatic insects as indicators of pollution. Students must make and identify a collection of immature aquatic insects. Dual listed with ENTO 4678. Prerequisite: 1 year of basic biology.

5682. Insect Physiology. 5. Structure and function of the insect body, with particular emphasis on the relationship between anatomical features and their cellular/biochemical functions. Dual listed with ENTO 4682. Prerequisite: ENTO 1000.

5684. Classification of Insects. 4. A study of insect orders, families and taxonomic treatises. Collection of adult insects representing 100 families, or equivalent museum project, is required for completion of course requirements. Dual listed with ENTO 4684. Prerequisite: ENTO 1000; ENTO 4670 is recommended.

5686. Problems in Entomology. 1-3 (Max. 6). Individual library, laboratory or field study of insects. Dual listed with ENTO 4686. Prerequisite: 4 hours of biological science and 3 hours of entomology.

5687. Insect Evolution. 3. Examines major events of insect evolution including origins, fossils, wings and flight, metamorphosis, extinct orders, diversification patterns of modern orders, climate change, plate tectonics, coevolution with plants, parasitism, social behavior, and origin of modern faunas. Dual listed with ENTO 4687. Prerequisite: ENTO 4684/5684 required. Recommended: ENTO 4670/5670, ENTO 4682/5682.

5689. Topics in Entomology. 1-4 (Max. 6). Current topics in entomology taught by entomology faculty, adjunct faculty or visiting faculty. Please check class schedule for current title.

5850. Research in Entomology. 1-3 (Max. 8). Individual investigations of particular problems. Prerequisite: graduate standing.

5852. Senior/Graduate Seminar. 1 (Max. 6). Discussion of important contributions to entomology. Prerequisite: graduate standing.

5884. Insect Behavior. 3. Fundamentals of insect behavior and an analysis of behavioral patterns. Dual listed with ENTO 4884. Prerequisite: one year of basic biology or equivalent; ENTO 5682 is recommended.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate status.

5920. Continuing Registration: On Campus. 1-2 (Max. 6). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisite: enrollment in a graduate degree program.

5940. Continuing Registration: Off Campus. 1-2 (Max. 6). Prerequisite: advanced degree candidacy.

5960. Thesis Research. 1-12 (Max. 24). Prerequisite: graduate standing.

5980. Dissertation Research. 1-12 (Max. 48). Graduate level course designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. Prerequisite: enrollment in a graduate level degree program.

Rangeland Ecology and Watershed Management Major

Rangeland occupies 47% of the Earth’s land area. The 50 million acres of rangeland in Wyoming provide diverse opportunities for the multiple uses of livestock and wildlife grazing, recreation, water production and natural beauty. Students are taught to understand and manage complex rangeland ecosystems.

The rangeland ecology and watershed management curriculum is designed for students choosing to study ecology, utilization and management of rangelands and wildland watersheds and related resources of forestry, recreation, wildlife management, soil science, botany, and zoology. Degrees include Bachelor of Science, Master of Science, and Doctor of Philosophy.

The undergraduate course of study helps students become well prepared for careers in natural resource management (e.g., range management, watershed management, restoration ecology/reclamation of degraded land, wildlife habitat management, ranch management, various types of environmental consulting), or other natural science careers. The curriculum fully meets the Office of Personnel Management (OPM) requirements for Range Conservationist. By appropriate course selection within the elective hours, students will also meet OPM requirements for additional professional work, such as soil conservationist or hydrologist.

Rangeland Ecology and Watershed Management Graduate Study

Areas of graduate study leading to a M.S. or Ph.D. in rangeland ecology and watershed management include range ecology, animal nutrition, watershed management, wildlife habitat management, restoration ecology, and reclamation of disturbed lands. A graduate certificate in reclamation and restoration ecology and a graduate option in water resources are offered in affiliation with the rangeland ecology and watershed management graduate degree.

Course Requirements for a Major in Rangeland Ecology and Watershed Management (B.S.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000*</td>
<td>36</td>
</tr>
<tr>
<td>2400*</td>
<td></td>
</tr>
<tr>
<td>3000*</td>
<td></td>
</tr>
<tr>
<td>3100*</td>
<td></td>
</tr>
<tr>
<td>4100*</td>
<td></td>
</tr>
<tr>
<td>4285*</td>
<td></td>
</tr>
<tr>
<td>4330*</td>
<td></td>
</tr>
<tr>
<td>4530*</td>
<td></td>
</tr>
<tr>
<td>4700*</td>
<td></td>
</tr>
<tr>
<td>4830*</td>
<td></td>
</tr>
<tr>
<td>4850*</td>
<td></td>
</tr>
<tr>
<td>4900*</td>
<td></td>
</tr>
</tbody>
</table>

Agroecology Program

Rooms 50/2013 Agriculture Building (307) 766-3103/766-2263

Departments of Plant Sciences and Ecosystem Science and Management

The Bachelor of Science degree program in agroecology is an interdepartmental major involving the collaborative teaching, advising and research expertise in the Departments of Plant Sciences and Ecosystem Science and Management. An agroecology minor is also available. See the Plant Sciences section under the College of Agriculture and Natural Resources for more information on the Agroecology program.
Resource management 14-15
SOIL 210*, SOIL 4120*, AGEC 4700*,
and choose one from RNEW 4130*,
BOT 4111*, BOT 3150* or GEOG 4200*
Physical and Natural World 8
LIFE 1010 and CHEM 1000
Biological sciences 7
LIFE 2022* or 2023*, LIFE 3400*
Communication skills 6
USP Communication 1 and COJO 2010
Quantitative reasoning 7
MATH 1400, STAT 2050
Human Culture .. 6
Human Culture, ECON 1020
First-Year Seminar 3
US and WY Government 3
Electives ... 28-29
Total .. 123

*Course must be completed with a C or better.

Minor

A minor in rangeland ecology and watershed management is available for students in other majors interested in increasing their knowledge of the field. The number of hours required is 22. The required courses for the minor are: LIFE 1010 (4 hrs.) and 3400 (3); and REWM 2000 (3), 2500 (2), 4330 (3), 4530 (1) and 6 hrs. selected from other REWM upper-division (3000 or 4000 level) courses.

Rangeland Ecology and Watershed Management (REWM)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB*4Q]).

1070. World Water Quality. 3. This course covers global water resources, fresh water demands, water quality issues, and water resources management on a watershed scale. Students become more knowledgeable about significance of availability and sustainability of water resources and water quality.

2000. Principles of Rangeland Management. 3. Basic principles of range management as they apply to various regions and vegetative types. Relationship of range management practices to livestock production, wildlife management, forestry, hydrology and other land uses. Introductory course for majors and non-majors. Prerequisite: LIFE 1001 or 1010.

2400 [2500]. Range Ecosystems and Plants. 4. Ecology of range ecosystems of western North America and identification of 200 most common plants species, including taxonomic keying. Prerequisite: REWM 2000 with a grade of C or better.

3000. Plant Ecophysiology/Plant Form and Function. 4. Integration of basic vascular plant anatomy, morphology, physiology within the contexts of modern evolutionary and ecological theory. Students receive in depth exposure to fluid flow, energetics, development, growth, general metabolism, and structure, and functions for plant cells, tissue and organs. Prerequisite: LIFE 2022 or LIFE 2023.

3100. Principles of Wildland Water Quality. 3. Basic principles of aquatic chemistry and water quality as they relate to watershed management practices including livestock production, agronomic production, mineral and natural gas extraction and other land uses. Cross listed with ENR 3100. Prerequisite: CHEM 1000. (Normally offered fall semester)

3390. Range Judging. 2. Judging rangelands based on soil, plant and animal resources and applying science-based information to make management decisions. Participation in a field trip and UW SRM judging teams is required including Plant Team and URME. This course is intended for members of the SRM competitive Teams. Prerequisites: C or better in REWM 2000, REWM 2400 and REWM 3020, as well as the Team Coach permission. (Normally offered fall semester)

3500. Rangeland Plant Ecophysiology. 3. Examines plant physiological processes that have application to ecological and land management issues. Topics include carbon assimilation, water relations, mineral nutrition as applied to plant distributions, plant and system responses to grazing, as well as plant tolerance of extreme conditions including drought, excessive temperatures and changes in climate. Prerequisite: LIFE 2022 or 2023. (Normally offered fall semester)

4000. Poisonous Plants and Plant Toxins. 3. Plants poisonous to livestock in Wyoming and the Mountain West; identification, ecology, toxic principles, physiologic responses of animals, situations leading to poisoning, control and management to prevent losses. Prerequisite: 12 hours of biological and chemical sciences. (Normally offered spring semester)

4051. Environmental Politics. 3. Analyzes environmentalism as a public phenomenon. Provides students with a basic understanding of how to analyze political issues by: (1) examining the historical and contemporary issues that produce controversy over environmental matters; and (2) surveying the impacts of these issues on the formulation and implementation of laws, policies, and regulations. Cross listed with AMST, ENR, GEOG and POLS 4051. Prerequisite: POLS 1000.

4052. Federal Land Politics. 3. Examines the political forces that have shaped and continue to shape federal land policy and management. Explores the interactions between democratic decision making and science in the management of federal lands. Surveys the sources of controversy over federal land management and methods for harmonizing public demands with technical expertise. Cross listed with POLS/ENR/GEOG/AMST 4052. Prerequisite: POLS 1000.

4100. Nutritional Ecological Management of Range Herbivores. 3. Examines ecological processes and management of nutritional resources by domestic and wild rangeland herbivores. Topics include nutrient availability, nutritional demand, foraging behavior, diet composition, grazing systems, stocking rates, livestock/wildlife competition, predation, parasitism, plant toxicity, and influences on ecological condition. Students evaluate case studies and analyze nutritional data using current technologies. Dual listed with REWM 5100. Prerequisite: LIFE 1010 or LIFE 1020.

4103 [3103]. Range and Ranch Recreation. 3. Understanding of public demands for leisure use of public and private rangelands; potential impacts on rangeland resources, ranch practices and families and other rangeland users. Students prepare public range or private ranch recreation operations plan. Graduate students assist in preparation and presentation of lecture. Dual listed with REWM 5103. Prerequisite: C or better in REWM 2000 and CS course. (Normally offered spring semester)

4150 [3150]. Behavior Modification for Production of Grazing Herbivores. 3. Strategies for manipulation of behavior and management of the grazing herbivore will be developed from scientific and practical information. Designed to equip the student to manage for animal and natural resource production. Dual listed with REWM 5150. Prerequisite: C or better in REWM 2000 and REWM 3020 or ANSC 3100. (Normally offered spring semester)

4200. Reclamation of Drastically Disturbed Lands. 3. Overviews reclamation of drastically disturbed lands in the west, emphasizing surface mined lands. Includes principles of ecology, agronomy, soils and other relevant disciplines as applied to mitigate adverse environmental impacts of land disturbance. Prerequisite: LIFE 3400, AECL 2100. (Normally offered fall semester)
4285. Wildland Hydrology. 3. Teaches essential and unique characteristics of hydrologic cycle as occurred on range and forest lands, concentrating on quantification of these processes and storages. Cross listed with ENR 4285. Dual listed with REWM 5285. Prerequisite: QA (Normally offered fall semester)

4300 [3320]. Grass Taxonomy. 3. Identification of grasses and their place in range management and world agriculture. Dual listed with REWM 5300. Prerequisite: REWM 2500 or LIFE 2023. (Normally offered spring semester)

4330. Rangeland Ecosystem Assessment and Monitoring. 4. Assessment, monitoring, and analysis of rangeland ecosystems and processes. Students integrate sampling design, measurements of vegetation attributes, indicators of rangeland health, ecological site information, riparian and wildlife habitat values, utilization, and statistical applications to evaluate rangeland resource integrity and sustainable use. Students collect, analyze, and report data using current technologies. REWM students will be given enrollment preference. Prerequisites: REWM 2400 and STAT 2050 or STAT 2070. Concurrent enrollment in REWM 2400 and STAT 2050 or STAT 2070 is allowed with permission. (Normally offered fall semester)

4340. Reclamation Techniques Field Trip. 2. Provides increased comprehension of current land reclamation problems and solutions by means of a field trip to sites in region where land reclamation is occurring. Prerequisite: REWM 4200. (Normally offered fall semester)

4440. Applied Fire Ecology. 3. Course examines drivers and patterns of wildfire in rangeland and forested ecosystems, fire behavior, fuel characteristics, fire effects, suppression tactics and mitigation strategies, prescribed burning precautions and applications, applications/uses of fire to meet resource objectives, policies and regulations, and modeling software. Required field trips out of class time. Junior standing or greater class standing required. Dual listed with REWM 5440. Prerequisite: General biology and MATH 1400 or above.

4500. Rainfall-Runoff Modeling. 3. Introduction to hydrologic modeling that teaches the foundations of model development, calibration, and interpretation. Examines the different components of the water cycle and how they are being integrated into watershed models. Equips the students with the necessary skills to parameterize hydrologic models, understand the underlying principles, and interpret model outputs. Dual listed with REWM 5500. Prerequisite: REWM 4285.

4530. Seminar. 1 (Max. 2). Discusses pertinent range management problems. Prerequisite: REWM 2000 (earn at least a C) or ENR 4000.

4540. Problems. 1-4 (Max. 6). Experimental work or intensive reading and discussion on range management problems. Includes problems offered in the following areas of range management: natural resources ecology, livestock habitat, business, improvements, watershed, reclamation, extension, and international development. Prerequisite: basic training in field of problem selected and consent of instructor.

4550. Internship in _____. 1 (Max. 4). Supervised field experience in range management or disturbed land reclamation. No more than 4 credits. Prerequisites: basic course work in subject selected and consent of instructor.

4580. Rangeland Restoration Ecology. 3. Detailed analysis of various disturbed ecosystems unique to western rangelands. Primary emphasis on plant community restoration following degradation from edaphic, biotic, hydrologic, and topographic influences on degradation and strategies for vegetation rehabilitation. Strong focus on current research to formulate restoration strategies. Dual listed with REWM 5580. Prerequisites: REWM 4200 or LIFE 3400.

4700. Wildland Watershed Management. 3. Studies hydrological cycle with specific emphasis on the role of vegetation in hydrologic processes such as interception, surface detention storage, infiltration, percolation, run-off, and water quality. Utilization of watersheds and vegetation manipulation practices to modify these hydrologic processes. Prerequisite: LIFE 1001 or 1010. (Normally offered spring semester)

4710 [4180]. Watershed Water Quality Management. 3. Studies watershed processes controlling water quality. Examines impacts of land use activities such as agriculture production, livestock grazing, and mineral and natural gas extraction on surface water and ground water quality. Emphasis will be placed on water quality modeling and management. Dual listed with REWM 5710. Prerequisites: CHEM 1000. (Normally offered spring semester)

4750. Wildlife Habitat Restoration Ecology. 3. Emphasis on fundamental and applied aspects of restoration ecology for terrestrial wildlife habitats following anthropogenic and natural disturbances. Although the course overviews theoretical concepts applicable to many systems, there is a focus on applications for wildlife habitats in western North America. Dual listed with REWM 5750. Prerequisites: Minimum of 6 hours of Biology or Life Sciences courses.

4810. Experiments in Restoration. 2. Emphasis on the experimental design using examples from restoration science. Focus on experiments to test concepts in ecosystem science, food webs, population genetics, metapopulation biology, biodiversity and invasion, and climate change. Address topics in experimental, ecological restoration. Dual listed with REWM 5810. Prerequisite: STAT 2050 or equivalent.

4830. Ecological Applications for Wildland Management. 3. [WB4] (none) Emphasis on applying understanding of interactions among components of rangelands to facilitate sustainable provision of ecosystem services. The influences of stochasticity and disturbances on ecosystem structure and function will be the focus of discussion and technical writing exercises. Prerequisites: WA, REWM 2000 (earn at least a C), LIFE 3400 (latter may be concurrent). (Normally offered fall semester)

4850. Rangeland Vegetation Management Techniques. 3. Uses applied ecological principles in restoration of degraded rangeland ecosystems to introduce methods for manipulating rangeland vegetation that satisfy land management objectives. Provides ecologically-sound practices to maintain optimal and sustained yield of rangeland products. Prerequisites: C or better in REWM 2000 and SB. (Normally offered spring semester)

4900. Rangeland Management Planning. 3. [WC4] [COM3] Applies planning processes that integrate soil, vegetation, water, livestock, wildlife, and environmental regulatory considerations within the context of satisfying ecologically sustainable rangeland management objectives. Prerequisites: REWM 4830, ECON or AGEC 1010 or 1020, SOIL 4120 or 4150 (may be concurrent), REWM 3020 (may be concurrent), REWM 4330 (may be concurrent). (Normally offered spring semester)

4990. Undergraduate Teaching Practicum. 1 (Max. 2). Teaching experience in classroom or laboratory assisting faculty instructor. (Offered based on sufficient demand and resources)

5000. Range Resource Management. 3. Basic concepts and theories of rangeland resource management, trends in rangeland classification, grazing management and improvement practices. Prerequisite: graduate classification in agriculture or related natural resource subject matter areas.

5100. Nutritional Ecological Management of Range Herbivores. 3. Examines ecological processes and management of nutritional resources by domestic and wild rangeland herbivores. Topics include nutrient availability, nutritional demand, foraging behavior, diet
composition, grazing systems, stocking rates, livestock/wildlife competition, predation, parasitism, plant toxicity, and influences on ecological condition. Students evaluate case studies and analyze nutritional data using current technologies. Dual listed with REWM 4100.

5103. Range and Ranch Recreation. 3. Understanding of public demands for leisure use of and private rangelands; potential impacts on rangeland resources, ranch practices and families and other rangeland users. Preparation of public range or private ranch recreation operations plan. Graduate students assist in preparation and presentation of lecture. Dual listed with REWM 4103. Prerequisites: REWM 2000 and CS course.

5150. Behavior Modification for Production of Grazing Herbivores. 3. Strategies for manipulation of behavior and management of the grazing herbivore are developed from scientific and practical information. Designed to equip the student to manage for animal and natural resource production. Dual listed with REWM 4150. Prerequisite: REWM 2000 and ANSC/REWM 3020 or ANSC 3100.

5250. Water Resources Seminar. 1. Objective is to develop interaction among students from the various water resource disciplines to enhance their perspectives on how water problems are addressed within an interdisciplinary environment. Prerequisite: graduate status.

5285. Wildland Hydrology. 3. Teaches essential and unique characteristics of hydrologic cycle as occurs on range and forest lands, concentrating on quantification of these processes and storages. Cross listed with ENR 5285. Dual listed with REWM 4285. Prerequisite: graduate standing and University Studies QA.

5300. Grass Taxonomy. 3. Identification of grasses and their place in range management and world agriculture. Dual listed with REWM 4300. Prerequisite: REWM 2500 or LIFE 2023.

5400. Community Ecology. 3. Community ecology is the study of interactions within and among groups of species. This course focuses on (1) the major classical concepts and theories in community ecology, (2) the ways in which population dynamics can impact communities and how community dynamics can impact ecosystem processes and functioning, and (3) implementation of quantitative methods for conducting research that includes community ecology. Cross listed with ECOL 5400. Prerequisite: LIFE 3410 or equivalent.

5440. Applied Fire Ecology. 3. Course examines drivers and patterns of wildfire in rangeland and forested ecosystems, fire behavior, fuel characteristics, fire effects, suppression tactics and mitigation strategies, prescribed burning precautions and applications, applications/uses of fire to meet resource objectives, policies and regulations, and modeling software. Required field trips out of class time. Dual listed with REWM 4440. Prerequisite: graduate standing.

5500. Rainfall-Runoff Modeling. 3. Introduction to hydrologic modeling that teaches the foundations of model development, calibration, and interpretation. Examines the different components of the water cycle and how they are being integrated into watershed models. Equips the students with the necessary skills to parameterize hydrologic models, understand the underlying principles, and interpret model outputs. Dual listed with REWM 4500. Prerequisite: REWM 5285.

5580. Rangeland Restoration Ecology. 3. Detailed analysis of various ecosystems unique to western rangelands. Primary emphasis on plant community restoration following degradation from edaphic, biotic, hydrologic, and topographic factors. Application of ecological principles to rehabilitate vegetation and restore ecosystem function. Strong emphasis on current research to formulate restoration strategies. Dual listed with REWM 4580; cross listed with ECOL 5580.

5610. Quantitative Modeling in Landscape Ecology. 3. Emphasis on quantitative, spatial analysis of landscapes and application of these quantitative tools to making sound management decisions. Work with real data, acquire high-level quantitative skills, develop problem-solving skills, and discuss management application of model results. Analysis will encompass abiotic, biotic (plant and animal), and human use of ecological systems in a spatial context. Cross listed with ECOL 5610. Prerequisites: upper division stats course (e.g., STAT 4015 or STAT 4025) and graduate standing.

5640. Investigation. 1-4 (Max. 10). Research on specialized problems in range management. Investigations offered in the following areas of range management, habitat management, business management, range improvements and monitoring, watershed management, extension and international development. Prerequisite: graduate standing.

5680. Landscape Genetics. 3-4. Provides a unique opportunity for interdisciplinary training and international collaboration uniting some of the most active landscape genetics groups in North America and Europe. A key objective of landscape genetics is to study how landscape modification and habitat fragmentation affect organism dispersal and gene flow across the landscape. Meeting this and other landscape genetic objectives requires highly interdisciplinary specialized skills making intensive use of technical population genetic skills and spatial analysis tools (spatial statistics, GIS tools and remote sensing). To bring these diverse topics and skills together effectively, we are using a distributed model of teaching. Population genetics, spatial analysis/statistics, and previous experience in Rare all extremely useful but not required. Cross listed with: ECOL 5680.

5710. Watershed Water Quality Management. 3. Studies watershed processes controlling water quality. Examines impacts of land use activities such as agriculture production, livestock grazing and mineral and natural gas extraction on surface water and ground water quality. Emphasis is placed on water quality modeling and management. Dual listed with REWM 4710. Prerequisite: CHEM 1000.

5750. Wildlife Habitat Restoration Ecology. 3. Emphasis on fundamental and applied aspects of restoration for terrestrial wildlife habitats following anthropogenic and natural disturbances. Although the course overviews theoretical concepts applicable to many systems, there is a focus on applications for wildlife habitats in western North America. Dual listed with REWM 4750. Prerequisite: Minimum of 6 hours of Biology or Life Sciences courses.

5810 [5800]. Experiments in Restoration. 2. Emphasis on the experimental design using examples from restoration science. Focus on experiments to test concepts in ecosystem science, food webs, population genetics, metapopulation biology, biodiversity and invasion, and climate change. Address topics in experimental, ecological restoration. Dual listed with REWM 4810. Prerequisite: graduate standing.

5830. Wildlife Habitat Ecology. 2. For students in wildlife and rangeland ecology emphasizing the relationships between wildlife populations and their habitats. Concepts forming the basis of wildlife habitat ecology including habitat and niche, habitat metrics, resource selection, habitat-relationships modeling, and habitat restoration and management. Prerequisite: Graduate-level course in statistics and graduate standing or instructor consent.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate status.
Minor in Soil Science

This program is designed to enhance soil expertise for students majoring in agricultural, natural resources, and environmental sciences degree programs. Undergraduate students minoring in Soil Science will enhance their job prospects with federal land management or conservation agencies (e.g., Forest Service, Bureau of Land Management, Natural Resources Conservation Society), state and federal regulatory agencies (e.g., Wyoming Department of Environmental Quality), mining and oil companies, environmental consulting companies, or scientific research organizations.

Course requirements (15 credit hours) for a Soil Science minor are: SOIL 2010, plus 11 credits of upper-division soil science courses for a total of 15 credits.

Soil Science Graduate Study

The department offers graduate work leading to the Master of Science and Doctor of Philosophy degrees in soil science, an affiliated graduate certificate in reclamation and restoration ecology, and an affiliated graduate option in water resources. Our faculty have active programs in soil-plant fertility and nutrition, soil morphology, genesis and classification, soil and water quality, environmental soil microbiology, soil and environmental chemistry, and soil and water physics.

Soil Science (SOIL)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB|Q]).

4120. Genesis, Morphology and Classification of Soils. 4. Processes of soil development and methods of description, survey and classification. Includes field trips which examine soils in the Laramie Basin and surrounding mountains. Dual listed with SOIL 5120. Prerequisite: SOIL 1010. (Offered fall semester)

4130. Chemistry of the Soil Environment. 3. Introduction to the chemical properties and reactions that occur in the soil environment. Fundamental principles of soil mineralogy, organic matter and equilibrium chemistry as they relate to soil chemical reactions, plant nutrient availability and pedogenetic processes will be emphasized. Dual listed with SOIL 5130. Prerequisite: SOIL 2010, CHEM 1030 or CHEM 1060. (Offered spring semester)

4140. Soil Microbiology. 4. Fundamental principles of soil microbiology and how they relate to microbial ecology, environmental contamination, agriculture and forestry. Dual listed with SOIL 5140; cross listed with MICR 4140. Prerequisite: SOIL 2010.

4150. Forest and Range Soils. 3. Characteristics and management of forest and range soils primarily in arid environments. Examines pedagogical units representative of forests and ranges and soil properties, such as nutrient availability and water relations that influence plant growth. Dual listed with SOIL 5150. Prerequisite: SOIL 2010. (Normally offered fall semester)

4160. Soil Fertility and Fertilizers. 3. Physical, chemical, and biological aspects of soils that impact fertilizer fate, uptake, and plant growth. Dual listed with SOIL 5160. Prerequisite: SOIL 2010. (Normally offered fall semester of odd-numbered years)

4540. Microbial Diversity and Ecology. 4. Introduces the diversity and ecology of soil microbes through an integrated lecture and laboratory course. Emphasis on molecular approaches to analyzing microbial diversity and evolution, and student-directed experimental design. Provides a continuum of realistic research experiences in molecular microbial ecology, from field work to evolutionary analysis of DNA sequence data. Cross listed with MOLB/MICR 4540. Dual listed with MOLB/SOIL/ECOL 5540. Prerequisite: MOLB 2210.

4565. Research: Soil Science. 1-4 (Max. 6). Library, laboratory, and/or greenhouse investigations on select research topics. Graduate students will be required to give a presentation to the soil science group on their final product report. Dual listed with SOIL 5565. Prerequisite: basic training in soil science research.
5100. Soil Physics. 3. Examines the forms and interrelations of matter and energy in the soil environment. Fluxes and transformations of soil water and solutes are addressed primarily, as well as physical properties which influence soil productivity. Dual listed with SOIL 4100. Prerequisite: MATH 2310.

5105. Soil Physics Laboratory. 2. Students learn methodology and use of equipment to measure soil physical properties in the laboratory and field. Experiments include particle size analysis, soil surface area, soil-water measurement with neutron probe and TDR, field infiltration rate, soil-water retention curve, soil pore size distribution, saturated and unsaturated conductivity, soil water potential, and solute breakthrough curve. Dual listed with SOIL 4105. Prerequisite: SOIL 2010.

5110. Modeling Water and Chemical Transport in Vasoe Zone and Groundwater Systems. 4. Mathematical models will be formulated and applied to simulate water flow and chemical transport in soil and groundwater systems. Soil spatial variability and heterogeneity will be considered in the modeling processes. Using and comparing models, students will obtain the capability to transfer a physical problem to a mathematical model, to use numerical methods, such as the finite element method, to solve the mathematical problem, and to correctly interpret the numerical outputs. Students will develop and program numerical solutions for select problems and will utilize existing codes for modeling a variety of comprehensive problems.

5130. Chemistry of the Soil Environment. 3. Evaluation of the chemical and physical properties and reactions that occur in the soil environment. Fundamental principles of soil mineralogy, organic matter, and equilibrium chemistry as they relate to soil chemical reactions, plant nutrient availability, and pedogenetic processes will be emphasized. Dual listed with SOIL 4130. Prerequisite: MATH 1400, CHEM 1030 or CHEM 1060 and SOIL 2010.

5140. Soil Microbiology. 4. Fundamental principles of soil microbiology and how they relate to microbial ecology, environmental contamination, agriculture, and forestry. Dual listed with SOIL 4140; cross listed with MIRC 5140. Prerequisite: SOIL 2010.

5150. Forest and Range Soils. 3. Characteristics and management of forest and range soils primarily in arid environments. Examines pedagogical units representative of forest and range soils and soil properties, such as nutrient availability and water relations, which influence plant growth. Dual listed with SOIL 4150. Prerequisite: SOIL 2010 and LIFE 2020.

5430. Applied Geostatistics. 3. Designed to provide general geostatistical analyses and their applications for spatial random variables and functions. Topics covered include variogram, cross validation, kriging, okriging, sampling strategies, and both non-conditional and conditional simulations. Several geostatistics packages are used to analyze real field data and students are encouraged to use their own data for practicing geostatistical applications. Examples are taken from geohydrology, soil science, crop science, mining, and various environmental studies. Cross listed with GEOL/STAT 5430. Prerequisite: STAT 4020.

5540. Microbial Diversity and Ecology. 4. Introduces the diversity and ecology of soil microbes through an integrated lecture and laboratory course. Emphasis on molecular approaches to analyzing microbial diversity and evolution, and student-directed experimental design. Provides a continuum of realistic research experiences in molecular microbial ecology, from field work to evolutionary analysis of DNA sequence data. Cross listed with MOLB/MIRC/SOIL 4540. Dual listed with MOLB/ECOL 5540. Prerequisites: MOLB 2210.

5565. Research in Soil Science. 1-4 (Max. 6). Library, laboratory, and/or greenhouse investigations on select research topics. Graduate students will be required to give a presentation to the soil science group on their final product/report. Dual listed with SOIL 4465. Prerequisite: Basic training in soil science research. SOIL 5565 reserved for graduate students.

5590. Special Topics in Soil Science. 1-3 (Max. 6). Special topics in soil science. Offered as an individual or small group basis as appropriate. Intended to accommodate various specialized subjects not offered on a regular basis. Students may enroll in more than one section of this course. Dual listed with SOIL 4590. Prerequisite: consent of instructor.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate standing.

5920. Continuing Registration: On Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5959. Enrichment Studies. 1-3 (Max. 99). Designed to provide an enrichment experience in a variety of topics. Note: credit in this course may not be included in a graduate program of study for degree purposes.

5960. Thesis Research. 1-12 (Max. 24). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisite: enrollment in a graduate degree program.

5980. Dissertation Research. 1-12 (Max. 48). Graduate level course designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. Prerequisite: enrollment in a graduate level degree program.
Department of Family and Consumer Sciences
251 Agriculture Building, (307) 766-4145
FAX: (307) 766-5686
Web site: www.uwyo.edu/fcs
Department Head: Christine Wade

Associate Professors:
ERIN IRICK, B.S. Kansas State University 2000; M.S. 2006; Ph.D. Oklahoma State University 2013; Associate Professor of Design, Merchandising, and Textiles 2019, 2013.
CHRISTINE WADE, B.S. Willamette University 2001; M.S. University of Wyoming 2005; Ph.D. 2008; Associate Professor of Human Development and Family Sciences 2015, 2008

Assistant Professors:
JENNIFER HARMON, B.S. Illinois State University 2009; M.S. The Ohio State University 2013; Ph.D. 2014; Assistant Professor of Design, Merchandising, and Textiles 2015.
JILL KEITH, B.S. North Dakota State University 2000; M.S. Capella University 2009; Ph.D. North Dakota State University 2016; Assistant Professor of Human Nutrition and Food/Dietetics 2016.
ALYSSA MCEWAIN, B.A. Kansas State University 2006; M.S. Purdue University 2008; Ph.D. Auburn University 2015; Assistant Professor of Human Development and Family Sciences 2015.
BERNARD STEINMAN, B.A. University of Washington 1991; M.S. Mississippi State University; Ph.D. University of Southern California 2010; Assistant Professor of Human Development and Family Sciences 2015.

Academic Professionals:
DIANNE BARDEN, B.S. University of Wisconsin - Stout 1980; M.A. Grand Canyon University 2004; Assistant Lecturer - Coordinator Distance Degree Programs 2006.
MEGAN McGUFFEY SKINNER, B.S. University of Wyoming 2010; M.H.S. Boise State University 2014; Assistant Lecturer; Director, Didactic Program in Nutrition and Dietetics 2019.

Professor Emeritus:
Donna Brown, Bruce Cameron, Saul Feinman, Michael Liebman, Judith A. Powell, Rhoda Schantz, Virginia Vincenti, Mary Kay Wardlaw, Randolph R. Weigel, Karen Williams

Our mission is to enhance the physical, social, and economic well-being of individuals, families, and communities, emphasizing healthy and sustainable living across the lifespan. We fulfill our mission through instructional, research, and outreach/extension efforts that challenge, motivate, and inspire.

Family and Consumer Sciences integrates the fundamental components of human life—food, shelter, clothing, human relationships, and family—with larger societal systems. Through programs in textiles, apparel and design; food and nutrition; and human development and family sciences, our department prepares learners to meet the opportunities and challenges of today’s complex world.

All students pursuing the Bachelor of Science degree in Family and Consumer Sciences are required to complete a minimum of 120 credit hours that include a) University Studies requirements (USP); b) departmental core curriculum; and c) courses in one of the following individual program options: dietetics (application only), human nutrition and food, human development and family sciences, professional child development (online only), or design, merchandising and textiles. Minors in apparel design, human development and family sciences, human nutrition, and interior design are also available.

Grade Requirements
Majors are required to pass all courses within the Department of Family and Consumer Sciences with a grade of C or above. Students enrolled in family and consumer sciences minors are required to take all courses required for the minor for letter grade and complete each course with a grade of C or above.

Security Screening
All students applying for admission to the Professional Child Development option are required to complete a security screening before program entry. Students in the Human Development and Family Sciences option must complete their security screening upon declaration of their major. Failure to satisfactorily complete this requirement will result in the student being dropped from or denied entry to the program.

Family and Consumer Sciences Core Requirements
A core curriculum is required of all family and consumer sciences majors. This requirement is based on a common body of knowledge in family and consumer sciences that includes concepts relevant to all program options.

The family and consumer sciences core consists of the following courses:
FCSC 2200 Professionalism & Communication in FCSC
FCSC 1141 Principles of Nutrition
FCSC 1150 Scientific Study of Food
Design, Merchandising and Textiles:
FCSC 1180 Applied Design
FCSC 2165 Introduction to Fashion and Dress
FCSC 2180 Housing and Residential Design
FCSC 3171 Introduction to Textile Science
Human Development and Family Sciences:
FCSC 2110 Fundamentals of Aging & Human Development
FCSC 2121 Child Development
FCSC 2131 Family Relations
FCSC 2133 Intimate Relationships
FCSC 3110 Personal Finance
FCSC 3220 Multicultural Influences on Children and Families

Family and Consumer Sciences Student Learning Outcomes
Students graduating from the Department of Family and Consumer Sciences will be proficient in their program option content as well as be able to effectively communicate (both written and orally), possess intellectual skills (such as critical and creative thinking and problem solving), and demonstrate appropriate levels of professionalism.

Family and Consumer Sciences Program Options
Students should obtain and follow a degree plan for their chosen program option. Standards established by several professional organizations require completion of specific courses in addition to the family and consumer sciences core and USP requirements. All students are assigned to a professional advisor and a faculty mentor. Students should work closely with their advisor to be sure all degree requirements are met.
Dietetics

The Registered Dietitian Nutritionist (RDN) is a food and nutrition expert who has met the academic and professional requirements to qualify for the Registration Examination for Dietitians. Registered dietitian nutritionists work in a variety of settings that include, but are not limited to, hospitals, private practice, health-care facilities, community and public health, food and nutrition industry, business, sports nutrition, corporate wellness programs, academia, and research.

The UW Didactic Program in Nutrition and Dietetics (DPND) is nationally accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) of the Academy of Nutrition and Dietetics. The program provides the required dietetics coursework needed to pursue an approved post-graduation supervised practice experience – dietetic internship. The academic requirements and supervised practice experience must be completed before the student is eligible for the Registration Examination for Dietitians administered by the Commission on Dietetic Registration (CDR), the credentialing agency for the Academy.

Completion of this degree requires a minimum of 120 credit hours that include a) University Studies requirements (USP), b) departmental core curriculum, and c) specific courses for this program. Courses should be selected in consultation with a student’s advisor to enhance the student’s educational experience and to ensure fulfillment of upper division course requirements (42 credit hours overall with 30 taken from UW).

Entrance into the DPND is made only through an application process. Each prospective DPND student will initially enter the Human Nutrition and Food option. It is recommended that students apply to the DPND in the spring semester of their sophomore year. A cumulative grade point average of 3.0 is required for program admission.

Students must complete the following courses with a minimum 3.0 grade point average prior to DPND application:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 1141</td>
<td>Principles of Nutrition*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 1150</td>
<td>Scientific Study of Food*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 2141</td>
<td>Nutrition Controversies*</td>
<td>2</td>
</tr>
<tr>
<td>FCSC 2200</td>
<td>Professionalism and Communication in FCSC*</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1020</td>
<td>General Chemistry I*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1030</td>
<td>General Chemistry II*</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1010</td>
<td>College Comp/Rhetoric*</td>
<td>3</td>
</tr>
<tr>
<td>LIFE 1010</td>
<td>General Biology*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1400</td>
<td>College Algebra*</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 2021</td>
<td>General Microbiology*</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 1000</td>
<td>General Psychology*</td>
<td>4</td>
</tr>
<tr>
<td>SOC 1000</td>
<td>Sociological Principles*</td>
<td>3</td>
</tr>
</tbody>
</table>

*Grade of C or better required

Human Nutrition and Food

Students who graduate from the human nutrition and food program option will be prepared to pursue careers in human nutrition, the food industry, or to pursue graduate degrees.

Completion of this degree requires a minimum of 120 credit hours that include a) University Studies requirements (USP), b) departmental core curriculum, and c) specific courses for this program. Courses should be selected in consultation with a student’s advisor to enhance the student’s educational experience and to ensure fulfillment of upper division course requirements (42 credit hours overall with 30 taken from UW).

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 1141</td>
<td>Principles of Nutrition*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 1150</td>
<td>Scientific Study of Food*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 2141</td>
<td>Nutrition Controversies*</td>
<td>2</td>
</tr>
<tr>
<td>FCSC 2200</td>
<td>Professionalism and Communication in FCSC*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3142</td>
<td>Geriatric Nutrition*</td>
<td>2</td>
</tr>
<tr>
<td>FCSC 3145</td>
<td>Sports Nutrition & Metabolism*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3147</td>
<td>Community Nutrition*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3150</td>
<td>Intermediate Foods*</td>
<td>2</td>
</tr>
<tr>
<td>FCSC 3152</td>
<td>Food Systems Production*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4044</td>
<td>Maternal, Infant, and Adolescent Nutrition*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4145</td>
<td>Advanced Nutrition*</td>
<td>4</td>
</tr>
<tr>
<td>FCSC 4147</td>
<td>Nutrition and Weight Control*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4150</td>
<td>Experimental Foods*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4210</td>
<td>Therapeutic Nutrition I*</td>
<td>4</td>
</tr>
<tr>
<td>FCSC 4220</td>
<td>Therapeutic Nutrition II*</td>
<td>4</td>
</tr>
<tr>
<td>FCSC 4230</td>
<td>Therapeutic Nutrition Counseling*</td>
<td>3</td>
</tr>
<tr>
<td>FCSC Core Elective in DMT*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FCSC Core Elective in HDFS*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 2300</td>
<td>Intro Organic Chemistry* or CHEM 2420 Organic Chemistry I*</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 4010</td>
<td>Technical Writing in the Professions</td>
<td>4</td>
</tr>
<tr>
<td>MGT 3210</td>
<td>Management and Organization</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 3610</td>
<td>Principles of Biochemistry*</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 4100</td>
<td>Clinical Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>STAT 2050</td>
<td>Fundamentals of Statistics</td>
<td>4</td>
</tr>
<tr>
<td>KIN 2040</td>
<td>Human Anatomy</td>
<td>3</td>
</tr>
</tbody>
</table>

*Degree Minimum 120

*Grade of C or better required

Professional Child Development

The professional child development program option is offered by distance delivery only but has the same quality and requirements as on-campus programs. All students are assigned an advisor who works closely with them throughout their program. Completion
of this degree prepares students for teaching and administrative positions in early childhood development and care.

Entry into this program is by application only. Students must apply for admission to UW first. Official transcripts from all institutions attended must be submitted to UW Admissions. Once a student has applied and their transcripts have been received, their application will be reviewed. Transcripts will not be analyzed prior to application. Applicants must also satisfactorily complete a mandatory security screen (background check).

Completion of this degree requires a minimum of 120 credit hours that include a) University Studies requirements (USP), b) departmental core curriculum, and c) specific courses for this program. Courses should be selected in consultation with a student’s advisor to enhance the student’s educational experience and to ensure fulfillment of upper division course requirements (42 credit hours overall with 30 taken from UW).

Required Courses Before Program Entry:
- EDEC 1020 Introduction to Early Childhood Education ...3
- PSYC 1000 General Psychology ...3
- SOC 1000 Sociological Principles ...3
- Completion of a course (i.e., ENGL 1010) that meets the University Studies Program (USP) COM1 requirement

Required Courses After Program Entry:
- FCSC 1141 Principles of Nutrition* ...3
- FCSC 2165 Intro to Fashion and Dress or FCSC 3171 Introduction to Textile Science** ...3
- FCSC 2050 Safety, Nutrition and Health in Early Childhood Programs ...2
- FCSC 2121 Child Development ...4
- FCSC 2131 Family Relations ...3
- FCSC 2133 Intimate Relationships ...3
- FCSC 2200 Professionalism and Communication in FCSC ...3
- FCSC 3110 Personal Finance or FCSC 4112 Family Decision Making and Resource Management ...3
- FCSC 3119 Parent Child Relationships ...3
- FCSC 3122 Adolescence ...3
- FCSC 3220 Multicultural Influences on Children and Families ...3
- FCSC 4124 Families of Young Children with Special Needs ...3
- FCSC 4127 Directing Preschool and Daycare Programs ...3
- FCSC 4130 Internship in Child Development or FCSC 4131 Administrative Internship in Child Development ...8
- FCSC 4138 Family Stress and Coping ...3
- EDEC 3000 Observing Young Children ...3
- EDEC 3220 School Programs for Young Children ...3
- EDEC 4320 Oral and Written Language Acquisition ...3
- ENGL 4010 Technical Writing in the Professions or ENGL 4075 Writing for Non-Profits ...3
- PSYC 4310 Developmental Psychopathology ...3

*Degree Minimum 120

Human Development and Family Sciences

This program option provides a strong foundation in the areas of human development and family sciences while allowing personalized selection of electives and internship experiences that support specific student interests. The program prepares students to work in a variety of settings, serving individuals and families across the lifespan or to pursue graduate level education. Upon declaring this program option, students must satisfactorily complete a mandatory security screen (background check).

Completion of this degree requires a minimum of 120 credit hours that include a) University Studies requirements (USP), b) departmental core curriculum, and c) specific courses for this program. Courses should be selected in consultation with a student’s advisor to enhance the student’s educational experience and to ensure fulfillment of upper division course requirements (42 credit hours overall with 30 taken from UW).

Required Courses:
- FCSC 2110 Fundamentals of Aging and Human Development ...3
- FCSC 2121 Child Development ...4
- FCSC 2131 Family Relations ...3
- FCSC 2133 Intimate Relationships ...3
- FCSC 2200 Professionalism and Communication in FCSC ...3
- FCSC 3110 Personal Finance ...3
- FCSC 3119 Parent Child Relationships ...3
- FCSC 3122 Adolescence ...3
- FCSC 3220 Multicultural Influences on Children and Families ...3
- FCSC 4112 Family Decision Making and Resource Management ...3
- FCSC 4117 Understanding Community Leadership ...3
- FCSC 4118 Family Policy ...3
- FCSC 4125 Professional Practices in HDFS ...3

*Meets FCSC Core Elective in HNF
**Meets FCSC Core Elective in DMT

*Degree Minimum 120

HDFS Career Track for Family and Consumer Sciences Teacher Certification

A career track, leading to certification/licensure to teach Family and Consumer Sciences in secondary schools, is available for majors in the Human Development and Family Sciences (HDFS) concentration. This program is made possible through a partnership agreement with UW Family and Consumer Sciences, Colorado State University (CSU) Family and Consumer Sciences program and the CSU Center for Educator Preparation. While meeting the requirements for the HDFS concentration, students will use electives to obtain expertise in other FCS specializations needed to teach adolescents in Wyoming and other state secondary programs. As a senior, students will then take the remaining courses needed to meet Wyoming and Colorado certification/licensure requirements at CSU in Ft. Collins. In their last semester, Wyoming students may complete their student teaching requirements in Southern Wyoming FCS school classrooms with supervision by an FCS teacher educator. Students obtain expertise in areas needed to teach Family and Consumer Sciences in Wyoming and other state secondary school programs. Concurrent enrollment semesters will be required. By participating in this partnership, students earn dual bachelor’s degrees—one from UW and one from CSU. Students must earn a minimum of 154 credit hours between the two programs (minimum of 120 at UW and a minimum of 34 at CSU) in order to be awarded a degree from each institution. In addition, students meet the requirements to apply for certification/licensure in Wyoming and in Colorado. Both licenses are reciprocal in many other states.

Upon declaring this career track, students must satisfactorily complete a mandatory security screen (background check). Advising...
will provide careful attention to the uniqueness of individual student situations and academic choices.

Students must meet all entry requirements at UW and CSU. Students in the CSU licensure program are required to earn a C or above in all content courses and teacher licensing courses, and a passing score on the appropriate licensing exam. Therefore, a C or above must be earned in all courses and an overall 2.750 GPA to be transferred to CSU to fulfill their program requirements.

Required Courses:

- ENGL 1010 College Composition and Rhetoric
- ECON 1000 Global Economic Issues or CHEM 1000 Introductory Chemistry or FCSC 4124 Families of Young Children with FCSC 4118 Family Policy
- FCSC 4112 Family Decision Making and Family Relationships
- FCSC 4121 Child Development
- FCSC 4133 Intimate Relationships
- FCSC 4180 Applied Design
- FCSC 2110 Fundamentals of Aging and Human Development
- FCSC 2121 Child Development
- FCSC 2131 Family Relations
- FCSC 2133 Intimate Relationships
- FCSC 2180 Housing and Residential Design
- FCSC 2188 Interior Design Studio I
- FCSC 2200 Professionalism and Communication in FCSC
- FCSC 3110 Personal Finance
- FCSC 3119 Parent Child Relationships
- FCSC 3122 Adolescence
- FCSC 3160 Merchandising and Textiles
- FCSC 3220 Multicultural Influences on Children and Families
- FCSC 4112 Family Decision Making and Resource Management
- FCSC 4113 Consumer Issues
- FCSC 4118 Family Policy
- FCSC 4124 Families of Young Children with Special Needs
- FCSC 4125 Professional Practices in HDFS
- FCSC 4138 Family Stress and Coping
- CHEM 1000 Introductory Chemistry or CHEM 1020 General Chemistry
- COJO 1030 Interpersonal Communication
- ECON 1000 Global Economic Issues or ECON 1010 Principles of Macroeconomics or ECON 1020 Principles of Microeconomics
- EDST 2480 Diversity and Politics of Schooling
- ENGL 1010 College Composition and Rhetoric
- ENGL 4010 Technical Writing in the Professions
- HIST 1211 U.S. to 1865 or HIST 1221 U.S. from 1865
- LIFE 1002 Discovering Science or LIFE 1003 Current Issues in Biology or LIFE 1010 General Biology
- MATH 1400 College Algebra
- PSYC 1000 General Psychology
- SOC 1000 Sociological Principles
- STAT 2050 Fundamentals of Statistics or STAT 2070 Intro Statistics for Social Sciences
- STAT 2050 Fundamentals of Statistics or STAT 2070 Intro Statistics for Social Sciences
- STAT 2050 Fundamentals of Statistics or STAT 2070 Intro Statistics for Social Sciences

Three additional semesters are required for completion of this teacher certification option. The first semester after completing UW on-campus coursework will require concurrent enrollment at UW and CSU. Required UW course FCSC 4117 (online – 3 credit hours) will be taken while enrolled at CSU to preserve WEU eligibility. Four additional credit hours must be transferred to UW from the second and third semesters’ coursework at CSU to meet UW’s 120 credit hour graduation requirement.

First Semester - Concurrent Fall Semester UW/CSU

- EDUC 331 Educational Technology
- EDUC 340 Literacy and the Learner – Phase I – RL (Not included in WUE tuition)
- EDUC 350 Instruction I: Individualization/Mgt – Phase II – TL
- EDUC 386 Practicum – Instruction I – Phase II – TL
- EDCT 451 Methods, FCS Education
- FCSC 4117 Understanding Community Leadership – online from UW
- Second Semester - Spring Semester at CSU

- EDUC 450 Instruction II: Standards/Assessment – Phase III - T
- EDUC 486 Practicum – Instruction II – Phase III - TL
- FACS 479 Colloquium
- Transfer one of the following to UW: ART/HUM (Choose one: E140, PHIL 1000 or TH141) or HES 145 Health and Wellness
- Final Semester - Fall Semester at CSU

- EDCT 485 Student Teaching – Phase IV -TL
- ECDT 492 Seminar – Professional Relations – Phase IV – TL (Transfer to UW)

Total UW Degree Minimum 120

Total CSU Degree Minimum 34

Total for both degrees 154

Design, Merchandising, and Textiles

Design, Merchandising, and Textiles is a diverse and competitive field in which individuals plan, provide, and promote apparel, interiors, and related goods desired by the consumer. This program offers three individual tracks: Apparel Design and Product Development; Interior Design; and Merchandising. The Apparel Design and Product Development track allows students to develop the technical and creative skills necessary for the creation of textile products from concept to finished product. The Interior Design track prepares students to creatively and effectively solve design problems for professional practice in residential and commercial interior design. The Merchandising track offers knowledge and application of business principles within the fashion and interior industries, entry into the world of retailing, and marketing techniques for apparel and interior furnishings. Throughout coursework, concepts of sustainable design and manufacturing, as well as the influence of design on well-being will be highlighted. Students will take a series of Design, Merchandising, and Textiles program core classes to gain experience with all three tracks. Students will be prepared for careers ranging from small business in Wyoming and rural areas of the West, to the highly competitive, fast paced global marketplace. All Design, Merchandising, and Textiles students are required to participate in a three-credit-hour internship, international field study tour, or a study abroad program.

Completion of this degree requires a minimum of 120 credit hours that include a) University Studies requirements (USP), b) departmental core curriculum, and c) specific courses for this program. Courses should be selected in consultation with a student’s advisor to enhance the student's educational experience and to ensure fulfillment of upper division course requirements (42 credit hours overall with 30 taken from UW).

Apparel Design and Product Development Track

Required Courses:

- ENGL 1141 Principles of Nutrition
- FCSC 1170 Introduction to Apparel Construction
- FCSC 1175 Design Communication
- FCSC 1180 Applied Design
- FCSC 1185 Introduction to the DMT Industry
- FCSC 2165 Introduction to Fashion and Dress
- FCSC 2175 Fashion Illustration
Required Courses:

- **Interior Design Track**
 - FCSC 2188 Interior Design Studio I
 - FCSC 2188 Interior Design Studio II
 - FCSC 2200 Professionalism and Communication in FCSC
 - FCSC 2210 Fashion Show Event Planning
 - FCSC 3110 Personal Finance
 - FCSC 3171 Introduction to Textile Science
 - FCSC 3173 Visual Merchandising and Promotion
 - FCSC 3180 Contract Design I
 - FCSC 3185 Product Development through Design Thinking
 - FCSC 3188 Interior Design Studio II
 - FCSC 3288 Environmental Psychology and Inclusive Design
 - FCSC 4171 Advanced Textiles and Product Evaluation
 - FCSC 4172 Advanced Textiles and Product Evaluation Lab
 - FCSC 4188 Contract Design II
 - FCSC 4288 Professional Practice and Advanced Interiors Studio
 - FCSC 4970 Internship or International Study
 - ARE 1600 Architectural Design Studio I
 - ARE 2410 Fundamentals of Building Performance
 - ARE 2600 Architectural Design Studio II
 - ARE 3030 History of Architecture
 - ART 2020 Art History II
 - CHEM 1000 Introductory Chemistry or CHEM 1020 General Chemistry
 - ECON 1000 Global Economic Issues
 - ENR 4600 Campus Sustainability
 - MGT 3210 Management and Organization
 - MKT 3210 Introduction to Marketing
 - PSYC 1000 General Psychology

- **Degree Minimum 120**

 - Footnotes:
 - *Meets FCSC Core Elective in HNF
 - **Meets FCSC Core Elective in HDFS

Merchandising Track

Required Courses:

- FCSC 1141 Principles of Nutrition
- FCSC 1170 Introduction to Apparel Construction
- FCSC 1175 Design Communication
- FCSC 1180 Applied Design
- FCSC 1185 Introduction to the DMT Industry
- FCSC 2180 Housing and Residential Design
- FCSC 2185 Trend Forecasting and Analysis
- FCSC 2188 Interior Design Studio I
- FCSC 2200 Professionalism and Communication in FCSC
- FCSC 2210 Fashion Show Event Planning
- FCSC 3110 Personal Finance
- FCSC 3171 Introduction to Textile Science
- FCSC 3173 Visual Merchandising and Promotion
- FCSC 3180 Contract Design I
- FCSC 3185 Product Development through Design Thinking
- FCSC 3188 Interior Design Studio II
- FCSC 3288 Environmental Psychology and Inclusive Design
- FCSC 4171 Advanced Textiles and Product Evaluation
- FCSC 4172 Advanced Textiles and Product Evaluation Lab
- FCSC 4188 Contract Design II
- FCSC 4288 Professional Practice and Advanced Interiors Studio
- FCSC 4970 Internship or International Study
- ARE 1600 Architectural Design Studio I
- ARE 2410 Fundamentals of Building Performance
- ARE 2600 Architectural Design Studio II
- ARE 3030 History of Architecture
- ART 2020 Art History II
- CHEM 1000 Introductory Chemistry or CHEM 1020 General Chemistry
- ECON 1000 Global Economic Issues
- ENR 4600 Campus Sustainability
- MGT 3210 Management and Organization
- MKT 3210 Introduction to Marketing
- PSYC 1000 General Psychology

- Footnotes:
 - *Meets FCSC Core Elective in HNF
 - **Meets FCSC Core Elective in HDFS

Inspection Track

Required Courses:

- FCSC 1141 Principles of Nutrition
- FCSC 1170 Introduction to Apparel Construction
- FCSC 1175 Design Communication
- FCSC 1180 Applied Design
- FCSC 1185 Introduction to the DMT Industry
- FCSC 2180 Housing and Residential Design
- FCSC 2185 Trend Forecasting and Analysis
- FCSC 2188 Interior Design Studio I
- FCSC 2200 Professionalism and Communication in FCSC
- FCSC 2210 Fashion Show Event Planning
- FCSC 3110 Personal Finance
- FCSC 3171 Introduction to Textile Science
- FCSC 3173 Visual Merchandising and Promotion
- FCSC 3180 Contract Design I
- FCSC 3185 Product Development through Design Thinking
- FCSC 3188 Interior Design Studio II
- FCSC 3288 Environmental Psychology and Inclusive Design
- FCSC 4171 Advanced Textiles and Product Evaluation
- FCSC 4172 Advanced Textiles and Product Evaluation Lab
- FCSC 4188 Contract Design II
- FCSC 4288 Professional Practice and Advanced Interiors Studio
- FCSC 4970 Internship or International Study
- ARE 1600 Architectural Design Studio I
- ARE 2410 Fundamentals of Building Performance
- ARE 2600 Architectural Design Studio II
- ARE 3030 History of Architecture
- ART 2020 Art History II
- CHEM 1000 Introductory Chemistry or CHEM 1020 General Chemistry
- ECON 1000 Global Economic Issues
- ENR 4600 Campus Sustainability
- MGT 3210 Management and Organization
- MKT 3210 Introduction to Marketing
- PSYC 1000 General Psychology

- Footnotes:
 - *Meets FCSC Core Elective in HNF
 - **Meets FCSC Core Elective in HDFS

Degree Minimum 120

*Required courses in the following minors in Family and Consumer Sciences and Art. It is designed to enable students with career interests in this field to gain experience in the competency areas ex-

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 1170</td>
<td>Introduction to Apparel</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 1175</td>
<td>Design Communication</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 2175</td>
<td>Fashion Illustration</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 2270</td>
<td>Advanced Apparel</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3171</td>
<td>Introduction to Textile Science</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3174</td>
<td>Flat Pattern Design</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3175</td>
<td>Apparel Design</td>
<td>3</td>
</tr>
<tr>
<td>ART 1120</td>
<td>Foundation: Three Dimension</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4178</td>
<td>Fiber Arts Development</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4190</td>
<td>Apparel Collection</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Total: 27

Human Development and Family Sciences

A minor in human development and family sciences provides students with a foundation of basic principles and knowledge. The coursework can enrich and complement a student’s primary area of study. Students must complete 23 credit hours outlined below. Students must take all courses for letter grade and receive a grade of C or above in each course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 1141</td>
<td>Principles of Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2300</td>
<td>Introduction to Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ZOO 315</td>
<td>Human Systems Physiology</td>
<td>4</td>
</tr>
<tr>
<td>FCSC 4145</td>
<td>Advanced Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 3610</td>
<td>Principles of Biochemistry</td>
<td>4</td>
</tr>
</tbody>
</table>

Plus three of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 1101</td>
<td>FYS: Human & Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 1150</td>
<td>Scientific Study of Food</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 2141</td>
<td>Nutrition Controversies</td>
<td>2</td>
</tr>
<tr>
<td>FCSC 3142</td>
<td>Geriatric Nutrition</td>
<td>2</td>
</tr>
<tr>
<td>FCSC 3145</td>
<td>Sports Nutrition & Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3147</td>
<td>Community Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4044</td>
<td>Maternal, Infant and Adolescent Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4145</td>
<td>Advanced Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>FCSC 4147</td>
<td>Nutrition and Weight Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Total: 23-25

Interior Design

A minor in Interior Design is sponsored jointly by the Departments of Family and Consumer Sciences and Civil and Architectural Engineering. It is designed to enable students with career interests in this field to gain experience in the competency areas expected of interior designers. Students who hope to use this minor to prepare for professional certification examination following graduation should consult the sponsoring departments to receive an advisor for the minor. Students must take all courses required for this minor for letter grade and receive a grade of C or above in each course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 4127</td>
<td>Directing Preschool and Daycare Programs</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4118</td>
<td>Family Policy</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4135</td>
<td>Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4138</td>
<td>Family Stress and Coping</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Total: 22

Human Nutrition

A minor in human nutrition strengthens degrees in kinesiology and health, food science, nursing, animal science, and related fields. Students who minor in human nutrition learn how food choices can influence their health and well-being. While the coursework provides a foundation for making positive lifestyle choices, it does not prepare students to provide nutrition counseling or medical nutrition therapy. Students must take courses for letter grade and receive a grade of C or above in each course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 1145</td>
<td>Advanced Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 3610</td>
<td>Principles of Biochemistry</td>
<td>4</td>
</tr>
</tbody>
</table>

Plus one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 4118</td>
<td>Family Policy</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4135</td>
<td>Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4138</td>
<td>Family Stress and Coping</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Total: 23-25

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 2188</td>
<td>Interior Design Studio I</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3288</td>
<td>Environmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 3171</td>
<td>Introduction to Textile Science</td>
<td>3</td>
</tr>
<tr>
<td>ARE 1600</td>
<td>Architectural Design Studio</td>
<td>3</td>
</tr>
<tr>
<td>ARE 2600</td>
<td>Architectural Design Studio</td>
<td>3</td>
</tr>
</tbody>
</table>

Plus one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSC 3180</td>
<td>Contract Design I</td>
<td>3</td>
</tr>
<tr>
<td>FCSC 4188</td>
<td>Contract Design II</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor Total: 21

Certification

Early Childhood Program Director’s Certificate

The Early Childhood Program Director’s Certificate is available to early childhood professionals in the state as well as to students. The certificate program is designed to:

- fit Wyoming’s Professional Development Career Lattice,
- fit the National Association for the Education of Young Children’s guidelines for the Preparation of Early Childhood Professionals,
- complement the definition of Quality Child Care developed by the Wyoming Governor’s Council on Early Childhood Development, and
- allow a variety of paths to certification.

The Early Childhood Program Director’s Certificate can be completed as a stand-alone certificate, simultaneously with the distance Professional Child Development undergraduate option or the on-campus Human Development and Family Sciences undergraduate option in Family and Consumer Sciences, or to complement other related degree programs. Courses satisfy certification requirements in many states. They also fit professional development for home providers and daycare professionals.

Those who would benefit from these courses include: Head Start teachers and directors; home providers; Departments of Family Services, Adoption, and Social Service workers; public health nurses; school nurses; directors of school-age child care programs; preschool program teachers, and public school teachers.
The following courses are recommended for this certification. All courses must be taken for letter grade and completed with a grade of C or above.

Required Nutrition Course
FCSC 1141 Principles of Nutrition

Required Early Childhood Program Administration Course
FCSC 4127 Directing Preschool and Daycare Programs

Choose one of the following Uniqueness and Cultural Awareness courses:
FCSC 3220 Multicultural Influences on Children and Families
EDEC 5220 Children with Disabilities
EDEC 5240 Evaluation of Young Children with Disabilities
NURS 3020 Cultural Diversity in Family Health Care
SOC 2350 Race and Ethnic Relations

Choose one of the following Family Relationships courses:
FCSC 2131 Family Relationships
FCSC 319 Parent Child Relationships
FCSC 4124 Families of Young Children with Special Needs

Choose one of the following Early Childhood Growth and Development courses:
FCSC 2121 Child Development
PSYC 2300 Developmental Psychology
and
FCSC 2122 Child Development Lab

Choose one of the following Health and Safety courses:
FCSC 2050 Safety, Nutrition and Health in Early Childhood Programs
EDEC 4350 Health Management Issues in Early Education

Choose nine credit hours from the following Early Childhood Methods and Techniques courses:
FCSC 4131 Administrative Internship in Child Development
FCSC 4130 Internship in Child Development
EDEC 3000 Observing Young Children
EDEC 3220 School Programs for Young Children
EDEC 4320 Oral and Written Language Acquisition
EDEC 5230 Curriculum and Materials for Young Children with Disabilities

Graduate Study

The department of Family and Consumer Sciences offers a program of study leading to the master of science degree in family and consumer sciences with a concentration in human development and family sciences; human nutrition and food; or design, merchandising and textiles. The department also participates in an interdisciplinary degree in food science and human nutrition.

Program Specific Admissions Requirements

Admission to our graduate program and selection for department-funded assistantships is highly competitive. Faculty in each program area will review the applications for their program area and priority consideration will be given to applicants who meet or exceed admission requirements and possess research interests that parallel those of the faculty.

Admission requirements include:
- A bachelor's degree from an accredited or recognized school is required.
- A grade point average of 3.00 or higher is required.
- A Graduate Record Exam (GRE) score. In the past, successful applicants have typically had scores at or above the 50th percentile on two of the three subtests (verbal, quantitative, and analytical writing).
- For international students whose native language is not English, a minimum TOEFL score of 540 on the written exam or 76 on the Internet-based exam is required. We will also accept an official IELTS score of 6.5 or above.
- International students must also provide evidence of adequate financial resources.

For more information, please contact the Department of Family and Consumer Sciences at 307-766-4145 or famconsci@uwyo.edu.

Program Specific Degree Requirements

Master of Science in Family and Consumer Sciences - Plan A (thesis)

Completion of minimum of 30 credit hours including course work and thesis hours.

Completion of research project that adheres to a topic and format previously agreed upon by the student’s graduate committee and approved by the department head.

Students may be required to take more than the minimum of 30 hours, either because they have to satisfy prerequisites for some courses, or because a student’s committee determines that more than 30 hours will be needed for the student to reach his/her professional objective.

No more than nine hours of 4000-level courses will count toward the 30 hour requirement.

Master of Science in Family and Consumer Sciences - Plan B (non-thesis)

Completion of minimum of 30 credit hours including course work and thesis hours.

Completion of research project that adheres to a topic and format previously agreed upon by the student’s graduate committee and approved by the department head.

Students may be required to take more than the minimum of 30 hours, either because they have to satisfy prerequisites for some courses,
or because a student's committee determines that more than 30 hours will be needed for the student to reach his/her professional objective.

No more than nine hours of 4000-level courses will count toward the 30-hour requirement.

Food Science and Human Nutrition Interdisciplinary Degree

Family and consumer sciences faculty participate in an interdisciplinary program that offers a master of science degree in food science and human nutrition. Please see Food Science and Human Nutrition in this catalog for more information.

Family and Consumer Sciences (FCSC)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB•Q]).

1009. Introduction to Family and Consumer Sciences. 1-3. Introduction to Family and Consumer Sciences is an introductory course for high school students directed by faculty and extension educators. Topics include human nutrition and food; human development and family sciences; and textiles, design, merchandising and textiles.

1101. First-Year Seminar. 3. [(none)•FYS]

1141. Principles of Nutrition. 3. This course will provide an introduction to the fundamental concepts of nutrition science and the role of nutrition in overall health. Students develop an understanding of nutritional requirements as related to metabolism of nutrients in various physiological states. Designed for nutrition majors and interested non-majors.

1150. Scientific Study of Food. 3. Comprehensive introduction to the study of food. Food science theories relative to composition are applied through the laboratory experiences.

1170. Introduction to Apparel Construction. 3. Introduction to basic and industry production techniques applied to apparel and interior products. Development of decision-making skills in selection and use of materials.

1175. Design Communication. 3. Explores philosophical and practical factors of the design communication process. Incorporates various methods of communicating design ideas and concepts from hand drawing and rendering to digital techniques through Adobe Creative Suite.

1180. Applied Design. 3. [CA•H] A study of design principles and elements and their relation to the design of marketable consumer goods. Emphasizes developing creative thinking and proper fabrication techniques in solving both 2-D and 3-D design problems.

1185. Introduction to Design, Merchandising and Textile Industry. 3. Introduction to the functions of the design, merchandising and textile industry. This course will give a base of knowledge of the industry including textile and garment production and manufacturing, design processes for apparel and interiors, and retailing. Students will also be introduced to potential career paths within the industry.

2050. Safety, Nutrition and Health in Early Childhood Programs. 2. Designed to enrich students’ understanding of practices which support children’s health development. Issues to be explored include record keeping related to child care health and safety, use of health consultants, accident and injury prevention, immunizations, nutrition and food safety in child care settings. (Offered alternate summers.)

2101. Special Topics In:. 1-3 (Max. 6). [CS•(none)] Provides freshman and sophomore level undergraduates opportunities to pursue a class of special interest or of a timely subject in a selected family and consumer sciences area and for faculty to pilot lower division courses.

2110. Fundamentals of Aging and Human Development. 3. Discusses aging as a lifelong process, involving interrelationships of the individual and his or her environment. Includes future demographic trends, family health care, social policy and mass media. Prerequisite: PSYC 1000 or SOC 1000.

2121. Child Development. 4. [CS•(none)] Incorporates classroom instruction with laboratory application of child development research and theory in physical, intellectual and social/emotional domains. Emphasizes early childhood years. Prerequisite: PSYC 1000 or SOC 1000 or EDST 2450.

2122. Child Development Lab. 1. Laboratory observation course designed for students with a background in child development theory. Students learn child observation techniques, how to write laboratory reports, and how to apply them to evaluating a child’s development in all domains. Prerequisite: PSYC 2300.

2131. Family Relations. 3. Provides an overview of current research on family relations, family theory, and family dynamics across the lifespan. An ecological and family systems approach is used, with particular focus paid to the understanding of contextual influences on families. Prerequisites: COJO 1030 or EDEC 1020 or PSYC 1000 or SOC 1000.

2133 [3133]. Intimate Relationships. 3. Use of social science theory and research to understand psycho-socio-cultural influences in the development of personal and intimate relationships including human sexuality from development and interpersonal perspectives. Emphasizes application of current research and theory to facilitate positive individual growth, satisfaction, and stability in close relationships. Prerequisites: PSYC 1000 or SOC 1000.

2135. Women and Aging. 3. Focuses on women and the aging process with emphasis given to both the problems and promises of aging. Topics to be explored within a multicultural, sociological framework include the definition of self, relationships, community, health and health care, work and service, retirement, economic realities and new perspectives on aging. Cross listed with WMST/SOC/NURS 2135. Prerequisites: ENGL/SOC/WMST 1080 or SOC 1000 or FCSC/NURS/SOC 2120.

2141. Nutrition Controversies. 2. This course expands upon nutrition concepts covered in FCSC 1141 by exploring current nutrition-related controversies. Skills related to the interpretation of research material will be emphasized. Prerequisite: FCSC 1141.

2165 [1165]. Introduction to Fashion and Dress. 3. [(none)•H] Course explores the system of dress, from body to garment selection, and the influences of psychology, culture and subculture on dress and self-presentation. Topics discussed include body image, society and social control, norms and dress outside the western world. Course will conclude by exploring current designers.

2175. Fashion Illustration. 3. Introduces the fashion figure, light and dark contrasts, color, fabric and texture sketching techniques. Computer applications for layout of the design are also covered. Prerequisites: FCSC 1180 or ART 1110; FCSC 1175. (Offered alternate fall semesters)

2180. Housing and Residential Design. 3. Cross-cultural examination of the evolution of housing and residential design, both as artifacts of material culture, and as the setting which affects human development and well-being. Explores implications of housing construction on economic, social, and environmental health. Studies effective research and design of residential spaces in response to course concepts. Prerequisite: WA/COMI.

2185. Trend Forecasting and Analysis. 3. This course introduces concepts and techniques for color, textile, interior and fashion trend forecasting. Students will learn how to recognize current trends in lifestyle and
ready-to-wear as well as signals for predicting forthcoming trends which impact retail merchandising and marketing decisions.

2188. Interior Design Studio I. 3. Beginning interior design course in which students practice design principles and the design process to create functional, sustainable, and aesthetically pleasing residential interior spaces. Explores effective space planning and innovation for small footprint spaces. Emphasizes design development through hand drawing and rendering techniques. Sophomore standing or consent of instructor. Prerequisite: FCSC 1180 or consent of instructor.

2200. Professionalism and Communication in FCSC. 3. [None] COM2] An introduction to the field of Family and Consumer Sciences. Students will learn the history and approaches to problem solving using the body of knowledge in the field. The course will focus on professionalism and communication strategies using our departmental competencies. Prerequisites: FCSC major, FYS and COM1.

2210. Fashion Show Event Planning. 2. Provides students with a real-world, integrative experience with planning a large-scale special event, specifically, a fashion show. Opportunities include garment and model acquisition and organization, production (music planning, scheduling judges, MCs and guest speakers), promotion, budgeting and stage/runway design. Students experience the entire process of planning, setup and execution.

3100. Personal Finance. 3. Acquaints students with personal budgeting and financial matters and relate these activities to financial institutions involved. Prerequisite: junior standing.

3119 [4119]. Parent-Child Relationships. 3. Provides an overview of research and theory related to the processes of parent-child relationships across the lifespan. Emphasizes developmental and family theory and contexts that influence parent-child relationships. Introduces parent education as a method for applying parenting scholarship to professional practice. Prerequisite: PSYC 1000 or FCSC 2121 or EDST 2450.

3122 [4122]. Adolescence. 3. Studies biological, cognitive, and social/emotional development and adjustment within the adolescent and emerging adulthood years. Emphasis on the importance of theoretically grounded research and the integration of theory, research, and practice during adolescence. Prerequisite: PSYC 1000.

3129. Social Development in Young Children. 3. Designed to provide professional child development and early childhood education majors with an opportunity to learn more about how to encourage healthy social development in young children. In addition, topics of self-esteem, emotional regulation, and secure attachment will be discussed in depth with regards to how they affect overall development. Prerequisite: FCSC 2121 or PSYC 2300.

3142 [4142]. Geriatric Nutrition. 2. Studies nutrition requirements in elderly as affected by physiological changes with aging and the impact of nutrition and healthy lifestyle on prevention and treatment of age related conditions, diseases and social issues. Prerequisites: FCSC 1141; LIFE 1010.

3145. Sports Nutrition and Metabolism. 3. Discusses roles played by carbohydrate, fat, protein, water, and key vitamins and minerals as they relate to physical exercise. Applies principles of nutrition. Prerequisites: FCSC 1141; ZOO 3115.

3147. Community Nutrition. 3. Provides an introduction to the field of community nutrition and develops an appreciation of the importance of nutrition in community health programs at the local, state, national, and international level. Topics covered include the role of the community nutritionist; the identification of nutrition problems; food insecurity; nutrition policy; nutrition education; assessing community resources; and program planning and evaluation. Prerequisites: FCSC 1141; SOC 1000 or 1100.

3150. Intermediate Foods. 2. Examines food management concepts in regards to the service of safe food, modified menu development, and understanding of federal food regulations for food and nutrition labelling. Prerequisites: FCSC 1150; CHEM 1020; MOLB 2021; junior standing and FCSC majors and minors.

3152 [4152]. Food Systems Production. 3. Quantity food purchasing and production, along with institutional food services experience. Prerequisites: FCSC 3150 and LIFE 1010.

3160. Merchandise Retailing and Buying. 3. Provides students with the knowledge involved in the buying function of the merchandising and retailing process, including merchandise planning and retail math. Gives students the necessary skills to pursue a career in retail buying. Prerequisites: FCSC 2185 and MATH 1000 or MATH 1400.

3171 [2171]. Introduction to Textile Science. 3. [None] Textiles are part of your everyday life. This course introduces fiber and polymer manufacturing, fiber properties, yarn properties, yarn manufacturing, fabric properties, fabric manufacturing, and coloration/finishing of textile materials. Understanding of the science behind fabric and clothing care instructions, quality indicators and new developments on the horizon for textiles will be gained. Prerequisite: Completion of USP Q requirement.

3173 [4173]. Visual Merchandising and Promotion. 3. Principles of visual merchandising, consumer behavior for effective promotions, and selling techniques are discussed. Topics include brand development, advertising, visual display, publicity, fashion shows, special events, store space planning and layout. Students will have hands-on experience with several techniques. Prerequisites: FCSC 1180 and FCSC 2188. (Offered alternating fall semesters, odd years)

3174 [4170]. Flat Pattern Design. 3. Principles and instructions for drafting and hand grading patterns using slopers through standard or individual measurements. Techniques of garment design are learned to create three-dimensional designs using the flat pattern method. Prerequisites: FCSC 2175 and 2270. (Offered alternate spring semesters)

3175. Apparel Design Through Draping. 3. Draping garment patterns through fabric manipulation, molding, and shaping to create three-dimensional form utilizing couture construction techniques. Prerequisite: FCSC 3174.

3180. Contract Design I. 3. Interior design course focused on designing sustainable contract spaces primarily for the hospitality industry. As needed, other public space design may be explored. Design development and communication through advanced design and rendering software will be utilized. Students will learn to write specifications and practice design development through evidence based design. Prerequisites: FCSC 2188 and FCSC 3288 or concurrent enrollment, or consent of instructor.

3184. Foundations of Merchandising I. 3. Planning, developing, and presenting product line(s) for identified target market(s) in relation to pricing, assortments, styling and timing. Concepts of supply chain business systems. Prerequisite: ECON 1010. (Offered alternate fall semesters)

3185. Product Development Through Design Thinking. 3. Students will expand their understanding of design and the strategies utilized to bring desirable and human-centered products to market. Techniques and skills for developing textile, interior and apparel products will be discussed. Students will gain
understanding and recognition of the elements of design through product analysis. Prerequisite: FCSC 1180.

3188. Interior Design Studio II. 3. Building upon skills developed in ID Studio 1, students will gain advanced knowledge of lighting, building codes and systems, specifications, materials, and space planning through more complex residential design problems. Design thinking and human centered design are emphasized. Explores design development and communication through CAD based and hand rendering techniques. Prerequisite: FCSC 2188.

3220. Multicultural Influences on Children and Families. 3. [CS,D(H)] Designed to enrich students’ understanding of cultural contexts of children and families. Issues to be explored will include cultural values, learning styles, acquisition of concepts of race and ethnicity, bi-lingualism, the theory of bicultural/bicognitive development, and effective communication of problem-solving strategies that apply in multiple professional settings. Prerequisite: FCSC 2121 or PSYC 2300 or FCSC 2131.

3288. Environmental Psychology and Inclusive Design. 1. Online design primer focused on preparing students for the contract interior design series. Explores how humans interact with, experience, and behave in public spaces. Advances understanding of design inclusivity by interpreting and applying ADA regulations, along with considerations for diverse ages, circumstances, and abilities. Prerequisite: FCSC 2188 or FCSC 2180.

4044 [3140]. Maternal, Infant and Adolescent Nutrition. 3. Addresses nutrition requirements prior to and during pregnancy and lactation and continuing through infancy and adolescents and the physiological and endocrine changes influencing such requirements. Discusses dietary patterns and practices and the importance of healthy lifestyles during these periods for disease prevention and treatment. Dual listed with FCSC 5044. Prerequisites: FCSC 1141; LIFE 1101; ZOO 3115.

4104. Field Studies in Family and Consumer Sciences. 1-3 (Max. 3). Concentrated on-site study of family and consumer sciences-related businesses, agencies and organizations to better understand challenges and potentials of various career opportunities in family and consumer sciences. Prerequisite: junior standing. (Offered based on sufficient demand and resources)

4105. Family and Consumer Sciences Internship. 6-8 (Max. 8). Gives students experience in workplace related to selected family and consumer sciences options (i.e., retail store, social service agency and preschool or day care). Prerequisites: junior standing in family and consumer sciences and consent of instructor.

4106. Special Problems in Family and Consumer Sciences. 1-3 (Max. 8). Provides advanced undergraduate students opportunities to pursue a topic of special interest in a selected family and consumer sciences area, under guidance of a department faculty member. Prerequisites: junior or senior standing and advanced consultation with department head and an instructor in subject matter area.

4112. Family Decision-Making and Resource Management. 3. Utilizes theories to facilitate understanding of problem-solving and resource management in various family structures/contexts across the life span. Emphasizes internal family dynamics, global interdependence, critical thinking, cultural examination, ethical decision-making, and self-reflection. Dual listed with FCSC 5112. Prerequisites: PSYC 1000 or SOC 1000 or COJO 1030 or 1040; WB/COM2.

4113. Consumer Issues. 3. Provides research/applied understanding of consumer rights/responsibilities, government/business roles, legislation, advocacy, and redress. Emphasizes introductory consumer law/legal research, critical thinking, self-reflection, and cultural examination. Ethical theories and issues examined within an interdependent world. Meets requirements for certification in family and consumer sciences education. Internship opportunities possible upon successful completion. Companion web site used. Prerequisites: ECON 1000 or SOC 1000 or PSYC 1000; WB/COM2.

4117. Understanding Community Leadership. 3. [CS(H)] Understanding Community Leadership. Introduces students to the scope and functions of professionals working in rural communities as leaders. Students will explore community dynamics, leadership skills and managing change, and understand the complexities of leadership within communities. Understanding communities and leadership increases the likelihood of success for community based professionals. Dual listed with FCSC 5117. Prerequisites: senior standing and satisfactory completion of a WB/COM2 course.

4118. Family Policy. 3. Explores the relationships between public programs/policies/laws and family functioning. The roles of family professionals in advocacy and education regarding policies will be discussed. Attention will be paid to current events relevant to family policy issues and the policy process at the state level. Dual listed with FCSC 5118. Prerequisites: FCSC 2131; junior standing.

4124. Families of Young Children With Special Needs. 3. Deals with importance of including family in the process of early intervention with the preschool child with special needs. Prerequisites: FCSC 2121 or PSYC 2300; junior standing.

4125. Professional Practices in Human Development and Family Sciences. 3. Explores key professional and ethical issues related to professional practice in Human Development and Family Sciences. Reviews Family Life Education history, purpose, and methodology. Emphasizes skills and knowledge needed to work in various settings with individuals and families across the lifespan. This class is a prerequisite for HDFU student internships (FCSC 4130; FCSC 4131; FCSC 4132). Prerequisites: FCSC 2110, FCSC 3119, FCSC 3122, FCSC 3220 AND FCSC 2131. (Offered fall semester only)

4127. Directing Preschool and Daycare Programs. 3. [WC(H)](none) Effective methods for establishing and operating preschool and day-care programs for children under six years of age. Includes programming, classroom management, parent involvement and administration of food and nutrition programs. Prerequisites: FCSC 2121, EDEC 1020 or 3210; junior standing.

4130. Internship in Child Development. 6-8 (Max. 8). Provides professional child development and early childhood education majors with an in-depth experience working with children from birth to age five. Students gain experience including planning lessons, teaching, assessing children and conducting parent conferences. Prerequisites: FCSC 2121; EDEC 3030; EDEC 3270; senior standing.

4131. Administration Internship in Child Development. 6-8 (Max. 8). Provides professional child development and early education majors with an in-depth experience working with families and staff. Students gain experience in observing and assessing early childhood programs, planning and presenting staff trainings/professional workshops, staff supervision, writing newsletters, and other professional documents and professional activities. Prerequisites: FCSC 2121; FCSC 4127; senior standing.

4132. Internship in Human Development and Family Sciences. 6-8 (Max. 8). Acquire skills and gain familiarity in direct services, policy development, or program planning in a human services agency/organization. Opportunities to apply theories and knowledge gained in classroom settings to professional
practice will be provided. Prerequisites: FCSC 4125; consent of instructor; senior standing. (Offered spring and summer semesters only)

4135. Program Evaluation. 3. Explores techniques for evaluating programs in the public and/or private sectors. Includes determining need, identifying/communicating with stakeholders, developing program theory/logic models, implementation, evaluation methods/instruments, and interpreting/reporting evaluation results. Dual listed with FCSC 5135. Prerequisite: Junior standing.

4138. Family Stress and Coping. 3. Theoretical and empirical research on family stress, coping and resiliency is emphasized as well as the study of normative stressors and crisis in the lives of individuals and families. Attention is paid to the application of theory and research to professional practice. Dual listed with FCSC 5138. Prerequisites: FCSC 2131; junior standing.

4145. Advanced Nutrition. 4. Discusses functions of components of diet in human metabolism. Applies principles of nutrition. Dual listed with FCSC 5145. Prerequisites: FCSC 1141; ZOO 3115. (Offered fall semester)

4147. Nutrition and Weight Control. 3. Advanced course in physiological and metabolic determinants of weight control emphasizing pathology, psychodynamics, assessment and treatment of obesity. Dual listed with FCSC 5147. Prerequisites: FCSC 1141; ZOO 3115.

4150. Experimental Foods. 3. Studies physical and chemical properties of raw and processed food materials and tests for evaluation of food quality. Students develop ability to use and interpret recent research findings, as well as skills in planning, conducting and reporting food experiments. Prerequisites: FCSC 1150, CHEM 2300, STAT 2020, ENGL 4010, FCSC major.

4160. Merchandising Strategies and Technology. 3. Students will be exposed to advanced merchandising strategies for retail buying and planning. Technologies used for gathering pertinent retail data, such as foot traffic and inventory management software, will be introduced. Course will expand on concepts introduced in prerequisite coursework. Prerequisite: FCSC 3160.

4171. Advanced Textiles and Product Evaluation. 3. Coloration is a key determinant in consumer textile purchases. This course introduces color science, dye properties and application and colorfastness evaluation. Quality control, testing standards, laboratory tests and specifications and how they are used to evaluate textiles products will also be discussed. Dual listed with: FCSC 5171. Prerequisites: FCSC 3171 and concurrent enrollment in FCSC 4172.

4172. Advanced Textiles and Product Evaluation Lab. 1. Practical application of various textile science and quality assurance tests discussed in FCSC 3171 and FCSC 4171. Basic and advanced levels of testing on products in different stages of manufacture conducted. Students will use select test results to generate product specifications. Dual listed with FCSC 5172. Prerequisites: FCSC 3171 and concurrent enrollment in FCSC 4171.

4174. Foundations of Merchandising II. 3. A review of the fashion industry including types of fashion retail and the use of technology in retail sales. Exploration of merchandising/retailing principles, and the formulas and calculations essential to these principles. Prerequisite: MATH 1400.

4176. Historic Clothing. 3. Surveys history of clothing in the Western World. Includes information from approximately 3000 B.C. through the 20th century. Dual listed with FCSC 5176. Prerequisite: FCSC 1165. (Offered alternate spring semesters)

4178. Fiber Arts. 3 (Max 6). Development and enhancement of technical and creative apparel design skills with a focus on embellishment techniques and creative pattern-making culminating in the creation of a distinctive piece of wearable art. Dual listed with FCSC 5178. Prerequisite: FCSC 3174 or FCSC 3175.

4181. Global Trade and Sourcing for Textile Products. 3. [G4] Non] Discusses global textile industry, how the U.S. fits into the global industry, textiles and apparel trade policy, as well as balancing conflicting interests in the world marketplace. Dual listed with FCSC 5181. Prerequisite: FCSC 1185. (Offered spring semester odd years)

4182. Environmental Sustainability in Design, Merchandising and Textiles. 3. [WC] [COM] Examines the environment, the impact of the textile industry on the environment, and issues facing the textile industry to provide more environmentally friendly products. Dual listed with FCSC 5182. Prerequisite: completion of USP WB/COM2 requirement. (Offered alternate spring semesters)

4185. Product Development and Technology. 3. This course introduces students to various technologies used to bring products to market. 3-D body scanning, computer apparel pattern digitizing, grading, marker making and repeats for digitally-printed, knit and woven fabrics will be discussed. Students will complete product technical packages based on product specifications. Prerequisites: FCSC 3185, FCSC 4171, and FCSC 4172.

4188. Contract Design II. 3. Explores space planning and design as applied to contract interiors. Focused on healthcare and corporate design, but may survey other public spaces as appropriate. Advanced design, rendering, and visualization software used to conceptualize and present design solutions. Sustainable, accessible and functional design is highlighted. Dual listed with FCSC 5188. Prerequisite: FCSC 2188 and FCSC 3288 (or concurrent enrollment), or consent of instructor.

4190. Apparel Collection Development. 3. Students will utilize their pattern-making and apparel construction skills and continue to expand their knowledge of fit on live models through creation of their own apparel collection. They will be responsible for the creation of the collection from inspiration to final product. Collections will be showcased through a real-world fashion show. Prerequisite: FCSC 3174 or FCSC 3175.

4210. Therapeutic Nutrition I: Nutrition Assessment and Diagnosis. 4. Nutrition assessment and diagnosis as part of the nutrition care process; experience in dietary and nutrient assessment of the apparently healthy and sick individual with discussion of case studies. Dual listed with FCSC 5210. Prerequisites: ZOO 3115, MOLB 3610, and FCSC 4145 or concurrent enrollment.

4220. Therapeutic Nutrition II. 4. Rationale for dietary modifications in pathological conditions; experience with learning and applying the nutrition care process to develop nutrition care plans for individuals with various medical conditions with discussion of case studies. Dual listed with FCSC 5220. Prerequisite: MOLB 4100.

4230. Therapeutic Nutrition Counseling. 2. Course is designed to help students develop basic nutrition counseling and communication skills. Students will learn how to apply the concepts learned during lecture through interactive classroom experiences with peers and outside of the classroom experiences with an assigned client. Prerequisites: FCSC 4220 or concurrent enrollment; Dietetics students only.

4288. Professional Practice and Advanced Interiors Studio. 4. Explores standards of practice, project management, contract documents, portfolio development, and professional ethics and conduct in interior design. Studio based projects are focused on creating residential or contract designs through collaboration and integrated practice with interdisciplinary teams, and/or designs created for clients through service based learning. Dual listed with FCSC 5288. Prerequisite: FCSC 3180 or FCSC 4188.
4346. Clinical Practicum in Dietetics. 1. Concentrated clinical practicum designed to provide dietetic majors with experience in the institutional, practitioner and clinical settings. Prerequisite: FCSC 4220 and permission of instructor. Enrollment is limited to dietetics students only.

4960. International Study Tour. FCS. 1-3 (Max. 6). Designed to provide students with an opportunity to learn more about food, design, and human services in international settings. Students will visit locations relevant to the Family and Consumer Science discipline. Prerequisite: consent of instructor. (Offered based on sufficient demand and resources every other spring/summer term, odd years; international destinations vary)

4970. Design and Merchandising Internship. 3 (Max. 6). Provides practical experience in retail, interior design or apparel design settings. Prerequisite: junior standing or consent of instructor.

4985. Seminar: Development in Community Leadership. 2-3. Emphasizes basic core components of individual leadership: assessment of leadership skill and style; community-based experiences for understanding of community and resources; group community development projects for students; engagement with others and the community. Upon completion, students understand various leadership styles and philosophies and articulate their personal leadership philosophy. Dual listed with FCSC 5985. Prerequisite: senior or post-graduate equivalent status and consent of instructor.

5044. Maternal, Infant and Adolescent Nutrition. 3. Addresses nutrition requirements prior to and during pregnancy and lactation and continuing through infancy and adolescence and the physiological and endocrine changes influencing such requirements. Discusses dietary patterns and practices and the importance of healthy lifestyles during these periods for disease prevention and treatment. Dual listed with FCSC 4044. Prerequisite: graduate standing.

5101. Special Topics in Family and Consumer Sciences. 1-3 (Max. 6). Intended to accommodate a seminar series and a course offering by visiting faculty whose subject matter is not included in other course offerings.

5102. Special Problems. 1 - 12 (Max. 18). Study in a selected problem area for broader perspective or greater specialization in the student program. Prerequisite: advanced or graduate standing and consultation with department head and instructor in subject matter area.

5103. Graduate Seminar in Family and Consumer Sciences I. 1. Integrative Seminar in Family and Consumer Sciences. Students are exposed to faculty research, discuss common readings and present their own research. Offered S/U only for those taking Graduate Seminar I and students will be taking Graduate Seminar II for a letter grade. Prerequisite: graduate student standing.

5104. Graduate Seminar in Family and Consumer Sciences II. 1. Integrative seminar in Family and Consumer Sciences. Students are exposed to faculty research, will discuss common readings, and will present their own research. Graduate Seminar II can only be taken for a letter grade. Prerequisite: FCSC 5103.

5107. Family and Consumer Sciences Extension Practicum. 8. To provide experience in county extension programs. Prerequisites: AGRI 4010, advanced standing and consent of instructor.

5112. Family Decision and Resource Management. 3. Utilizes theories to facilitate understanding of problem-solving and resource management in various family structures/contexts across the life span. Emphasizes internal family dynamics, global interdependence, critical thinking, cultural examination, ethical decision-making, and self-reflection. Designed to meet family studies requirement for license in marriage and family therapy at graduate level. Companion website used. Dual listed with FCSC 4112. Prerequisites: graduate standing.

5117. Understanding Community Leadership. 3. Understanding Community Leadership. Introduces students to the scope and functions of professionals working in rural communities as leaders. Students will explore community dynamics, leadership skills and managing change, and understand the complexities of leadership within communities. Understanding communities and leadership increases the likelihood of success for community-based professionals. Dual listed with FCSC 4117. Prerequisite: graduate standing.

5118. Family Policy. 3. Explores the relationships between family functioning and public/private policies. The roles of family professionals in advocacy and education regarding policies are discussed. Attention is paid to the policy process at the state level. Dual listed with FCSC 4118. Prerequisite: graduate standing.

5120. Infancy and Toddlerhood. 3. Examines development and behavior, focusing on a broad range of topics which includes: physical development, prenatal influences, sensory processes, biological factors, cognitive development, language development, social interaction and relationship. A broad family and consumer sciences perspective (the family in its environment) are applied. Prerequisite: FCSC 2121 or equivalent course in child development.

5121. Ethics in Research and Professional Practice. 3. Includes ethical theories, responsible conduct of research and professional practice defined by government, professional organizations, journals, and employers. Concepts include plagiarism, fabrication, falsification, conflict of interest, and conflict of commitment, and institutional review boards protecting human subjects. Concepts will be applied to research and professional practice in different settings. Prerequisite: acceptance into a graduate program.

5122. Developmental Contexts Across the Lifespan. 3. A variety of contexts in which children, adults, and families live and develop. Attention is given to the constant interactions that occur between humans and their environments, as well as how different environments may foster or hinder development. Includes discussions of the practical, professional and political implications of contextual research. Prerequisite: graduate standing.

5123. Positive Youth Development. 3. This course explores positive youth development (PYD), or the understanding and promotion of the well-being and health of youth. In this course, we will examine PYD theory and frameworks, research regarding how to best assess and foster PYD, and interventions designed to promote PYD and associated outcomes. Prerequisite: graduate standing.

5135. Program Evaluation. 3. Explores techniques for evaluating programs in the public and/or private sectors. Includes determining need, identifying/communicating with stakeholders, developing program theory/logic models, implementation, evaluation methods/instruments, and interpreting/reporting evaluation results. Dual listed with FCSC 4135. Prerequisite: Graduate standing.

5138. Family Stress/Coping. 3. Theoretical and empirical research on family stress, coping and resiliency is emphasized as well as the study of normative and nonnormative stressors and crises in the lives of families. Attention is paid to professional practice applications. Dual listed with FCSC 4138. Prerequisite: graduate standing.

5140. Nutritional Aspects of Proteins and Amino Acids. 3. Advanced study of protein and amino acid metabolism in various physiological conditions. Prerequisites: MOLB 3610 or equivalent; FCSC 4145 or equivalent.
5141. Carbohydrate and Ethanol Metabolism. 3. Advanced study of carbohydrate and ethanol metabolism in various physiological conditions. Prerequisite: MOLB 3610 or equivalent and FCSC 4145 or equivalent.

5147. Nutrition and Weight Control. 3. Advanced course in physiological determinants of weight control emphasizing pathology, psychodynamics, assessment, and treatment of obesity. Dual listed with FCSC 4147. Prerequisite: graduate standing.

5151. Sensory Analysis. 1. Examines the principles and techniques applied to the subjective evaluation of food. Prerequisite: graduate standing; STAT 5080.

5171. Advanced Textiles and Product Evaluation. 3. Coloration is a key determinant in consumer textile purchases. This course introduces color science, dye properties and application and colorfastness evaluation. Quality control, testing standards, laboratory tests and specifications and how they are used to evaluate textiles products will also be discussed. Dual listed with FCSC 4171. Prerequisite: graduate standing.

5172. Advanced Textiles and Product Evaluation Lab. 1. Practical application of various textile science and quality assurance tests discussed in FCSC 3171 and FCSC 4171. Basic and advanced levels of testing on products in different stages of manufacture conducted. Students will use select test results to generate product specifications. Dual listed with FCSC 4172. Prerequisite: graduate standing.

5173. Textile Science Seminar. 3. Advanced study of textile science, physical and chemical modification of fibers, developments in dyeing and finishing technology. Environmental aspects of textile technology. Extensive use of current literature is utilized.

5176. Historic Clothing. 3. Surveys history of clothing in the Western World. Course content includes information from approximately 3000 BC through the 20th century. Dual listed with FCSC 4176. Prerequisite: graduate standing. (Offered alternate spring semesters)

5178. Fiber Arts. 3. Development and enhancement of technical and creative apparel design skills with a focus on embellishment techniques and creative pattern-making culminating in the creation of a distinctive piece of wearable art. Dual listed with FCSC 4178. Prerequisite: graduate standing.

5179. Historic Textiles. 3. History of all major textile industries is explored. Processes and technical terms are explained. The role and impact of textiles in western economies and societies are examined. Prerequisite: graduate standing. (Offered alternate fall semesters)

5181. Global Trade and Sourcing for Textile Products. 3. Discusses global textile industry, how the U.S. fits into the global industry, textiles and apparel trade policy, as well as balancing conflicting interests in the world marketplace. Dual listed with FCSC 4181. Prerequisite: graduate standing. (Offered alternate spring semesters)

5182. Environmental Sustainability in Design, Merchandising and Textiles. 3. Examines the environment, the impact of the textile industry on the environment, and issues facing the textile industry to provide more environmentally friendly products. Dual listed with FCSC 4182. Prerequisite: graduate standing. (Offered alternate spring semesters)

5188. Contract Design II. 3. Explores space planning and design as applied to contract interiors. Focused on healthcare and corporate design, but may survey other public spaces as appropriate. Advanced design, rendering, and visualization software used to conceptualize and present design solutions. Sustainable, accessible and functional design is highlighted. Dual listed with FCSC 4188. Prerequisite: graduate standing.

5200. Therapeutic Nutrition I: Nutrition Assessment and Diagnosis. 4. Nutrition assessment and diagnosis as part of the nutrition care process; experience in dietary and nutrient assessment of the apparently healthy and sick individual with discussion of case studies. Dual listed with FCSC 4210. Prerequisite: graduate standing and permission of instructor.

5207. Therapeutic Nutrition Counseling. 4. Students will develop basic nutrition counseling and communication skills. Students will learn how to apply the concepts learned during lecture through interactive classroom experiences with peers and outside of the classroom experiences with an assigned client. Dietetics students only. Dual listed with FCSC 4230. Prerequisite: graduate standing or permission of instructor.

5208. Professional Practice and Advanced Interiors Studio. 4. Explores standards of practice, project management, contract documents, portfolio development, and professional ethics and conduct in interior design. Studio based projects are focused on creating residential or contract designs through collaboration and integrated practice with interdisciplinary teams, and/or designs created for clients through service based learning. Dual listed with FCSC 4288. Prerequisite: graduate standing.

5890. Seminar in Food Science and Nutrition. 1. A seminar course on topics in food science and human nutrition. Cross listed with FDS 5890. Prerequisite: graduate standing.

5900. Practicum in College Teaching. 1-3. (Max 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate standing.

5920. Continuing Registration: On Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5959. Enrichment Studies. 1-3 (Max. 99). Designed to provide an enrichment experience in a variety of topics. Note: credit in this course may not be included in a graduate program of study for degree purposes.

5960. Thesis Research. 1-12 (Max 24). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisite: enrollment in a graduate degree program.

5985. Development of Community Leadership. 2-3 (Max 98). Emphasizes basic core components of individual leadership: assessment of leadership skill and style; community based experiences for understanding of community and resources; group community development projects for student engagement with others and the community. Upon completion of course, students will understand various leadership styles and philosophies and articulate their personal leadership philosophy. Dual listed with FCSC 4985. Prerequisite: senior or post graduate equivalent status and consent of instructor.
Life Sciences Program
107 Aven Nelson Building, (307) 766-4158
Web site: www.uwyo.edu/lifescience
Program Director: Jonathan Prather

The Life Sciences Program consists of all LIFE prefix courses. These courses support a wide range of life science majors and several non-life science majors across campus. The number of LIFE courses taken by students in each major is determined by the departments that offer the majors. The curriculum intends to provide science majors with both breadth and depth in the basic life sciences, and non-science majors with exposure to key concepts in biology and an understanding of the connections between science and society. The program courses also expose students to the fields of cell and molecular biology, genetics, ecology, and evolution, and they familiarize students with the diversity of life on the planet. Courses within the curriculum address four fundamental goals at a level appropriate for each course: 1) Acquisition, Application and Synthesis of Knowledge, 2) Communication Skills, 3) Critical Thinking and Problem Solving, and 4) Research Skills.

For information on LIFE course offerings, please refer to the Life Sciences Program entry in the College of Arts and Sciences.

Microbiology Program
5004 Agriculture Building, (307) 766-3139
FAX: (307) 766-3875
E-mail: gandrews@uwyo.edu
Program Director: Dr. Gerard Andrews

The bachelor of science degree program in microbiology is organized as an interdepartmental major involving the collaborative teaching, advising, and research expertise of more than 20 microbiology faculty from the Colleges of Agriculture, Arts and Sciences, and Health Sciences. The program is administered by a program director and a coordinating committee which represent each of the participating colleges. Students obtain their degree in the College of Agriculture and Natural Resources. Students should contact the program director or members of the coordinating committee directly for more information or formal academic advising within the program. Additional information about the microbiology program may be obtained at the following web site address: www.uwyo.edu/agcollege/micro/microhome.htm.

Students pursuing a major in microbiology must be advised by one of the following participating faculty members of the interdepartmental Microbiology Steering Committee:

GERRY ANDREWS, Veterinary Sciences
BRIT BANGOURA, Veterinary Sciences
BLEDIR BISHA, Animal Sciences
BRIDGET DECKER, Molecular Biology
JASON GIGLEY, Molecular Biology
MARK GOMELSKY, Molecular Biology
MYRNA MILLER, Veterinary Sciences
BRANT SHUMAKER, Veterinary Sciences
KERRY SONDGEROTH, Veterinary Sciences
HOLLY STEINKRAUS, Molecular Biology
LINDA VAN DIEPEN, ESM
DANIEL WALL, Molecular Biology
RACHEL WATSON, Chemistry
JOHN WILLFORD, Molecular Biology

Microbiology is the study of life forms too small to be observed without the aid of magnification; major groups of microbes include the bacteria, fungi (yeasts and molds), protozoa, and algae, as well as the viruses. In addition, related disciplines such as immunology and molecular biology are included because of their historical origins within microbiology.

As such, the science of microbiology is divided into numerous subspecialty areas that reflect not only the individual groups of microbes (e.g., bacteriology, virology, mycology, etc.), but also their significance in applied areas (e.g., medical microbiology/infectious diseases, microbial ecology, food microbiology, industrial microbiology, biotechnology, etc.) or in areas of basic science (e.g., molecular genetics). Throughout its history, microbiology has played a key role in the development of our understanding of basic biochemical and genetic processes, control of infectious diseases, production of increased and improved food supplies, and the production of numerous commercial products. With the development of molecular techniques to construct genetically engineered microbes, microbiologists will continue to make expanding contributions in these and other areas.

Because microbiology is a diverse science, individuals trained as microbiologists find exciting career opportunities in many areas of the basic and applied sciences. Typically, microbiologists are employed in five major sectors: private industry; clinical laboratories; government agencies; universities; and various other settings such as water treatment, food production/inspection facilities, and other public health-related areas. Recent manpower assessment studies at both the national and regional levels have provided evidence for a continuing and expanding need for microbiologists such that successful undergraduate students completing this program may look forward to exciting careers. In addition, undergraduates trained in the microbiological sciences are well prepared for competitive application to graduate school programs and professional programs in human or veterinary medicine, optometry or dentistry.

The microbiology curriculum is organized to provide students with the maximum flexibility in meeting their university studies program requirements. In addition, the curriculum is designed to prepare graduates for the future by combining a firm foundation in the basic sciences with a central core of microbiology courses, followed by the opportunity for students to specialize in areas of microbiology suiting their individual interests via the selection of electives. Prior to graduation, microbiology majors must complete the basic requirements and all microbiology core course requirements as listed below. Finally, to assure breadth of exposure in microbiology, students must complete 6 semester hours of microbiology electives.

Basic Course Requirements for Microbiology Majors
Total credit hours: 121
3000-level or above credits: (university requirement) 42 hours
Completion of University Studies 2015 Program Requirements: 30-36 hours

Basic sciences and quantitative reasoning

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1450, or 1400 and 1405, or 2200</td>
<td>4-6</td>
</tr>
<tr>
<td>STAT 2050</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 1010 and 2022 or 2023</td>
<td>8</td>
</tr>
<tr>
<td>LIFE 3050</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1020 and 1030</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 2420 and 2440</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 1110 and 1120</td>
<td>8</td>
</tr>
<tr>
<td>MOLB 3000</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 3610 or 4600 and 4610</td>
<td>4-6</td>
</tr>
</tbody>
</table>

Microbiology Core Course Requirements

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICR/MOLB 2021 or 2240</td>
<td>4-5</td>
</tr>
<tr>
<td>MICR 4321 or MOLB 4320</td>
<td>4</td>
</tr>
<tr>
<td>PATB 2220</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 4440</td>
<td>3</td>
</tr>
<tr>
<td>PATB/MOLB 4400</td>
<td>4</td>
</tr>
<tr>
<td>PATB 4710</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4460</td>
<td>3</td>
</tr>
<tr>
<td>PATB 4150, or MOLB 4050 (or MOLB 4051 or MOLB 4052)</td>
<td>1(x2)</td>
</tr>
<tr>
<td>MICR Electives</td>
<td>6</td>
</tr>
</tbody>
</table>
Microbiology Electives

In addition to completing the required microbiology courses listed above, students must complete 6 hours of microbiology electives from any of the following lists.

Medical Microbiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATB 4001</td>
<td>Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>PATB 4110</td>
<td>Diseases of Food Animals and Horses</td>
<td></td>
</tr>
<tr>
<td>PATB 4120</td>
<td>Diseases of Wildlife</td>
<td></td>
</tr>
<tr>
<td>PATB 4130</td>
<td>Mammalian Pathobiology</td>
<td></td>
</tr>
<tr>
<td>PATB 4140</td>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>PATB 4200</td>
<td>Diagnostic Bacteriology</td>
<td></td>
</tr>
<tr>
<td>PATB 4240</td>
<td>Disease Ecology</td>
<td></td>
</tr>
<tr>
<td>PATB 4360</td>
<td>Parasitology</td>
<td></td>
</tr>
<tr>
<td>PATB 4500</td>
<td>Veterinary Parasitology</td>
<td></td>
</tr>
<tr>
<td>PATB 4520</td>
<td>Molecular Pathogenesis</td>
<td></td>
</tr>
<tr>
<td>PHCY 3450</td>
<td>Pathophysiology</td>
<td></td>
</tr>
<tr>
<td>ZOO 4110</td>
<td>HIV and AIDS</td>
<td></td>
</tr>
</tbody>
</table>

Molecular and Cell Biology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE 3600</td>
<td>Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 4260</td>
<td>Quantitative Microscopy</td>
<td>1</td>
</tr>
<tr>
<td>MOLB 4450</td>
<td>Developmental Genetics</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4670</td>
<td>Adv. Molecular Cell Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental and Applied Microbiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 4200</td>
<td>Plant/Microbe Interactions</td>
<td>3</td>
</tr>
<tr>
<td>BOT 4300</td>
<td>Mycology</td>
<td></td>
</tr>
<tr>
<td>BOT 4390</td>
<td>Fungal Physiology</td>
<td></td>
</tr>
<tr>
<td>MOLB 4540</td>
<td>Microbial Diversity and Ecology</td>
<td>4</td>
</tr>
<tr>
<td>SOIL 4140</td>
<td>Soil Microbiology</td>
<td></td>
</tr>
<tr>
<td>PLNT 4000</td>
<td>Plant Disease Control</td>
<td></td>
</tr>
<tr>
<td>FDSC 4090</td>
<td>Food Microbiology</td>
<td></td>
</tr>
<tr>
<td>FDSC 4100</td>
<td>Food Microbiology Lab</td>
<td></td>
</tr>
</tbody>
</table>

Microbiology (MICR)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB●Q]).

2021 [2210]. General Microbiology. 4. Introduces nature and diversity of microorganisms and their implications for all of biology. Covers comparative properties of eukaryotic and prokaryotic microbes, as well as their roles as disease agents, ecological agents and model systems for understanding of fundamental biological processes at the molecular level. Cross listed with MOLB 2021. **Prerequisites:** LIFE 1010, CHEM 1000 or equivalent.

2220. Pathogenic Microbiology. 3. This course serves as an introduction to bacterial pathogenesis and disease using taxonomy and categorical approaches. Material presented in the course includes maintenance, transmission, molecular mechanisms of virulence factors, pathogen-host interactions, disease process, and treatment and prevention of disease of pathogenic bacteria and fungus. Cross listed with PATB 2220. **Prerequisite:** MOLB/MICR 2201.

2240. Medical Microbiology. 4. Designed primarily for nursing and pre-pharmacy majors, introduces students to microbiology, including the diversity of prokaryotic and eukaryotic microbes, their structural and physiological properties, and their applied medical significance; also covers the basic principles of the immune system and emphasizes the communicable diseases of man caused by microbial pathogens. Cross listed with MOLB 2240. **Prerequisite:** LIFE 1010.

4001. Epidemiology (Diseases in Populations). 3. Basic epidemiologic concepts and approaches to population problems in medicine, with examples from veterinary and human health. Covers a wide spectrum of topics and introduces practical applications of epidemiology. Dual listed with MICR 5001; cross listed with PATB 4001. **Prerequisite:** STAT 2050.

4090. Food Microbiology. 3. Discusses micro-organisms and theory of their growth and survival in relation to spoilage and preservation of foods and health hazards in foods. Cross listed with FDSC 4090. **Prerequisite:** MOLB/MICR 2201.

4100. Food Microbiology Lab. 1. Lab techniques used in food microbiology. Cross listed with FDSC 4100. **Prerequisite:** FDSC 4090 or 5090, taken concurrently.

4130. Mammalian Pathobiology. 3. Anatomical basis of disease in mammals. Emphasis on concepts of pathogenesis of disease, and the gross, microscopic and clinicopathological changes associated with lesions: cell injury and death; cellular degeneration; disturbances of growth and circulation; neoplasia; inflammation; and recognition of gross and microscopic tissue changes. Background in immunology will be beneficial. Dual listed with MIR 5130; cross listed with PATB 4130. **Prerequisite:** C or better in LIFE 2022.

4140. Soil Microbiology. 4. Fundamental principles of soil microbiology and how they relate to microbial ecology, environmental contamination, agriculture and forestry. Dual listed with MIR 5140; cross listed with SOIL 4140. **Prerequisite:** SOIL 2010.

4200. Diagnostic Bacteriology. 1. Practical training with emphasis on diagnostic procedures used in a clinical microbiology laboratory. Students identify bacterial pathogens of animals and humans. Taught in a clinical setting utilizing selected clinical material. Techniques employed in the processing and identification of clinically significant bacteria are used and discussed. Safe laboratory practices for working with biohazards are presented. Cross listed with PATB 4200. **Prerequisites:** junior standing and a MICR course which included a laboratory.

4220. Molecular Mechanisms of Bacterial Pathogenesis. 3. Intended as a survey of the molecular mechanisms that have evolved in pathogenic bacterial species which result in disease. The broad-scoped objective is to assist students in gaining an understanding of principals and concepts as they apply to common themes of bacterial virulence acting on higher order host organisms. In-class review/discussion of scholarly manuscripts, historical to present day, is paramount in allowing students to gain a better appreciation and comprehension of biological principals and concepts through knowledge of experimental approaches. Cross listed with PATB 4220; dual listed with MICR 5220. **Prerequisites:** PATB/MICR 2220 and statistics (or epidemiology).

4321. Microbiology Capstone. 4. ([none]) ◆COM3 Using a problem-based student learning model, students conceptualize, propose, perform and present a microbiology research study to address a real community problem. Students maintain a lab notebook, write an NSF-style research proposal, formulate hypotheses, engage in hands-on laboratory hypothesis testing and design and present a scientific poster. **Prerequisite:** MICR majors with junior or senior standing.

4360. Medical Entomology and Parasitology. 4. Emphasis on medically important arthropods, protozoa, and worms; clinical effects of infection epidemiology avoidance/control and identification/diagnosis. PATB/ENTO 4360. **Prerequisite:** 8 hours of biological science.
4440. Microbial Genetics. 3. Discusses microbial genetic approaches to study cell function and provides a molecular foundation for understanding how genes work to elicit phenotypes. Cross listed with MOLB 4440. Prerequisites: MOLB 2121 and 3000 and LIFE 3050. (Normally offered spring semester).

4460. Microbial Physiology. 3. Studies life processes of microbes as mediated by their structures acting in consort, in response to changing environments. Cross listed with MOLB 4460. Prerequisites: Minimum grade of C- in MOLB/MICR 2021 or 2240 and MOLB 3610 or 4610. (Normally offered fall semester).

4500. Veterinary Entomology and Parasitology. 3. Biology, importance and control of arthropod, helminth and protozoan parasites of food and companion animals. Diagnosis and identification of live and preserved specimens. Cross listed with ENTO 4500. Cross listed with PATB 4500. Prerequisite: 8 hours of biological science.

4540. Microbial Diversity and Ecology. 4. Introduces the diversity and ecology of soil microbes through an integrated lecture and laboratory course. Emphasis on molecular approaches to analyzing microbial diversity and evolution, and student-directed experimental design. Provides a continuum of realistic research experiences in molecular microbial ecology, from field work to evolutionary analysis of DNA sequence data. Cross listed with MOLB/SOIL 4540. Dual listed with MOLB/SOIL/MICR 2021. Prerequisite: MOLB/MICR 2450 or MOLB/MICR 2450.

4710. Medical Virology. 3. Human and animal viruses as biological entities. Methods of study, classification, replication strategies, diagnostic approaches, epidemiology and significance as disease agents. Cross listed with PATB 4710. Prerequisite: MICR/PATB 2240 or MOLB/MICR 2420.

5001. Epidemiology (Diseases in Population). 3. Basic epidemiologic concepts and approaches to population problems in medicine, with examples from veterinary and human health. Covers a wide spectrum of topics and introduces practical applications of epidemiology. Dual listed with MICR 4001; cross listed with PATB 5001. Prerequisite: STAT 2050.

5130. Mammalian Pathobiology. 3. Anatomical basis of disease in mammals. Emphasis on concepts of pathogenesis of disease, and the gross, microscopic and clinicopathological changes associated with lesions: cell injury and death; cellular degeneration; disturbances of growth and circulation; neoplasia; inflammation; and recognition of gross and microscopic tissue changes. Background in immunology will be beneficial. Dual listed with MICR 4130; cross listed with PATB 5130. Prerequisite: C or better in LIFE 2022.

5140. Soil Microbiology. 4. Fundamental principles of soil microbiology and how they relate to microbial ecology, environmental contamination, agriculture and forestry. Dual listed with MCR 4140; cross listed with SOIL 5140. Prerequisite: SOIL 2010.

5220. Molecular Mechanisms of Bacterial Pathogenesis. 3. Intended as a survey of the molecular mechanisms that have evolved in pathogenic bacterial species which result in disease. The broad-scoped objective is to assist students in gaining an understanding of principals and concepts as they apply to common themes of bacterial virulence acting on higher order host organisms. In-class review/discussion of scholarly manuscripts, historical to present day, is paramount in allowing students to gain a better appreciation and comprehension of biological principals and concepts through knowledge of experimental approaches. Dual listed with MICR 4220; cross listed with PATB 4220/5220. Prerequisites: PATB/MICR 2220 and statistics (or epidemiology).

Department of Molecular Biology

203 Animal Science/Molecular Biology Bldg., (307) 766-3300
Web site: www.uwyo.edu/MolecBio/
Department Chair: Peter E. Thorsness

Professors

MARK GOMELSKY, B.S. Moscow Institute of Chemical Technology 1986; M.S. 1988; Ph.D. Institute of Genetics and Selection of Industrial Microorganisms 1991; Professor of Molecular Biology 2011, 1999.

DANIEL WALL, B.A. Sonoma State University 1988; Ph.D. University of Utah 1994; Professor of Molecular Biology 2019, 2007.

CYNTHIA WEINIG, B.A. Brown University 1991; Ph.D. Indiana University; Professor of Botany and Molecular Biology 2013, 2007.

Associate Professors

GRANT BOWMAN, B.S. University of Rochester 1997; Ph.D. University of Chicago 2004; Associate Professor of Molecular Biology 2019, 2012.

JESSE C. GATLIN, B.S. University of Colorado-Boulder 1995; Ph.D. University of Colorado-Aurora 2005; Associate Professor of Molecular Biology 2016, 2010.

JASON GIGLEY, B.S. University of New Hampshire 1994; Ph.D. Dartmouth Medical School 2007; Associate Professor of Molecular Biology 2019, 2012.

DANIEL L. LEVY, B.S. California Institute of Technology 2000; Ph.D. University of California San Francisco 2006; Associate Professor of Molecular Biology 2016, 2011.

Assistant Professors

THOMAS BOOTHBY, B.S. Tulane University 2008; Ph.D. University of Maryland 2013; Assistant Professor of Molecular Biology, 2019.

EUNSOOK PARK, M.S. Seoul National University 2001; Ph.D. University of Tennessee, Knoxville 2010; Assistant Professor of Molecular Biology 2019.

TODD SCHOBORG, B.S. Murray State University 2008; Ph.D. University of Tennessee 2013; Assistant Professor of Molecular Biology, 2019.

Adjunct Professor

Professors Emeritus

Dale Isak, Randy Lewis, Nancy Petersen, Don Roth, Mark M. Stayton, Jardanka Zlatanova

Modern biology is based on a fundamental understanding of molecular processes. Recent advances in molecular biology have led to an explosion of knowledge about gene expression and the role gene products play in cell function. Undergraduate programs in molecular biology offer learning opportunities at the forefront of modern biology.

The molecular biology degree programs are designed to prepare students for the future by combining a foundation in basic sciences and humanities with a broad selection of courses in molecular biology, biochemistry, genetics and microbiology. Advanced undergraduates attend an outside speaker's program that includes some of the world's best-known...
Scientists. Modern, well-equipped teaching and research laboratories contribute significantly to the educational experience of a student. All junior- and senior-level undergraduates are encouraged to participate in research projects with individual faculty members. Involvement in an active research program provides the student with an additional dimension of learning beyond what is assimilated in courses. A student learns to plan experiments, solve technical problems and experience scientific advances first hand. An undergraduate research project also promotes close interaction between the undergraduate and graduate students, postdoctoral researchers, staff and faculty.

Many molecular biology majors continue their education beyond the bachelor’s level by going to graduate school or to medical, dental or veterinary school. Some students choose to use their education to gain employment in biotechnology, clinical or basic research laboratories. Other career choices include teaching, medical technology, law and business.

To obtain a B.S. degree in molecular biology, a student, with the aid of a molecular biology adviser, designs a program of study that includes courses from the Molecular Biology Core Requirements and Electives listed below. Additional course lists are provided as an aid in developing an individualized program of study in key Interest Areas such as Biochemistry, Cell and Molecular Genetics, Computational Molecular Biology, Microbiology, and Preprofessional Health Sciences studies. Courses listed under the Interest Areas are optional and the student and adviser will design a unique curriculum suited to the student’s personal interests. Flexibility in course selection also permits students to fulfill the various requirements for postgraduate and professional schools. Completion of a B.S. in Molecular Biology provides a student with the tools needed to open the door to exciting futures in science, medicine and agriculture.

We expect that our graduating students will have a strong foundation in basic science, biochemistry and molecular biology that will enable them to:

1. understand the basis of multiple molecular mechanisms central to gene expression;
2. utilize molecular and microbiological laboratory techniques in future jobs or programs and troubleshoot experimental challenges;
3. apply for graduate programs in molecular biology, microbiology or other life sciences;
4. begin employment as a laboratory research assistant in academia or the medical or agricultural biotechnology industries;
5. utilize a background in biochemistry, cell and molecular biology to promote success in the basic science curriculum in medical or other health professional schools;
6. integrate a background in biochemistry, cell and molecular biology into career development in professions such as law, genetic counseling, or public health policy;
7. employ evidence-based scientific reasoning skills in evaluating the use of molecular genetics in the prevention, diagnosis and treatment of medical disorders.

Requirements for Molecular Biology Majors

General Requirements

- Total credits (college requirement) 120
- 3000-level or above (university requirement) 42
- Fulfillment of University Studies Program (consult adviser)
- Fulfillment of molecular biology general science, core and elective requirements listed below

MOLB Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE 1010</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 2021</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 3050</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1020</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 1030</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 1110</td>
<td>8</td>
</tr>
<tr>
<td>MATH 2200*</td>
<td>4</td>
</tr>
<tr>
<td>STAT 2050</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
</tr>
</tbody>
</table>

*The alternative math courses MATH 1450 or 1400 and 1405 may be substituted with adviser approval.

MOLB Core Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 3000</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4600 and 4610</td>
<td>6</td>
</tr>
<tr>
<td>MOLB 4320</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 4485</td>
<td>1</td>
</tr>
<tr>
<td>MOLB 4050 and 4051 or 4052</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

MOLB Advanced Core Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 4440 or 4450 or 4670</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
</tr>
</tbody>
</table>

MOLB Elective Requirement (10 hours)

Courses from the following list that were not used to fulfill the MOLB Advanced Core Requirement may be applied to the MOLB Elective Requirement; a maximum of 3 credits of MOLB 4010 may be counted toward the MOLB Elective Requirement.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 4010</td>
<td>1-3</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
</tr>
</tbody>
</table>

Molecular Biology Interest Areas

After discussing individual interests with a molecular biology adviser, a student should enroll in additional courses that will enhance preparation for a chosen career objective. Listed below are recommended courses that are not required but will further develop a student’s skills and understanding in five Interest Areas.

Biochemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2230</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3550 or 4507 and 4508</td>
<td>3-6</td>
</tr>
<tr>
<td>CHEM 4230</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 4400</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4560</td>
<td>3</td>
</tr>
<tr>
<td>CHE 4100</td>
<td>3</td>
</tr>
<tr>
<td>COSC 1010 or 1030 or 1100</td>
<td>3-4</td>
</tr>
<tr>
<td>MOLB 4010</td>
<td>6</td>
</tr>
<tr>
<td>MOLB 4460</td>
<td>3</td>
</tr>
</tbody>
</table>

Cell and Molecular Genetics

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 4010</td>
<td>6</td>
</tr>
<tr>
<td>MOLB 4260</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4440</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4450</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4670</td>
<td>3</td>
</tr>
<tr>
<td>ZOO 4280</td>
<td>3</td>
</tr>
<tr>
<td>ZOO 4340</td>
<td>3</td>
</tr>
</tbody>
</table>

Computational Molecular Biology

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 1010 or 1030 or 1100</td>
<td>3-4</td>
</tr>
<tr>
<td>COSC 2030</td>
<td>4</td>
</tr>
<tr>
<td>IMGT 1400</td>
<td>3</td>
</tr>
<tr>
<td>IMGT 3400</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4010</td>
<td>6</td>
</tr>
<tr>
<td>BOT 4550</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4560</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3050</td>
<td>3</td>
</tr>
<tr>
<td>STAT 4255</td>
<td>3</td>
</tr>
<tr>
<td>STAT 5380</td>
<td>3</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICR 2220</td>
<td>4</td>
</tr>
<tr>
<td>MICR 4130</td>
<td>3</td>
</tr>
<tr>
<td>MICR 4220</td>
<td>3</td>
</tr>
<tr>
<td>MICR 4360</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 4010</td>
<td>6</td>
</tr>
<tr>
<td>MOLB 4400</td>
<td>4</td>
</tr>
<tr>
<td>MOLB 4440</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4460</td>
<td>3</td>
</tr>
<tr>
<td>MOLB 4540</td>
<td>4</td>
</tr>
<tr>
<td>MICR 4710</td>
<td>3</td>
</tr>
</tbody>
</table>
Recommended Course Sequence

In order to fulfill course prerequisites in a timely manner, the following sequence of courses relevant to the MOLB BS degree requirements is recommended. A complete sequence of recommended courses fulfilling all university and MOLB degree requirements is listed in the Molecular Biology 4-year plan, available on the web or by request from the department. In consultation with a student’s advisor, electives should be selected to fulfill University Studies requirements and to enhance a student’s educational background.

Note that this example course sequence does not include specified credits for undergraduate research, summer courses, or study abroad experiences. Many students opt to complete their undergraduate courses in five years in order to take full advantage of the educational and undergraduate research opportunities in the Department of Molecular Biology.

FRESHMAN YEAR: Fall Hrs.
LIFE 10104
CHEM 10203
MATH 22004
USP First-Year Seminar3
MOLB 40103

FRESHMAN YEAR: Spring Hrs.
MOLB 20214
CHEM 10304
USP COM13
STAT 20504

SOPHOMORE YEAR: Fall Hrs.
MOLB 30003
CHEM 24204
USP COM23

SOPHOMORE YEAR: Spring Hrs.
CHEM 24404

JUNIOR YEAR: Fall Hrs.
MOLB 46003
PHYS 11104
MOLB 44854
LIFE 30504

JUNIOR YEAR: Spring Hrs.
MOLB 46103
PHYS 11204
MOLB 43204
MOLB 4000-level3

SENIOR YEAR: Fall Hrs.
MOLB 4000-level6-7
MOLB 40501

SENIOR YEAR: Spring Hrs.
MOLB 4000-level3-6
MOLB 40511

Requirements for Undergraduate Minor in Molecular Biology

Students wishing to minor in molecular biology should discuss their plans with an adviser in the Department of Molecular Biology. Formal declaration of molecular biology as a minor requires 1) submission of a form that must be approved by the Department of Molecular Biology and the College of Agriculture and Natural Resources Dean’s Office, 2) appointment of a minor adviser from the Department of Molecular Biology.

To receive a minor in molecular biology, a student must complete courses listed in the following areas:

Science Foundation course requirements Hrs.
LIFE 10104
LIFE 30504
CHEM 1020 and 10308
CHEM 2300 or 2420 and 24408
MATH 2200 or 1450 or 1400 and 140514

MOLB course requirements Hrs.
MOLB 20214
MOLB 30003
Lab course MOLB 4320 or 40103-4
MOLB 3610 and 5 additional MOLB credits or MOLB 4600 and 4610 and 3 additional MOLB credits (excluding MOLB 4010, 4050, 4051, 4052 and 4850).

Graduate Study

The Department of Molecular Biology offers the Ph.D., M.S. and M.A. degrees for students who wish to do graduate work in molecular biology, in preparation for careers in academia, the biotechnology industry, medicine, or other professions. Prospective graduate students should visit the Molecular Biology Department web site (www.uwyo.edu/molecbio/) or the Graduate Program in Molecular and Cellular Life Sciences web site (www.uwyo.edu/mcls/) for more information.

Program Specific Admission Requirements

A prospective student must apply to a Molecular Biology Department faculty member with whom they wish to work (www.uwyo.edu/molecbio/faculty-and-staff/). Once a mentor has been identified, the student should apply to the graduate program of choice.

Candidates for all molecular biology graduate programs must have attained minimum entrance requirements, as specified by:

1) Department of Molecular Biology graduate admission requirements, posted at www.uwyo.edu/molecbio/ and

2) University of Wyoming Graduate Student Regulation and policies, posted on the Office of the Registrar website: www.uwyo.edu/registrar/university_catalog/grad_students.html

Instructions for applying to the Molecular Biology Graduate Degree Programs are posted at www.uwyo.edu/molecbio/degree-programs/index.html.

Program Specific Degree Requirements

Throughout the degree program, a graduate student is guided and evaluated by the research adviser and graduate committee. Here we provide only general descriptions of degree programs. Details of coursework and other requirements for obtaining a Ph.D., M.S. or M.A. degree in Molecular Biology are specified in the Departmental Policies for the Graduate Programs, listed by date of program entrance on the departmental website (www.uwyo.edu/molecbio/).

Doctor of Philosophy in Molecular Biology (Ph.D.)

The Ph.D. is a research-intensive degree. The student conducts a guided research project in the laboratory into which they have been accepted. The faculty research adviser is responsible for financial support of the student. A student will conduct a research project that is expected to result in multiple publications in research journals as well as presentations in the department and at scientific meetings. Student performance is monitored by a dissertation committee that will evaluate a student’s research proposal, preliminary examination, seminar presentations, written dissertation, final public seminar, and final oral defense
Molecular Biology (MOLB)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB•Q]).

1101. First-Year Seminar. 3. (none) FYS 2021 [2210]. General Microbiology. 4. Introduces nature and diversity of microorganisms and their implication for all of biology. Covers comparative properties of eukaryotic and prokaryotic microbes, as well as their roles as disease agents, ecological agents, and model systems for understanding of fundamental biological processes at the molecular level. Cross listed with MICR 2201. Prerequisites: A grade of C or better in LIFE 1010 and CHEM 1000 or 1020.

2240. Medical Microbiology. 4. Designed primarily for nursing and pre-pharmacy majors. Introduces microbiology, including the diversity of prokaryotic and eukaryotic microbes, their structural and physiological properties, and their applied medical significance. Covers the basic principles of the immune system and emphasizes the communicable diseases of man caused by microbial pathogens. Cross listed with MICR 2240. Prerequisites: LIFE 1010. (Normally offered spring semester)

3000. Introduction to Molecular Biology. 3. An introduction to molecular biological processes governing cellular events is presented in the context of the structure of genomes, genes and chromosomes, DNA replication, gene expression, signal transduction pathways and the regulation of cellular processes in disease and development. Experimental methods and technologies will also be discussed. Prerequisites: LIFE 1010 and CHEM 1030; MOLB/MICR 2021 recommended. (Normally offered fall and summer semesters.)

3610. Principles of Biochemistry. 4. One-semester biochemistry course for life-, health- and physical-science students. Introduces a full range of biochemical concepts including discussion of major macromolecules, metabolism and molecular biology. Prerequisites: LIFE 1010 and a minimum grade of C- in CHEM 2300 or CHEM 2420. (Normally offered fall and some summer semesters)

4010. Laboratory Research in Molecular Biology. 1-3 (Max. 12). Undergraduate student will conduct a laboratory or computational research project under the guidance of a Molecular Biology Department faculty member, who will serve as the student’s research adviser. Prerequisites: LIFE 1010 or concurrent enrollment, and consent of instructor.

4050. Student Seminar. 1 (Max. 4). Exposes students to current topics in molecular biosciences and examines primary journal literature with oral presentations and class discussions. Offered Satisfactory/Unsatisfactory only. Prerequisites: MOLB 3000 and 3610 or 4600.

4051 [4050]. Departmental Seminar 1 (Max. 15). Attend a series of weekly seminars on a diverse set of research topics presented by visiting faculty or research scientists and will participate in a discussion following the seminar. Satisfactory/Unsatisfactory only. Dual listed with MOLB 5051. Prerequisite: MOLB 3000 or 3610 or 4600.

4052. [4050]. Summer Seminar. 1 (Max. 5). Consists of one week of lectures, presented by a renowned scientist from either academics or visiting faculty or research scientists and will participate in a discussion following the seminar. Satisfactory/Unsatisfactory only. Dual listed with MOLB 5052. 4100 [3980]. Clinical Biochemistry. 4. Integrated discussion of biochemical, molecular, and physiological principles underlying human medical disorders and biochemical and molecular genetics tests used in prevention, diagnosis and treatment. Weekly discussion sessions review basic concepts studied by students independently and class sessions include problem solving in an active learning format, lectures and other applied activities. Prerequisite: Minimum grade of C- in MOLB 3610 or 4600; course in physiology recommended (e.g. ZOO 3115). (Normally offered spring semester)

4260. Quantitative Microscopy. 1. Acquaints students with principles of light microscopy, use of fluorescent probes and image processing software. Students use phase contrast, fluorescent, and confocal microscopes learning to measure and compare size and intensity of images. Dual listed with MOLB 5260. Prerequisites: MOLB 4600 or LIFE 3600, and PHYS 1120.

4320. Investigations in Molecular Biology. 4. (none) COM3 Research project of the type experienced by graduate students or research associates in academic or commercial settings. Student performance, engagement and understanding will be assessed through written assignments (literature reviews, lab reports), digital communication (electronic research notebook, data presentation) and oral communications (literature presentation, research effort report). Prerequisite: Minimum grade of C- in MOLB 3610 or MOLB 4600.

4400. Immunology. 4. Biology of immune system; cellular and molecular mechanisms; host resistance to infectious agents; as well as hypersensitivities, autoimmunity, tumor and tissue rejection. Includes laboratory for immunological techniques. Cross listed with PATB 4400. Dual listed with MOLB 5440. Prerequisites: MOLB/MICR 2021 or 2240 or PATB 2220, and a minimum grade of C- in MOLB 3000 or MOLB 3610. (Normally offered fall semester)

4440. Microbial Genetics. 3. Discusses microbial genetic approaches to study cell function and provides a molecular foundation for understanding how genes work to elicit phenotypes. Dual listed with MOLB 5440; Cross-listed with MICR 4440. Prerequisites: MOLB 2021 and 3000 and LIFE 3050. (Normally offered spring semester)

4450. Cell and Developmental Genetics. 3. Integrates the genetic control of cell regulation and animal development in both vertebrate and invertebrate model systems such as Drosophila, C. elegans and the mouse. Includes studies of
4460. Microbial Physiology and Metabolism. 3. Studies life processes of microbes as mediated by their structures acting in consort, in response to changing environments. Cross-listed with MICR 4460. Dual listed with MOLB 5460. Prerequisite: Minimum grade of C- in MOLB/MICR 2021 or 2240 and MOLB 3610 or 4610. (Normally offered fall semester)

4485. Computers in Biology. 1. Lectures and hands-on computational exercises in bioinformatics that prepare students to use a range of graphical and command-line tools to analyze genetic data efficiently at various scales. Exercises in several subdisciplines of bioinformatics are implemented in Linux on local workstations or remote servers. Dual listed with MOLB 5485. Prerequisite: Minimum grade of C- in MOLB 3000 or LIFE 3050. (Normally offered fall semester)

4540. Microbial Diversity and Ecology. 4. Introduces the diversity and ecology of soil microbes through an integrated lecture and laboratory course. Emphasis on molecular approaches to analyzing microbial diversity and evolution, and student-directed experimental design. Provides a continuum of realistic research experiences in molecular microbial ecology, from field work to evolutionary analysis of DNA sequence data. Cross listed with MICR/SOIL/ECOL 4540. Dual listed with MOLB/SOIL/ECOL 5540. Prerequisite: MOLB 2021.

4600. Biochemistry 1: Bioenergetics and Metabolism. 3. Structure and function of major biomolecules, energy transduction, and central biochemical processes are discussed with an emphasis on regulatory controls in metabolism and cellular processes. Dual listed with MOLB 5600. Prerequisite: Minimum grade of C- in CHEM 2300 or CHEM 2420 and MOLB 3000 or MOLB 3610. (Normally offered fall semester)

4610. Biochemistry 2: Molecular Mechanisms. 3. Biochemical and molecular mechanisms underlying cell function, including gene expression and epigenetic regulation, RNA and protein modification and function, assembly of macromolecular complexes, signaling and regulation of the cell cycle, are discussed. Dual listed with MOLB 5610. Prerequisite: Minimum grade of C- in MOLB 3610 or MOLB 4600. (Normally offered spring semester)

4670. Advanced Molecular Cell Biology. 3. Key concepts in eukaryotic cell biology will be presented with a focus on cellular processes that form the basis for human diseases. Cellular organization, dynamics, and signaling will be emphasized. Students will also explore principles of research design by critical reading and discussion of scientific literature. Dual listed with MOLB 5670. Prerequisite: MOLB 3000 and MOLB 3610 or MOLB 4600.

4850. Undergraduate Teaching Internship. 1 (Max. 4). Undergraduate student will assist in classroom or laboratory teaching under the guidance of an instructor in Molecular Biology. Offered Satisfactory/Unsatisfactory only. Prerequisites: junior standing and consent of instructor.

4990 Topics In:___-1-3 (Max. 6). Lectures, literature reviews and discussion of selected current topics in different areas of molecular biology. Please check class schedule for current offerings each semester. Prerequisite: MOLB 3000 or 3610 or 4600.

5010. Advanced Laboratory Research in Molecular Biology. 1-3 (Max. 18). Students in PhD, MS and MA programs in Molecular Biology and doctoral students in the Molecular and Cellular Life Sciences (MCLS) graduate program, work in laboratory or computational research projects under the guidance of a Molecular Biology faculty member. Prerequisite: graduate standing and consent of instructor.

5025. Summer Seminar. 1 (Max. 18). Students will present current research in the fields of Molecular Microbiology and Synthetic Biology, which will be followed by a critical discussion moderated by the course instructors. Students will explore the principles of research design by critical reading and discussion of scientific literature. Prerequisite: graduate standing.

5056. Current Topics in Cell Biology. 2 (Max. 18). Students present their ongoing laboratory research and receive feedback from lab group members. Principles of research design will be explored by critical reading and discussion of current topical literature. Prerequisite: graduate standing.

5057. Microbial and Synthetic Biol. 2 (Max. 18). Students will present current research in the fields of Molecular Microbiology and Synthetic Biology, which will be followed by a critical discussion moderated by the course instructors. Students will explore the principles of research design by critical reading and discussion of scientific literature. Prerequisite: graduate standing.

5260. Quantitative Microscopy. 1. Acquaints students with principles of light microscopy, use of fluorescent probes and image processing software. Students use phase contrast, fluorescent, and confocal microscopes learning to measure and compare size and intensity of images. Dual listed with MOLB 4260. Prerequisite: MOLB 4600 or LIFE 3600, and PHYS 1120.

5400. Immunology. 4. Biology of immune system; cellular and molecular mechanisms; host resistance to infectious agents; as well as hypersensitivities, autoimmunity, tumor and tissue rejection. Includes laboratory for immunological techniques. Cross listed with PATB 4400. Dual listed with MOLB 4400. Prerequisite: MOLB/MICR 2021 or 2240 or PATB 2220, and a minimum grade of C- in MOLB 3000 or MOLB 3610. (Normally offered fall semester)

5440. Microbial Genetics. 3. Discusses microbial genetic approaches to study cell function and provides a molecular foundation for understanding how genes work to elicit phenotypes. Dual listed with MOLB 4440. Prerequisite: MOLB 2021 and 3000 and LIFE 3050. (Normally offered spring semester)

5450. Cell and Developmental Genetics. 3. Integrates the genetic control of cell regulation and animal development in both vertebrate and invertebrate model systems such as Drosophila, C elegans and the mouse. Includes studies of eukaryotic signal transduction, gene
control, and current transgenic technologies. Dual listed with MOLB 4450. **Prerequisites:** MOLB 3000 and MOLB 4600 and LIFE 3050.

5460. Microbial Physiology and Metabolism I. 3. Studies life processes of microbes as mediated by their structures acting in consort, in response to changing environments. Dual listed with MOLB 4460. **Prerequisites:** Minimum grade of C- in MOLB/MICR 2021 or 2240 and MOLB 3610 or 4610. (Normally offered fall semester.)

5485. Computers in Biology. 1. Lectures and hands-on computational exercises in bioinformatics that prepare students to use a range of graphical and command-line tools to analyze genetic data efficiently at various scales. Exercises in several subdisciplines of bioinformatics are implemented in Linux on local workstations or remote servers. Dual listed with MOLB 4485. **Prerequisites:** Minimum grade of C- in MOLB 3000 or LIFE 3050. (Normally offered fall semester)

5520. Molecular and Cellular Life Sciences Laboratory Rotations. 3 (Max. 6). Laboratory research rotations for first year Molecular and Cellular Life Sciences (MCLS) students in the doctoral program. **Prerequisite:** Enrollment in the Molecular and Cellular Life Sciences (MCLS) program.

5521. Molecular and Cellular Life Sciences Cornerstone. 1. Introduction for students in the Molecular and Cellular Life Sciences program to graduate school and research. Exposes students to diverse faculty research programs and elements fundamental to successful graduate and scientific careers, including scientific publishing, grants, careers, intellectual property, and ethical expectations. Offered Satisfactory/Unsatisfactory only. **Prerequisite:** Enrollment in the Molecular and Cellular Life Sciences doctoral program. (Normally offered fall semester)

5540. Microbial Diversity and Ecology. 4. Introduces the diversity and ecology of soil microbes through an integrated lecture and laboratory course. Emphasis on molecular approaches to analyzing microbial diversity and evolution, and student-directed experimental design. Provides a continuum of realistic research experiences in microbial ecology, from field work to evolutionary analysis of DNA sequence data. Cross listed with MOLB/MICR/SOIL 4540. Dual listed with SOIL/ECOL 5540. **Prerequisite:** MOLB 2021.

5600. Biochemistry I: Bioenergetics and Metabolism. 3. Structure and function of major biomolecules, energy transduction, and central biochemical processes are discussed with an emphasis on regulatory controls in metabolism and cellular processes. Dual listed with MOLB 4600. **Prerequisites:** consent of instructor. (Normally offered fall semester)

5610. Biochemistry 2: Molecular Mechanisms. 3. Biochemical and molecular mechanisms underlying cell function, including gene expression and epigenetic regulation, RNA and protein modification and function, assembly of macromolecular complexes, signaling and regulation of the cell cycle, are discussed. Dual listed with MOLB 4610. **Prerequisites:** consent of instructor. (Normally offered spring semester)

5630. Advanced Topics in Molecular Biology. 1-3 (Max. 6). Lectures, literature reviews and discussion of selected current topics in molecular biology. Check class schedule for current offerings each semester. **Prerequisites:** MOLB 3000 or 3610 or 4600.

5670. Advanced Molecular Cell Biology. 3. Key concepts in eukaryotic cell biology will be presented with a focus on cellular processes that form the basis for human diseases. Cellular organization, dynamics, and signaling will be emphasized. Students will also explore principles of research design by critical reading and discussion of scientific literature. Dual listed with MOLB 4670. **Prerequisites:** MOLB 3000 and MOLB 3610 or MOLB 4600.

5700. Principles of Biomedical Research. 3. This series of complementary workshops will provide opportunities to develop knowledge and skills in scientific methodology, data analysis, statistical interpretation and representation, scientific communication, research codes and ethics, entrepreneurship, and interpersonal conduct. Students will also learn about career options and develop individual goals and trajectories based on strengths and interests. **Prerequisites:** Graduate student status (biomedical fields preferred). Satisfactory/Unsatisfactory only. (Normally offered spring semester)

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. **Prerequisites:** graduate standing and consent of instructor.

5920. Continuing Registration: On Campus. 1-2 (Max. 16). **Prerequisite:** advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). **Prerequisite:** advanced degree candidacy.

5959. Enrichment Studies. 1-3 (Max. 99). Designed to provide an enrichment experience in a variety of topics. Note: credit in this course may not be included in a graduate program of study for degree purposes.

5960. Thesis Research. 1 - 12. (Max 24). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. **Prerequisite:** enrollment in a graduate degree program.

5980. Dissertation Research. 1-12 (Max. 48). Designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. **Prerequisite:** enrollment in a graduate degree program.

5990. Internship. 1 - 12 (Max. 24). **Prerequisite:** graduate standing.

Department of Plant Sciences

Room 50 Agriculture Building

PHONE: (307) 766-3103

Website: www.uwyo.edu/plantsciences

Department Head: Andrew Kniss

Professors:

JIM HEITHOLT, B.S. Western Illinois University 1978; M.S. University of Missouri 1980; Ph.D. University of Kentucky 1984; Professor of Crop Physiology 2014.

M. ANOWARUL ISLAM, B.S. Bangladesh Agricultural University 1990; M.S. Institute of Postgraduate Studies in Agriculture, Bangladesh 1996; Ph.D. University of Sydney, Australia 2003; Professor of Forage Agronomy 2019, 2008.

Associate Professors:

RANDA JABBOUR, B.S. Rochester Institute of Technology 2003; Ph.D. Pennsylvania State University 2009; Associate Professor of Agroecology 2019, 2013.

BRIAN A. MEALOR, B.S. North Georgia College and State University 1999; M.S. University of Wyoming 2003; Ph.D. 2006; Director, Sheridan Research and Extension Center; Associate Professor of Rangeland Restoration and Weed Science 2015, 2009.

URSZULA NORTON, B.S. Warsaw Agricultural University 1988; M.S. 1990; M.S. Iowa State University 1995; Ph.D. University of Montana 2000; Associate Professor of Agroecology and Soil Science 2015, 2009.

Assistant Professors:

CARRIE EBERLE, B.S. University of Wisconsin-Madison 2005; Ph.D. University of Minnesota 2012; Assistant Professor of Agronomy and Cropping Systems 2016.
DEBALIN SARANGI, B.S. Bidhan Chandra Krishi Viswavidyalaya India 2010; M.S. Punjab Agricultural University India 2012; Ph.D. University of Nebraska-Lincoln 2016; Assistant Professor of Agronomy and Weed Science 2019.

WILLIAM STUMP, B.S. Purdue University 1981; M.S. Colorado State University 1984; B.F.A. 1991; Ph.D. 1997; Assistant Professor of Plant Pathology 2014.

DAN TEKIELA, B.S. University of Illinois 2011; Ph.D. Virginia Tech University 2016; Assistant Professor of Invasive Plant Ecology and Management 2016.

Academic Professionals:

CHRIS HILGERT, B.S. Oregon State University 2001; M.S. 2003; Extension Horticulture Specialist, Master Gardener Coordinator 2011.

KAREN PANTER, B.S. Colorado State University 1997; M.S. University of Nebraska 1981; Ph.D. Colorado State University 1985; Extension Horticulture Specialist 1998; Senior Extension Educator 2012.

Emeritus/Retired Faculty:

Agroecology Major

The Department of Plant Sciences offers a Bachelor of Science degree in Agroecology jointly with the Ecosystem Science and Management Resources, and three minors. Minors offered by Plant Sciences include Agroecology, Horticulture, and Plant Protection. The minor in Horticulture includes courses in plant propagation, organic food production, greenhouse design and management, and introductory horticulture. The minor in Plant Protection includes courses in agronomy, plant genetics, plant pathology, and weed science. These minors allow students within many bachelors programs to obtain an added emphasis in areas that enjoy strong employment opportunities.

A B.S. degree in agroecology prepares students for careers in agriculture, natural resources, environmental and life sciences and for advanced graduate studies in specific subdisciplines within these areas. It is a broad, interdisciplinary, undergraduate curriculum that combines and integrates courses in the crop, horticulture, disease, weeds, soil, and insect sciences and is supported by a science-based curriculum and general education. Flexibility is built into the agroecology curriculum to readily accommodate students seeking to pursue an emphasis or obtain a minor in a specific discipline. To that end the breadth of the curriculum is balanced with greater depth in biology, chemistry, crop science, entomology, environmental studies, natural resource management, soil science, plant pathology, weed science, horticulture, turf management, pre-veterinary medicine, rangeland ecology and watershed management, animal science, microbiology, and molecular biology. A liberal number of electives permits design of a program that best meets individual career and educational objectives. The agroecology program is well suited for students who possess a strong interest in, and an aptitude for, science, agriculture, the environment, life sciences, or natural resources.

The agroecology core curriculum is comprised of freshman through senior level courses that illustrate dynamic and complex interactions of plants, soils, and plant pests (diseases, insects, weeds) with the environment. Academic training is enhanced with experiential learning through research apprenticeships, internships, field studies, and special agroecology capstone courses. Special emphasis is given to development of critical thinking and communication skills, problem solving and application of science. It is an interdisciplinary program designed to prepare students for “real world” situations.

Agroecology B.S. degree recipients are prepared for careers with private and public institutions and agencies in such areas as: agricultural consulting, production or sales, research, product development, education, extension education, international programs, and scientific and technological support. These careers include but are not limited to: soil scientist, conservationist, entomologist, consultant, plant scientist, integrated pest management specialist, ecologist, research associate or technician, agronomist, biotechnician, and agroecologist. Degree recipients are also prepared for graduate education in biological and environmental sciences.

Course Requirements for Agroecology Majors

<table>
<thead>
<tr>
<th>Course</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroecology</td>
<td>22</td>
</tr>
<tr>
<td>AECL 1000, 3030, 4990, SOIL 2010, 4140, and 4 hrs from a combination of AECL 4920, 4930 or 4960</td>
<td></td>
</tr>
</tbody>
</table>
Agroecology Minor
(Plant Sciences & Ecosystem Science and Management)
Minimum requirements......................... 20-21
AECL 1000; two of the following: SOIL 2010, LIFE 2023, AECL 3030; and 9
additional upper division hours from the following: ENTO, PLNT, and/or
SOIL.

Plant Protection Minor
(Plant Sciences)
Minimum requirements..........................17
AECL 1000, AECL 3030, and 10
additional hours from the following: PLNT 3220, 4000, 4070, and 4120.

Horticulture Minor
(Plant Sciences)
Minimum requirements..........................16
PLNT 2025 and 2026, and 12 additional
hours from the following: PLNT 3000, 3036, 3300, 4120, 4180, 4190, 4200,
4975.

Graduate Study
The Department of Plant Sciences offers curricula leading to the master of science and
degree in Plant Sciences. Courses within the department are offered in
crop science, horticulture, plant ecology, weed science, and agronomy. Interdisciplinary
coursework and research projects are common for Plant Sciences graduate students.

Program Specific Admission Requirements
In addition to university minimum requirements, a majority of the department faculty and
department head must approve the admission. To be considered for admission, candidates
must establish a faculty member willing to serve as advisor.

In order to apply, please submit the following via the University of Wyoming’s online
application system (http://www.uwyo.edu/ admissions/apply.html): a statement of purpose
that describes your professional objectives and scientific interests, a current Curriculum Vitae,
current academic transcripts, TOEFL scores (if English is not your primary language), and
three letters of recommendation. Our regular deadline for fall semester admission is Febru-
ary 15, although we will accept applications any time during the year (including for spring
semester admission as well).

Please see the Graduate Admissions and
Graduate Student Regulations and Policies
entries in the front section of the UW Catalog
for more information, or visit UW’s Graduate
Education website at http://www.uwyo.edu/
uwgrad/.

Program Specific Graduate Assistantship Information
M.S. assistantships include a stipend, plus
tuition and fee waiver, and health insurance.
Ph.D. assistantships include a stipend, plus
tuition and fee waiver, and health insurance.
These assistantships are for the 9-month
academic year, but summer support is typically
available.

Program Specific Degree Requirements
Master of Science in Plant Sciences
Plan A (thesis)
Requirements for the master of science
degree include 26 hours of coursework beyond
the bachelor’s degree number 4000 or above,
4 hours of thesis research, a research proposal,
original research, and oral defense of the thesis.

The M.S. degree is typically completed in
two years. The student’s coursework is selected
to fit the student’s individual needs by mutual
consultation among the student, his/her major
professor, and graduate committee.

Doctoral Program
The requirements for the doctor of philoso-
phy degree include 60 hours of coursework
beyond the bachelor’s degree number 4000 or
above, 12 hours of dissertation research, a
research proposal, original research, written
and oral preliminary exams to be taken when
most or all coursework is completed, and an
oral defense of the dissertation.

Dissertations may be in a modified journal
article format but must meet university format-
ting requirements.

The student’s coursework is selected to
fit the student’s individual needs by mutual
consultation among the student, his/her major
professor, and graduate committee.

The student is expected to participate in the
usual activities of scientific research such as
attending and presenting at research seminars
and professional meetings and publishing his/her
research.

Agroecology (AECL)
USP Codes are listed in brackets by the
2003 USP code followed by the 2015 USP
code (e.g. [QB•Q]).

1000 [CROP/BOT 2000]. Agroecology. 4.
[SB,G•PN] Introduces ecological interac-
tions that affect food producing (agricultural)
systems. Lectures and laboratory exercises
study the various biological components and
the science of sustainable agricultural produc-
tion. Features differences between developed
and developing countries. Explores crises and
challenges facing agriculture and global
society.

1101. First-Year Seminar. 3. [(none)•FYS]
2010. Introduction to Soil Science. 3.
[SE•(none)] Introduces soil ecological
processes and management in terrestrial en-
vironments. Discusses interaction of soil, bio-
ological, chemical, morphological, and physical
properties with land management in wildland
and agricultural ecosystems. Emphasis of the
course is on plant response to soil conditions.
Cross listed with SOIL 2010. Prerequisite: 4
hours of chemistry.

3030 [3030]. Ecological Web: Ecology of
Plant Protection. 3. Introduces students to
current phenomena of crop cultivation and
organisms, both plant and animal, that attack
them. Provides basic skills necessary to under-
stand ecology and management of economic
crop pests. Prerequisites: LIFE 1010 and AECL
1000. (Offered fall semester)

4120. Organic Food Production. 3. A
complete review of the federal organic pro-
duction guidelines, methods and applications
for organic production facilities, alternative
marketing principles, concepts of organic fer-
tilizer use, organic pest control and concepts
for using environmentally friendly methods
to reduce chemical, petroleum and synthetic
inputs for more sustainable crop and livestock
agricultural systems. Cross listed with PLNT
4120. Prerequisite: 8 hours of LIFE and/or
CHEM.

4130. Applied Remote Sensing for Agricul-
tural Management. 3. Covers remote sensing
concepts and applications related to croplands,
rangelands, forests, and water. Students learn
techniques for monitoring plant growth and
vigor, monitoring rangelands, distinguishing
invasive species, categorizing forest fires, and
mapping water bodies. Students integrate re-
motely sensed data with other geospatial data.
Cross listed with RNEW/GIST 4130. Prerequi-
sites: QA course and 9 credit hours in student’s
major field and junior/senior standing.
Plant Sciences (PLNT)

Plant Sciences Laboratory. 1-2 (Max. 4).

- **Course Description:** Emphasizes individual student-faculty interactions on current topics in agroecology.
- **Prerequisites:** AECL core courses.

Agroecology Field Studies. 2.

- **Course Description:** Various facets of the agroecosystem are covered by visits to agricultural research stations, agri-businesses, private farms, national monuments, historical sites and Federal Parks. Students are exposed to ongoing sustainable research projects and innovative sustainable farming operations where a variety of cropping systems are utilized. Students are usually exposed to archaeological remains of ancient American Indian farming systems. An 8 day trip. **Prerequisite:** AECL 1000. (Offered as needed)

Agroecology Seminar. 3.

- **Course Description:** Capstone agroecology course for final integration of agroecology courses (AECL 2010, 3030, and LIFE 2023). Provides overall synthesis of these academic subjects following completion of a prescribed senior experience course (AECL 4920 or 4930). **Offered spring semester**

Invasive Plant Ecology. 3.

- **Course Description:** Ecological impacts of invasive, non-indigenous plant species, the ecological, genetic and evolutionary hypotheses for invasiveness, as well as management strategies for invasive plant species. Dual listed with AECL 4400; cross listed with RNEW 4400. **Prerequisite:** LIFE 3400.

Pesticide Safety and Application. 1.

- **Course Description:** Introduces various types and safe methods of pesticides application. Subsequent to completion, students may take the certification test administered by the Wyoming Department of Agriculture. Cross listed with ENTO 1150. Offered S/U only. **Prerequisite:** AECL 1000 or LIFE 1010.

Horticultural Sciences Laboratory. 1.

- **Course Description:** Offers hands-on experience in many areas of horticulture. Students learn basic horticultural plant structures and functions, propagation methods, growing media and fertilizers, landscaping, pruning, etc. **Prerequisites:** AECL 1000 or LIFE 1010. (Normally offered fall semester)

Irrigated Agriculture. 3.

- **Course Description:** Study of the complexity of plant/soil water relationships and its importance on irrigation. Soil and water relations, reference/crops evapotranspiration and management of the water balance. Principles of chemigation, computer modeling/monitoring included. Methods for irrigation scheduling and the importance of water use efficiency as a strategy for water conservation. Cross listed with SOIL 3000. **Prerequisite:** MATH 1400, SOIL 2010.

Grape Production. 3.

- **Course Description:** Introduces students to the science of viticulture. Topics include grapevine origin and distribution, taxonomy, morphology and physiology, soil and climatic requirements, vineyard establishment, grapevine nutrition, cultural practices, harvesting and post-harvest management. Successful completion will enhance students’ knowledge and understanding on grape production and management. **Prerequisite:** PLNT 2025.

Plant Pathology. 3.

- **Course Description:** Study of plant diseases, their causes, nature and control, as well as pathogen biology. Study of diseases caused by fungi, bacteria, viruses, nematodes, mycoplasma-like organisms, higher plants and abiotic factors on field and vegetable crops, as well as on landscape plants. Gives students insight into the impact plant diseases have on humans. **Prerequisite:** AECL 1000 or LIFE 1010.

Horticultural Plant Propagation. 3.

- **Course Description:** Emphasis on sexual and asexual propagation of various plants including herbaceous and woody crops. Seed propagation discussions include anatomy, physiology, dormancy, and enhancing seed viability and germination. Asexual propagation discussions center on anatomy and physiology of cuttings, adventitious root formation, budding, grafting, and tissue culture. **Prerequisite:** PLNT 2025. (Normally offered spring semester of even-numbered years)

Plant Disease Control. 3.

- **Course Description:** Advanced study of plant diseases. Important diseases of field, forage and horticultural crops will be studied. Includes history and current distribution and uses of crops. Emphasis will be placed on pathogen biology and development of integrated disease management. Current and classic research papers on plant disease control will be discussed. Dual listed with PLNT 5000. **Prerequisite:** PLNT 3220. (Normally offered fall semester of even-numbered years)

Sustainable Agriculture. 3.

- **Course Description:** Focuses on the sustainability of agroecosystems and the human communities that maintain them in the context of regional, national and global food and fiber requirements. Topics include: the scale of agriculture, low-input systems, current energy and transportation challenges, markets, and integrated crop and livestock production. Dual listed with PLNT 5020. **Prerequisite:** 8 hours of Life Sciences.

Plant Biotechnology. 3.

- **Course Description:** Introduces students to the science and applications of plant cell, tissue and organ culture, and regeneration. Topics include in vitro techniques used for developing new genotypes. Successful completion will enhance knowledge and understanding of plant tissue culture techniques and their applications in crop improvement. Dual listed with PLNT 5050. **Prerequisite:** LIFE 2023 or equivalent.

Weed Science and Technology. 4.

- **Course Description:** Management and physiological principles involved in control of economically important farm and range weeds. Dual listed with PLNT 5070. **Prerequisite:** AECL 1000, LIFE 1010. (Normally offered fall semester)

Organic Food Production. 3.

- **Course Description:** A complete review of the federal organic production guidelines, methods and applications for organic production facilities, alternative marketing principles, concepts of organic fer-
utilizer use, organic pest control and concepts for using environmentally friendly methods to reduce chemical, petroleum and synthetic inputs for more sustainable crop and livestock agricultural systems. Cross listed with AECL 4120. Dual listed with PLNT 5120. Prerequisite: 8 hours of LIFE and/or CHEM.

4180. Greenhouse Crop Production. 4. Production methods for a wide range of herbaceous plants including bedding plants, perennials, vegetables, flowering potted plants, and foliage plants. Emphasis is placed on current production techniques in controlled environments and in the field. Dual listed with PLNT 5180. Prerequisite: PLNT 3300. (Normally offered spring semester of odd-numbered years)

4190. Herbs, Spices and Medicinal Plants. 3. Includes the history and importance of herbs, spices, and medicinals; collection of these plants in the wild; botany; chemistry; greenhouse and field production; organic production; harvesting; drying; postharvest operations; legal aspects; and products. Dual listed with PLNT 5190. Prerequisite: 8 hrs. LIFE and/or CHEM.

4200. Greenhouse Design and Management. 3. Emphasis on greenhouse structural and functional design concepts of economy, efficiency and energy conservation. Primary emphasis is on the limitations and advantages of greenhouses in the Rocky Mountain region, including alternative energy concepts. The management and operational concerns associated with private, commercial, educational and public greenhouses will be included. Dual listed with PLNT 5200. Prerequisite: PLNT 2025 and a USP QA/Q course.

4220. Crop Yield Physiology. 3. Physiological processes underlying crop growth and development. The effect of crop management practices on physiology and yield will also be discussed. Prerequisite: AECL 1000; CHEM 1000.

4470 [CROP 4470]. Seed Science and Technology. 3. Presents aspects of seed biology and processing including development, physiology, ecology, germination, viability, dormancy, production, conditioning, storage, certification and marketing. Dual listed with PLNT 5470. Prerequisite: 8 hours of plant biology.

4520 [CROP 4520]. Plant Breeding. 3. Principles and methods for genetic improvement of all kinds of plants including agronomic, horticultural, forest and range species. Emphasizes fundamental concepts of quantitative genetics and integration of classical plant breeding with emergent biotechnology. Prerequisite: MATH 1000 or statistics course; LIFE 4000. (Normally offered fall semester of odd-numbered years)
5500. Clinical Plant Pathology. 2. Designed to give students practical experience in disease diagnosis. Students are exposed to a variety of current techniques used in the diagnosis and control of plant problems caused by abiotic and biotic factors. Primary emphasis is on the identification of biotic agents, including fungi, bacteria, nematodes and viruses. Students will gain experience and insight in the practical aspects of plant pathology. Prerequisite: PLNT 4000.

5600. Research in Crops. 1-4 (Max. 10). Investigation of research problems to include a written and oral presentation of results. Prerequisite: basic training in the field of problem selected.

5700. Forage Crop Science. 3. The course focuses on major aspects of forage crop production and biology. Cultural practices, adaptation, sustainable agriculture and alternative use, seed production, harvest, livestock utilization and storage of forages. This course will have in-depth emphasis on characteristics of important grasses and legumes and utilization of forages for livestock production. Dual listed with PLNT 4700.

5750. Plant Pathology I. 3. Introduction to the study of plant diseases. Emphasis is placed on physiology of plant disease development. Prerequisite: PLNT 3220.

5840. Graduate Seminar. 1 (Max. 6). Discussion in production, physiology, breeding and weed science. Prerequisite: basic training in plant sciences.

5870. Topics. 1-4 (Max. 10). Independent study. Dual listed with PLNT 4700. Prerequisite: graduate standing.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate standing.

5920. Continuing Registration: On Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5960. Thesis Research. 1-12 (Max. 48). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisite: enrollment in a graduate degree program.

5980. Dissertation Research. 1-12 (Max. 48). Designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. Prerequisite: enrollment in a graduate level degree program.

Department of Veterinary Sciences
Wyoming State Veterinary Laboratory, (307) 766-9925
FAX: (307) 721-2051
Web site: www.uwyo.edu/vetsci
email: vetscience@uwyo.edu
Department Head: William W. Laegreid

Professors:
HOLLY ERNEST, B.Sc. Cornell University 1980; M.S. Ohio State University 1982; D.V.M. 1986; Ph.D. University of California, Davis 2001; Professor of Veterinary Sciences, Wyoming Excellence Chair in Disease Ecology 2014.

WILLIAM W. LAEGREID, B.S. Washington State University 1980; M.S. Washington State University 1984; D.V.M. Washington State University 1985; Ph.D. Washington State University 1988; Professor, Head of the Department of Veterinary Sciences and Director of the Wyoming State Veterinary Laboratory 2012.

Associate Professors:
GERARD P. ANDREWS, B.S. Pennsylvania State University 1980; M.S. University of New Hampshire 1983; Ph.D. Uniformed Services University of Health Sciences 1993; Associate Professor of Veterinary Sciences 2011, 2004.

TODD E. CORNISH, B.S. University of California-Davis 1990; D.V.M. 1994; Ph.D. University of Georgia 1999; Associate Professor of Veterinary Sciences 2005, 1999.

MYRNA M. MILLER, B.S. Colorado State University 1980; D.V.M. 1984; Ph.D. Cornell University 2005; Associate Professor of Veterinary Sciences 2016, 2010.

BRANTA SCHUMAKER, B.S. University of California-Davis 2001; D.V.M. 2005; Ph.D. 2010; Associate Professor of Veterinary Sciences 2016, 2010.

Assistant Professors:
BERIT BANGOURA, D.V.M. Leipzig University 2003; Ph.D. 2008; Ph.D. 2015; Diplomate EVPC 2014; Assistant Professor of Veterinary Sciences 2017.

JENNIFER L. MALMBERG, B.S. Doane University 2004; M.A. Chadron State University 2013; Ph.D. Colorado State University 2018; Assistant Professor of Veterinary Sciences 2019.

KERRY SONDGEROTH, B.A. University of New Hampshire 1997; D.V.M. Colorado State University 2006; Ph.D. Washington State University 2013; Assistant Professor of Veterinary Sciences 2014.

Adjunct Professor:
GEORGE J. LETCHWORTH, B.S. Trinity College 1965; D.V.M. New York State College of Veterinary Medicine 1972; Ph.D. Cornell University 1980; Adjunct Professor of Veterinary Sciences 2001.

Professors Emeritus
E. Lee Belden, Francis D. Galey, Bill Jolley, Merl Raisbeck, Lynn Woodard

The Department of Veterinary Sciences and the Department of Animal Science have combined their efforts to offer B.S., M.S., and Ph.D. degrees in animal and veterinary science (see listing under this title). Several options within the major are available including preveterinary medicine and animal biology. Undergraduate course offerings of the Department of Veterinary Sciences are listed under the title of pathology. They were designed to familiarize students with the principles of animal disease and the basic biological and biomedical sciences.

The Department of Veterinary Sciences offers advanced study leading to the master of science and doctor of philosophy in animal and veterinary science. Areas of emphasis include: pathology, molecular diagnostics, bacteriology, virology, parasitology, epidemiology, immunology, and toxicology of wild and domestic animals.

Graduate Study
The Department of Veterinary Sciences offers advanced study leading to the master of science and doctor of philosophy in animal and veterinary science. Areas of emphasis include: pathology, molecular diagnostics, bacteriology, virology, parasitology, epidemiology, immunology, and toxicology of wild and domestic animals.
Program Specific Admission Requirements

Open to students with a bachelor of science degree who meet the requirements set forth in this Catalog.

Recommended prerequisites include: chemistry, biochemistry, animal anatomy and physiology, biology, microbiology, and introductory statistics.

Program Specific Degree Requirements

Master of Science

Only offered as Plan A

A minimum of 30 credit hours including 4 thesis hours must be earned in 4000-5999 level courses.

Two semesters of graduate seminar (PATB 5515) and STAT (5050) or their equivalents are required.

The program of study is arranged with the student's graduate committee.

Doctoral Program

A 72 hour program.

Students must meet the university minimum requirements.

Preferred Requirements

Competitive applicants for either degree program will have a GPA 3.250 or higher and high GRE scores (153 verbal, 149 quantitative, 302 total using best composite scores).

Pathobiology (PATB)

USP Codes are listed in brackets by the 2003 USP code followed by the 2015 USP code (e.g. [QB[Q]]).

1001. Investigating Careers in Veterinary Medicine. 1. [I,L,(none)] Career paths open to veterinarians are diverse including private practice, clinical specialties, basic/applied sciences like environmental/public health, preventive medicine, military service, microbiology and research. Additional topics: veterinary college application process, financing veterinary education, personal time/stress management of choosing a career in veterinary medicine and animal health.

1101. First-Year Seminar. 3. [(none)FYS] 2220. Pathogenic Microbiology. 3. This course serves as an introduction to bacterial pathogenesis and disease using taxonomy and categorical approaches. Material presented in the course includes maintenance, transmission, molecular mechanisms of virulence factors, pathogen-host interactions, disease process, and treatment and prevention of disease of pathogenic bacteria and fungus. Cross listed with MICR 2220. Prerequisite: MICR 2210. (Offered spring semester)

2400. Host Defenses Against Infection. 3. Course content will address history of immunology in the context of infectious diseases, different pathogens and their interaction with higher-order life forms and an introduction of the immune system relevant to protect against invasive microorganisms. Course is appropriate for students majoring in Veterinary Sciences, Microbiology, or other Life Sciences fields. Prerequisite: MICR/MOLB 2021, or MICR/MOLB 2240.

4001. Epidemiology (Diseases in Population). 3. Basic epidemiologic concepts and approaches to population problems in medicine, with examples from veterinary and human health. Covers a wide spectrum of topics and introduces practical applications of epidemiology. Dual listed with PATB 5001; cross listed with MICR 4001. Prerequisite: STAT 2050 or STAT 2070.

4050. Problems in Animal Disease. 1-4 (Max. 6). Offers opportunity for supervised investigation of animal disease problems involving techniques of bacteriology, mycology, virology, gross pathology, histopathology and/or toxicology. Prerequisites: 12 semester hours of biological science and consent of instructor; MOLB 2021 is recommended for most students.

4110. Diseases of Food Animals. 3. acquaints students with diseases of cattle, sheep, swine and poultry. Dual listed with PATB 5110. Prerequisite: LIFE 2022. (Offered fall semester)

4111. Equine Health and Disease. 3. To familiarize students with identification, prevention and treatment of diseases in horses through proper health management techniques. Dual listed with PATB 5111. Cross listed with ANSC 4111. Prerequisite: ANSC 1030.

4130. Mammalian Pathobiology. 3. [(none)COM3] Anatomical basis of disease in mammals. Emphasis on concepts of pathogenesis of disease, and the gross, microscopic and clinicopathological changes associated with lesions: cell injury and death; cellular degeneration; disturbances of growth and circulation; neoplasia; inflammation; and recognition of gross and microscopic tissue changes. Background in immunology will be beneficial. Dual listed with PATB 5130; cross listed with MICR 4130. Prerequisite: C or better in LIFE 2022. (Normally offered spring semester)

4140. Principles of Toxicology. 3. Toxicology is the study of poisons, their mechanisms of action and their effects on various organisms including man and domestic animals. Designed to provide students in the life and environmental sciences with an understanding of the principles of toxicology as they apply to animal and human health, food safety and environmental studies. Dual listed with PATB 5140. Prerequisite: 9 hours of biological science (e.g., physiology), 4 hours chemistry, 3 hours biochemistry. (Normally offered fall semester of even-numbered years)

4150. Seminar 1. (Max. 4). Preparation and oral presentation of papers on veterinary sciences topics. S/U Only. Prerequisite: 8 hours of biology and consent of instructor.

4170 [4120]. Diseases of Wildlife. 3. Introduction to wildlife diseases of the Rocky Mountain region and North America. Emphasis on infectious, parasitic, traumatic, toxic, and other disease agents with coverage of mechanisms of disease, epidemiology, and disease impacts on wildlife populations and species. Significant discussion of zoonotic diseases and diseases at the wildlife/domestic animal interface. Dual listed with PATB 5170. Prerequisite: 12 hours of biological or zoological sciences. (Offered spring semester of even-numbered years)

4220. Molecular Mechanisms of Bacterial Pathogenesis. 3. Intended as a survey of the molecular mechanisms that have evolved in pathogenic bacterial species which result is disease. The broad-scope objective is to assist students in gaining an understanding of principals and concepts as they apply to common themes of bacterial virulence acting on higher order host organisms. In-class review/discussion of scholarly manuscripts, historical to present day, is paramount in allowing students to gain a better appreciation and comprehension of biological principals and concepts through knowledge of experimental approaches. Cross listed with MICR 4220; dual listed with PATB 5220. Prerequisites: PATB/MICR 2240 and statistics (or epidemiology).

4240. Disease Ecology. 3. Introduction to 1) how interactions among species, ecosystems, human systems, and abiotic components of the environment affect patterns and processes of disease, and 2) considerations for coevolution of hosts and pathogens, conservation biology, models used to understand disease dynamics, and approaches to manage and control disease in animals, plants, and humans. Dual listed with PATB 5240. Cross listed with ENR 4240. Prerequisites: LIFE 2022 or 2023 and STAT 2050 or 2070.
4320. Problems in Parasitology. 1-3 (Max. 5). Individual laboratory, library or field study of parasites and their host relations. Prerequisites: 8 semester hours of biological sciences or 3 semester hours of parasitology and consent of instructor.

4400. Immunology. 4. Biology of immune system; cellular and molecular mechanisms; host resistance to infectious agents; as well as hypersensitivities, autoimmunity, tumor and tissue rejection. Includes laboratory for immunological techniques. Cross listed with MOLB 4400. Dual listed with PATB 5400. Prerequisites: MOLB/MICR 2021 or 2240 or PATB 2220, and a minimum grade of C- in MOLB 3000 or MOLB 3610. (Normally offered spring semester)

4500. Veterinary Parasitology. 4. Biology, importance, diagnosis and control of helmhnt and protozoan parasites of wild and domestic animals. Arthropod vectors and/or intermediate hosts of helmhnt & protozoan parasites are included. Diagnostic procedures and identification familiarity with agents are emphasized in lab. Prerequisite: 8 hours of biological science. (Offered fall semester of even-numbered years)

4710. Medical Virology. 3. Human and animal viruses as biological entities. Methods of study, classification, replication strategies, diagnostic approaches, epidemiology and significance as disease agents. Dual listed with PATB 5710. Cross listed with MICR 4710. Prerequisite: MOLB 2240. (Normally offered fall semester)

5001. Epidemiology (Diseases in Population). 3. Basic epidemiologic concepts and approaches to population problems in medicine, with examples from veterinary and human health. Covers a wide spectrum of topics and introduces practical applications of epidemiology. Dual listed with PATB 4001; cross listed with MICR 5001. Prerequisite: STAT 2050.

5110. Equine Health and Disease. 3. To familiarize students with identification, prevention and treatment of diseases in horses through proper health management techniques. Dual listed with PATB 4111. Cross listed with ANSC 5111. Prerequisite: ANSC 1030.

5120. Topics in Pathobiology. 1-4 (Max. 8). Lectures in current pathobiology topics derived from the expertise of the lecturer. Prerequisite: 12 hours of biological sciences and consent of instructor.

5130. Mammalian Pathobiology. 3. Anatomical basis of disease in mammals. Emphasis on concepts of pathogenesis of disease, and the gross, microscopic and clinicopathological changes associated with lesions: cell injury and death; cellular degeneration; disturbances of growth and circulation; neoplasia; inflammation; and recognition of gross and microscopic tissue changes. Background in immunology will be beneficial. Dual listed with PATB 4130. Prerequisite: C or better in LIFE 2022.

5140. Principles of Toxicology. 3. Toxicology is the study of poisons, their mechanisms of action, and their effects on various organisms including man and domestic animals. Designed to provide students in the life and environmental sciences with an understanding of the principles of toxicology as they apply to animal and human health, food safety and environmental studies. Dual listed with PATB 4140. Prerequisite: 9 hrs. biological science (eg, physiology), 4 hrs. chemistry, 3 hrs. biochemistry.

5170. Diseases of Wildlife. 3. Introduction to wildlife diseases of the Rocky Mountain region and North America. Emphasis on infectious, parasitic, traumatic, toxic, and other disease agents with coverage of mechanisms of disease, epidemiology, and disease impacts on wildlife populations and species. Significant discussion of zoonotic diseases and diseases at the wildlife/domestic animal interface. Dual listed with PATB 4170. Prerequisites: 12 hours of biological or zoological sciences.

5220. Molecular Mechanisms of Bacterial Pathogenesis. 3. Intended as a survey of the molecular mechanisms that have evolved in pathogenic bacterial species which result is disease. The broad-scope objective is to assist students in gaining an understanding of principals and concepts as they apply to common themes of bacterial virulence acting on higher order host organisms. In-class review/discussion of scholarly manuscripts, historical to present day, is paramount in allowing students to gain a better appreciation and comprehension of biological principals and concepts through knowledge of experimental approaches. Dual listed with PATB 4220; cross listed with MICR 5220. Prerequisites: PATB/MICR 2220 and statistics (or epidemiology).

5240. Disease Ecology. 3. Introduction to 1) how interactions among species, ecosystems, human systems, and abiotic components of the environment affect patterns and processes of disease, and 2) considerations for coevolution of hosts and pathogens, conservation biology, models used to understand disease dynamics, and approaches to manage and control disease in animals, plants, and humans. Dual listed with PATB 4240. Cross listed with ENR 5240.

5400. Immunology. 4. Biology of the immune system; cellular and molecular mechanisms; host resistance to infectious agents; as well as hypersensitivities, autoimmunity, tumor and tissue rejection. Includes laboratory for immunological techniques. Students are required to complete a term paper and make a presentation. Dual listed with PATB 4400; cross listed with MOLB 5400. Prerequisites: MOLB/MICR 2021 or 2240 or PATB 2220, and a minimum grade of C- in MOLB 3000 or MOLB 3610.

5500. Veterinary Parasitology. 4. Biology, importance, diagnosis and control of helmhnt and protozoan parasites of wild and domestic animals. Arthropod vectors and/or intermediate hosts of helmhnt & protozoan parasites are included. Diagnostic procedures and identification familiarity with agents are emphasized in lab. Prerequisite: 8 hours of Biological Science.

5505. Investigations in Pathobiology. 1-4 (Max. 8). Research involvement in pathobiology to learn laboratory methods, scientific literature, research design and data analysis and presentation. Prerequisite: graduate standing and/or consent of instructor and 16 hours of biological sciences.

5510. Introductory Virology. 3. Prokaryotic and eukaryotic viruses as infectious agents and models for modern molecular biology. Examines concepts and principles of pathogenesis, host response and the regulation of virus-host interactions. Genome organization, structure and replication will be examined within the context of the co-evolution of virus and host. Cross listed with MOLB 5510. Prerequisite: MOLB 3610 or 4600 plus 4610.

5515. Advanced Seminar in Pathobiology. 1 (Max. 4). Preparation and presentation of research topics in pathobiology with participation in discussions. Prerequisite: graduate standing and/or consent of instructor and 16 hours of biological sciences.

5710. Medical Virology. 3. Human and animal viruses as biological entities. Methods of study, classification, replication strategies, diagnostic approaches, epidemiology and significance as disease agents. Dual listed with PATB 4710.

5900. Practicum in College Teaching. 1-3 (Max. 3). Work in classroom with a major professor. Expected to give some lectures and gain classroom experience. Prerequisite: graduate status.
5920. Continuing Registration: On Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5940. Continuing Registration: Off Campus. 1-2 (Max. 16). Prerequisite: advanced degree candidacy.

5959. Enrichment Studies. 1-3 (Max. 99). Designed to provide an enrichment experience in a variety of topics. Note: credit in this course may not be included in a graduate program of study for degree purposes.

5960. Thesis Research. 1-12 (Max. 24). Designed for students who are involved in research for their thesis project. Also used for students whose coursework is complete and are writing their thesis. Prerequisite: enrollment in a graduate degree program.

5980. Dissertation Research. 1-12 (Max. 48). Designed for students who are involved in research for their dissertation project. Also used for students whose coursework is complete and are writing their dissertation. Prerequisite: enrollment in a graduate level degree program.