Cardiac overexpression of alcohol dehydrogenase exacerbates chronic ethanol ingestion-induced myocardial dysfunction and hypertrophy: Role of insulin signaling and ER stress

Shi-Yan Li, Jun Ren *

Center for Cardiovascular Research and Alternative Medicine, University of Wyoming School of Pharmacy, Laramie, WY 82071, USA

Received 11 November 2007; received in revised form 26 January 2008; accepted 22 February 2008

Available online 4 March 2008

Abstract

Chronic alcohol intake leads to alcoholic cardiomyopathy characterized by cardiac hypertrophy and contractile dysfunction possibly related to the toxicity of the ethanol metabolite acetaldehyde. This study examined the impact of augmented acetaldehyde exposure on myocardial function, geometry, and insulin signaling via cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH transgenic and wild-type FVB mice were placed on a 4% alcohol diet for 12 weeks. Echocardiographic, glucose tolerance, glucose uptake, insulin signaling, and ER stress indices were evaluated. Mice consuming alcohol exhibited glucose intolerance, dampened cardiac glucose uptake, cardiac hypertrophy and contractile dysfunction, all of which with the exception of whole body glucose tolerance were exaggerated by the ADH transgene. Cardiomyocytes from ethanol-fed mice exhibited depressed insulin-stimulated phosphorylation insulin receptor (tyr1146) and IRS-1 (tyrosine) as well as enhanced serine phosphorylation of IRS-1. ADH-augmented alcohol-induced effect of IRS-1 phosphorylation (tyrosine/serine). Neither alcohol nor adh affected expression of insulin receptor and IRS-1. Alcohol reduced phosphorylation of Akt and GSK-3β as well as GSK-3β expression and the effect was exaggerated by ADH. The transcriptional factors GATA4, c-jun and c-jun phosphorylation were upregulated by alcohol, which was amplified by ADH. The ratios of phospho-c-Jun/c-Jun and phospho-GATA4/GATA4 remained unchanged. Chronic alcohol intake upregulated expression of the endoplasmic reticulum stress markers eIF2α, IRE-1α, GRP78 and gadd153, the effect of which was exaggerated by ADH. These data suggest that elevated cardiac acetaldehyde exposure via ADH may exacerbate alcohol-induced myocardial dysfunction, hypertrophy, insulin insensitivity and ER stress, indicating a key role of ADH gene in alcohol-induced cardiac dysfunction and insulin resistance. © 2008 Elsevier Inc. All rights reserved.

Keywords: Acetaldehyde; Myocardium; Contraction; Hypertrophy; Insulin sensitivity; ER stress

1. Introduction

Chronic alcohol intake contributes to onset of alcoholic cardiomyopathy characterized by cardiomegaly, disruption of myofibrillar architecture and reduced myocardial contractility [1,2]. Several theories have been speculated for the pathogenesis of alcoholic cardiomyopathy including cardiotoxicity of alcohol [3], oxidative stress and accumulation of fatty acid ethyl esters [4] although the ultimate culprit factor(s) remain poorly understood. Recent evidence indicates a role of insulin sensitivity in neurocognitive recovery and psychosocial adaptation in chronic alcoholics [5] consistent with the notion that alcohol intake may alter insulin secretion and autonomic activity [6]. Given the high incidence of heart diseases such as ventricular dysfunction in insulin resistant individuals [7,8], it is plausible to speculate that dampened insulin sensitivity may play a role in the pathogenesis of alcoholic cardiomyopathy. Nonetheless, the link between alcohol intake and insulin sensitivity is still controversial. Acetaldehyde, the first oxidized metabolic product of ethanol, is a candidate toxin for the development of alcoholic cardiomyopathy [9]. We have shown that acetaldehyde impairs cardiac excitation-contraction coupling and inhibit sarco(end)plasmic reticulum (SR) Ca2+ release function [9–12]. Recent work from our group revealed that acetaldehyde may interfere with insulin sensitivity in SH-SY5Y human neuroblastoma cells [13]. In order to elucidate the role of acetaldehyde in chronic
alcoholism-induced insulin sensitivity loss, if any, we took advantage of our novel transgenic mouse model with cardiac-specific overexpression of alcohol dehydrogenase (ADH) to evaluate myocardial geometry and contractile function. Our previous studies depicted a facilitated alcoholic cardiomyopathy associated with much higher cardiac acetaldehyde levels in ADH mouse hearts following chronic alcohol intake [14,15]. We examined insulin signaling cascade at the levels of insulin receptor, IRS, post-receptor signaling Akt and p70s6k, as well as evaluated insulin signaling cascade at the levels of insulin receptor, IRS, post-receptor signaling Akt and p70s6k, as well as glycogen synthase kinase-3β (GSK-3β). GSK-3β, a downstream target of Akt and p70s6k, has been considered as a convergence point for cardiac hypertrophy, with its inhibition essential for both adaptive and maladaptive hypertrophy [16]. We also evaluated the transcription factors c-Jun and GATA4 given their roles in cardiac physiology, hypertrophy and stress signaling in insulin resistant states [7,17]. The cardiac-specific zinc finger GATA factors especially GATA4 are believed to be physically associated with GSK-3β in the regulation of cardiac hypertrophic signaling [17,18]. Since endoplasmic reticulum (ER) stress is known to be closely associated with insulin sensitivity and type 2 diabetes and contributes to cardiac contractile dysfunction [19,20], crucial protein markers of ER stress such as eukaryotic translation initiation factor (eIF2α), inositol-requiring enzyme-1 (IRE-1), GRP78 and gadd153 were also monitored in myocardium of ADH transgenic and wild-type mice following chronic alcohol intake.

2. Materials and methods

2.1. Experimental animals and chronic ethanol ingestion

All animal procedures have been approved by the University of Wyoming Institutional Animal Care and Use Committee in accordance with the NIH standards. Production of the ADH transgenic mice was described in detail previously [21]. In brief, using albino Friend Virus-B type (FVB) mice, the cDNA for murine class I ADH was inserted behind the mouse α-myosin heavy chain promoter to achieve cardiac-specific overexpression. This cDNA was chosen because class I ADH is the most efficient in the oxidation of ethanol. A second transgene with a cDNA encoding tyrosinase was co-injected with ADH. This enzyme produces coat color pigmentation in albino mice and was used to conveniently identify transgenic animals. All mice were housed in a temperature-controlled room under a 12 h/12 h-light/dark and allowed access to tap water ad libitum. Adult male FVB and ADH mice (3–4 month-old) were used for study and were introduced to a nutritionally complete liquid diet (Shake & Pour Bioserv Inc., Frenchtown, NJ) for a one-week acclimation period. The use of a liquid diet is based on the scenario that ethanol self-administration resulted in less nutritional deficiencies and less stress to the animals in comparison to forced-feeding regimens, intravenous administration, or aerosolized inhalation [22]. Upon completion of the acclimation period, half of the FVB and ADH mice were maintained on the regular liquid diet (without ethanol), and the remaining half began a 12-week period of isocaloric 4% (vol/vol) ethanol diet feeding. An isocaloric pair-feeding regimen was employed to eliminate the possibility of nutritional deficits. Control mice were offered the same quantity of diet ethanol-consuming mice drank the previous day [14].

2.2. Intraperitoneal glucose tolerance test

Two days prior to sacrifice, mice were fasted for 12 h and then given an intraperitoneal injection of glucose (2 g/kg body weight). Blood samples were drawn from the tail veins immediately before the glucose challenge, as well as 15, 30, 60 and 120 min thereafter. Fasting (12 h) blood glucose levels were determined using a glucose analyzer [23].

2.3. Assessment of ethanol and acetaldehyde levels

On the morning of the last day of chronic ethanol or control diet feeding, mice were sacrificed under anesthesia. Blood plasma and hearts were collected in sealed vials and were stored at −80 °C. Immediately before analysis, the samples were warmed to 25 °C. A 2 ml aliquot of the headspace gas from each vial was removed through the septum on the cap with a gas tight syringe and transferred to a 200 μl loop injection system on a Hewlett-Packard 5890 gas chromatograph (GC) equipped with a flame ionization detector. Ethanol, acetaldehyde and other components were separated on a 9-m VOCOL capillary column (Supelco) with film with 1.8 μm thickness and an inner diameter of 0.32 mm. The temperature was held isothermally at 30 °C, and the carrier gas was helium at a flow rate of 1.8 ml/min. Under these conditions, separation of acetaldehyde from ethanol and other compounds was complete in 1 min. Quantitation was achieved by calibrating the GC peak areas against those from headspace samples of known ethanol and acetaldehyde standards, over a similar concentration range as the tissue samples in the same buffer [14].

2.4. Echocardiographic assessment

Cardiac geometry and function were evaluated in anesthetized (Avertin 2.5%, 10 µl/g body weight, i.p.) mice using 2-D guided M-mode echocardiography (Sonos 5500) equipped with a 15–6 MHz linear transducer. Left ventricular (LV) anterior and posterior wall dimensions during diastole and systole were recorded from three consecutive cycles in M-mode using methods adopted by the American Society of Echocardiography. Fractional shortening was calculated from LV end-diastolic (EDD) and end-systolic (ESD) diameters using the equation (EDD − ESD)/EDD. Heart rates were averaged over 10 cardiac cycles [24]. All echocardiographic assessments were repeated twice to ensure reproducibility of the results.

2.5. Cell isolation procedures

Mouse hearts were removed and perfused with Krebs-Henseleit bicarbonate buffer containing (in mM): 118 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, 10 HEPES and 11.1 glucose, with 5% CO2–95% O2. Hearts were subsequently digested with 223 U/ml collagenase D (Boehringer Mannheim, Indianapolis, IN) for 20 min at 37 °C. After perfusion, ventricles
were removed and minced before being filtered. Extracellular Ca2+ was slowly added back to 1.25 mM. The percentage of rod-shaped (viable) myocytes was approximately 70% which was not affected by ADH transgene or alcohol treatment. To assess insulin-stimulated activation of insulin signaling cascade, a cohort of freshly isolated cardiomyocytes were exposed to 10 nM insulin for 15 min before protein was extracted24.

2.6. Glucose uptake measurement

The cardiomyocytes were washed 3 times with Krebs-Ringer-\(N\)-[2-hydro-ethyl]-piperazine-\(N^\prime\)-[2-ethanesulfonic acid] (HEPES) (KRH, 136 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl\textsubscript{2}, 1.25 mM MgSO\textsubscript{4}, 10 mM HEPES, pH 7.4) buffer and incubated with 2 ml KRH buffer at 37 °C for 30 min. A cohort of cardiomyocytes from each group was subject to insulin stimulation (10 nM, 15 min). Glucose uptake was initiated with addition of 0.1 ml KRH buffer and 2-deoxy-D-[3H] glucose (0.2 µCi/ml with a specific activity of 10 Ci/mmol) and 5 mM glucose. Glucose uptake was terminated 30 min later by washing the cells 3 times with cold PBS. Our earlier observations indicated that 2-deoxy-D-[3H] glucose uptake is still linear over the 30 min duration23,25. The cells were lysed overnight with 0.5 ml 0.5 M NaOH and 0.1% SDS (w/v). The radioactivity retained by cell lysates was determined by a scintillation counter (1 cpm=0.888×10-12Ci, Beckmann LC 6000IC) and normalized to protein amount measured with a Bradford Protein Assay Kit23. All assays were repeated twice to ensure reproducibility of the results. Data from 5–6 mice per group were used for final data analysis.

2.7. Western blot analysis

The total protein was prepared as described23. In brief, cardiomyocytes were collected and sonicated in a lysis buffer containing 20 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 0.1% SDS and 1% protease inhibitor cocktail. The protein concentration of the supernatant was evaluated using Protein Assay Reagent (Bio-Rad Laboratories, Inc, Hercules, CA). Equal amounts (50 µg protein/lane) of proteins or prestained molecular weight markers (SeeBlue® Plus2, Invitrogen, Carlsbad, CA) were separated on 10% or 15% SDS-polyacrylamide gels in a minigel apparatus (Mini-PORTEAN II, Bio-Rad); then were transferred electrophoretically to

Table 1

Biometric and echocardiographic parameters of mice fed an alcohol diet (4%) for 12 weeks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FVB</th>
<th>FVB-ETOH</th>
<th>ADH</th>
<th>ADH-ETOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>27.6±0.7</td>
<td>27.0±0.8</td>
<td>27.6±0.7</td>
<td>27.8±0.9</td>
</tr>
<tr>
<td>Heart weight (mg)</td>
<td>177±9</td>
<td>203±8*</td>
<td>189±10</td>
<td>227±9**</td>
</tr>
<tr>
<td>Heart/body weight (mg/g)</td>
<td>6.40±0.26</td>
<td>7.58±0.30*</td>
<td>6.84±0.32</td>
<td>8.16±0.16**</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1.42±0.05</td>
<td>1.49±0.04</td>
<td>1.46±0.04</td>
<td>1.43±0.04</td>
</tr>
<tr>
<td>Liver/body weight (mg/g)</td>
<td>52.2±2.4</td>
<td>56.0±2.2</td>
<td>53.1±1.5</td>
<td>51.6±0.9</td>
</tr>
<tr>
<td>Kidney weight (g)</td>
<td>0.40±0.01</td>
<td>0.39±0.01</td>
<td>0.39±0.02</td>
<td>0.39±0.01</td>
</tr>
<tr>
<td>Kidney/body weight (mg/g)</td>
<td>14.6±0.7</td>
<td>14.1±0.5</td>
<td>14.1±0.6</td>
<td>14.3±0.5</td>
</tr>
<tr>
<td>Blood alcohol (mg/dl)</td>
<td>Undetectable</td>
<td>55.8±11.3*</td>
<td>Undetectable</td>
<td>67.2±23.4*</td>
</tr>
<tr>
<td>Blood acetaldehyde (µM)</td>
<td>5.74±4.46</td>
<td>37.14±3.81*</td>
<td>4.00±2.33</td>
<td>37.04±6.25*</td>
</tr>
<tr>
<td>Cardiac acetaldehyde (nmol/mg)</td>
<td>6.37±1.57</td>
<td>55.38±3.48*</td>
<td>5.54±1.15</td>
<td>139.69±12.17**</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>450±30</td>
<td>509±30</td>
<td>477±23</td>
<td>510±21</td>
</tr>
<tr>
<td>Wall thickness (mm)</td>
<td>0.84±0.05</td>
<td>0.74±0.05*</td>
<td>0.83±0.04</td>
<td>0.73±0.03*</td>
</tr>
<tr>
<td>EDD (mm)</td>
<td>2.55±0.08</td>
<td>2.39±0.09*</td>
<td>2.34±0.09</td>
<td>2.72±0.10*</td>
</tr>
<tr>
<td>ESD (mm)</td>
<td>1.32±0.13</td>
<td>1.58±0.08*</td>
<td>1.21±0.06</td>
<td>1.62±0.11*</td>
</tr>
<tr>
<td>LV mass (mg)</td>
<td>58.1±4.4</td>
<td>73.0±3.4*</td>
<td>56.9±5.7</td>
<td>85.7±5.1**</td>
</tr>
<tr>
<td>Normalized LV mass (mg/g)</td>
<td>2.17±0.16</td>
<td>2.56±0.14*</td>
<td>2.06±0.22</td>
<td>2.92±0.18**</td>
</tr>
<tr>
<td>Fraction shortening (%)</td>
<td>51.4±3.1</td>
<td>41.1±2.5*</td>
<td>48.1±2.1</td>
<td>33.7±3.3**</td>
</tr>
</tbody>
</table>

Mean±SEM, \(n=15–16\) mice per group, u.d = undetectable (<2.5 mg/dl), *\(p<0.05\) vs. FVB group, ¨\(p<0.05\) vs. FVB mice consuming ethanol.

Fig. 1. (A): IPGTT in FVB and ADH transgenic mice consuming ethanol or control diets for 12 weeks; (B). Insulin-stimulated glucose uptake shown as percent increase from baseline. Mean±SEM, \(n=5–6\) mice per group, *\(p<0.05\) vs. FVB, ¨\(p<0.05\) vs. FVB+ETOH.
nitrocellulose membranes (0.2 µm pore size, Bio-Rad). Membranes were incubated for 1 h in a blocking solution containing 5% milk in Tris-buffered saline (TBS), then membranes were washed briefly in TBS and incubated overnight at 4 °C with anti-insulin receptor β (1:1,000), anti-phospho-insulin receptor (Tyr1146, 1:1,000), anti-IRS-1 (1:1,000), anti-phospho-IRS-1 (Ser307, 1:1,000), anti-phospho-IRS-1 (Tyr941, 1:1,000), anti-Akt (1:1,000), anti-pAkt (Thr308, 1:1,000), anti-p70s6k (1:1,1000), anti-phospho-p70s6k (Thr389, 1:1,000), anti-GSK-3β (1:1,000), anti-phospho-GSK-3β (Ser9, 1:1,000), anti-c-Jun, anti-phospho-c-Jun (Ser63) (1:1,000), anti-GATA4 (1:1,000), anti-phospho-GATA4 (Ser105, 1:1,000), anti-elF2α (1:1,000), anti-IRE-1α (1:1,000), anti-GRP78 (1:1,000) and anti-gadd153 (1:500) antibodies. After washing blots to remove excessive primary antibody binding, blots were incubated for 1 h with horseradish peroxidase (HRP)-conjugated secondary antibody (1:5,000). Antibody binding was detected using enhanced chemiluminescence (Amersham Pharmacia, Piscataway, NJ),

Fig. 2. Myocardial insulin signaling from FVB and ADH mice with control or without ethanol-containing liquid diet intake. (A). Representative gel blots depicting different proteins in the presence or absence of insulin stimulation (10 nM); (B). Insulin receptor; (C). Insulin receptor phosphorylation (Tyr 1146); (D). IRS-1; (E). Tyrosine phosphorylation of IRS-1; and (F). Serine phosphorylation of IRS-1 (Ser307). Mean±SEM, n = 7 mice per group, *p < 0.05 vs. non-insulin FVB group, †p < 0.05 vs. insulin-stimulated FVB group, ‡p < 0.05 vs. insulin-stimulated FVB + ETOH group.

and film was scanned and the intensity of immunoblot bands was detected with a Bio-Rad Calibrated Densitometer (Model: GS-800). All immunoblotting was repeated at least twice to ensure reproducibility of the results. Vendor recommended positive controls were used to ensure the accuracy of bands. Data from 5–6 mice per group were used for final data analysis.

2.8. Data analysis

For each experimental series, data are reported as Mean±SEM. Difference was calculated by repeated measures analysis of variance (ANOVA). When an overall significance was determined a Dunnett’s post hoc analysis was incorporated. A p value of less than 0.05 was considered significant.

3. Results

3.1. General feature and echocardiographic properties of FVB and ADH mice fed with alcohol

Chronic alcohol feeding did not affect body and organ weights although heart was significantly enlarged compared with non-alcohol consuming mice. ADH did not affect body or organ weights although it significantly exacerbated alcohol-induced cardiac hypertrophy. Blood alcohol and acetaldehyde levels were elevated equally in alcohol-consuming FVB and ADH mice. The levels of blood alcohol and acetaldehyde were either undetectable or minimal in non-alcohol consuming mice. Cardiac tissue acetaldehyde levels were significantly elevated in

![Image](image_url)

Fig. 3. Cardiomyocyte insulin signaling from FVB and ADH mice with control or without ethanol-containing liquid diet intake. (A) Representative gel blots depicting expression of Akt, p70s6k, GSK-3β, c-Jun and GATA4 (total and phosphorylated); (B) Akt, pAkt and pAkt/Akt ratio; (C) p70s6k, pp70s6k and pp70s6k/p70s6k ratio; (D) GSK-3β, pGSK-3β and pGSK-3β/GSK-3β ratio; (E) c-Jun, pc-Jun and pc-Jun/c-Jun ratio; (F) GATA4, pGATA4 and pGATA4/GATA4 ratio. Mean±SEM, n = 5 mice per group, *p < 0.05 vs. corresponding FVB group, #p < 0.05 vs. corresponding FVB + ETOH group.
alcohol-consuming FVB mice, the effect of which was exaggerated by the ADH transgene. Heart rate was comparable among all groups. While wall thickness, LV mass (absolute or normalized to body weight), ESD, EDD and fractional shortening were similar between non-alcohol consuming FVB and ADH groups, alcohol intake significantly enhanced LV ESD and EDD, reduced wall thickness and enhanced LV mass (absolute or normalized to body weight) while reducing fractional shortening in FVB and ADH mice, indicating cardiac hypertrophy and dilated cardiomyopathy. ADH transgene augmented chronic alcohol intake-induced deleterious changes in LV mass and fraction shortening without affecting other indices (Table 1).

3.2. Effect of chronic ethanol intake on intraperitoneal glucose tolerance and glucose uptake

Following acute intraperitoneal glucose challenge, blood glucose levels in non-alcohol consuming mice started to drop after peaking at 15 min, and returned to nearly baseline value after 120 min. However, the post-challenge glucose levels maintained at higher levels from 15 to 120 min in alcohol-consuming mice, the effect of which was not affected by ADH transgene (Fig. 1A). To determine if insulin sensitivity contributes to alcohol-induced alteration in myocardial contractile function, basal and insulin-stimulated glucose uptake was determined. Basal glucose uptake was comparable in all groups (data not shown). Non-alcohol consuming mouse cardiomyocytes exhibited a significant increase in glucose uptake in response to insulin stimulation (10 nM). However, the insulin-stimulated glucose uptake was dampened in cardiomyocytes from alcohol-consuming FVB mice, the effect of which was exacerbated by ADH transgene. ADH itself elicited little effect on insulin-stimulated glucose uptake in the absence of alcohol intake (Fig. 1B). These data revealed impaired glucose clearance and cardiac insulin sensitivity following alcohol intake.

3.3. Effect of chronic alcohol intake on insulin signaling molecules, c-Jun and GATA4 signaling

Chronic alcohol intake is often associated with impaired insulin sensitivity [26, 27] and cardiac hypertrophy [14, 28]. Results shown in Fig. 2 indicate that neither ethanol nor ADH transgene affected expression of insulin receptor β and IRS-1 (with or without 10 nM insulin stimulation), basal phosphorylated insulin receptor (Tyr1146), basal tyrosine and serine phosphorylated IRS-1. Chronic alcohol ingestion significantly dampened insulin (10 nM for 15 min)-stimulated tyrosine phosphorylation of both insulin receptor and IRS-1. ADH transgene exacerbated ethanol-induced decrease in tyrosine phosphorylation of IRS-1.

Fig. 4. Effect of ADH on chronic ethanol (ETOH) administration-induced change in the ER stress markers eIF2α (A), IRE-1α (B), GRP78 (C) and gadd153 (D). Inset: representative gels using specific antibodies. Mean±SEM, n=5–6 mice per group, *p<0.05 vs. FVB, †p<0.05 vs. FVB+ETOH.
phosphorylation of IRS-1 without affecting that of insulin receptor. To the contrary, alcohol ingestion significantly enhanced insulin (10 nM for 15 min)-stimulated serine phosphorylation of IRS-1, the effect of which was exaggerated by ADH. We also evaluated the downstream insulin signaling molecules including Akt, p70s6k and GSK-3β. Result in Fig. 3 depicted that chronic alcohol ingestion significantly reduced phosphorylation of Akt, p70s6k and GSK-3β. ADH transgene augmented chronic alcohol ingestion-induced effect in phosphorylation of Akt and GSK-3β without affecting p70s6k phosphorylation. Protein expression of GSK-3β was downregulated by chronic alcohol intake and such effect was exaggerated by the ADH transgene. Interestingly, despite of the apparent decrease in GSK-3β phosphorylation, the phospho-GSK-3β-to-GSK-3β ratio was significantly enhanced following chronic alcohol intake, as a result of the abrupt drop in total GSK-3β expression. Our data revealed a significantly greater effect in the rise of phospho-GSK-3β-to-GSK-3β ratio in ADH group. To the contrary, protein expression of Akt and p70s6k was not affected by either ethanol or ADH. Our result further indicated significantly enhanced expression and phosphorylation of the transcription factors c-Jun and GATA4 following alcohol intake, consistent with the likelihood presence of a hypertrophic response. The phospho-c-Jun/c-Jun ratio was unchanged although the phospho-GATA4/GATA4 ratio was elevated following chronic alcohol ingestion. Somewhat consistent with its effect on Akt and GSK-3β, ADH exaggerated alcohol-induced effect on c-Jun, GATA4 and pc-Jun (but not pGATA4). ADH transgene itself did not affect expression or phosphorylation of c-Jun and GATA4 (Fig. 3).

3.4. Effect of chronic alcohol intake on ER stress markers

Chronic ethanol intake leads to hepatic ER stress [29] although little is known for the hearts. To explore if alcohol-induced and ADH-augmented myocardial dysfunction was casually associated with changes in cardiac ER stress status, we evaluated protein expression of the ER stress markers eIF2α, IRE-1α, GRP78 and gadd153. Results shown in Fig. 4 revealed that eIF2α, IRE-1α, GRP78 and gadd153 were significantly upregulated in myocardium following chronic alcohol intake. Strikingly and consistent with echocardiographic and insulin signaling date, ADH transgene significantly amplified chronic alcohol intake-induced ER stress without eliciting any notable effect itself in the absence of alcohol drinking, indicating potential role of ER stress in acetaldehyde-facilitated cardiac damage.

4. Discussion

The hallmark of alcoholic cardiomyopathy is cardiomegaly and compromised myocardial contractility [1,2,9]. This is supported by our observation of LV hypertrophy and reduced myocardial contraction in alcohol-consuming mice. Our data revealed impaired cardiac insulin signaling and ER stress following chronic alcohol ingestion, which may contribute to alcohol-induced myocardial geometric and functional deficits. More importantly, our study provided evidence for the first time that the severity of cardiac insulin sensitivity and ER stress following chronic alcohol intake may be amplified by ADH transgene, which produces much more local acetaldehyde levels in the hearts. These results have implicated that elevated cardiac acetaldehyde exposure via ADH may exacerbate alcohol-induced myocardial dysfunction, hypertrophy, insulin insensitivity and ER stress, indicating a key role of ADH gene in alcohol-induced cardiac dysfunction and insulin resistance.

Several hypotheses have been pushed forward for alcohol-induced injury including oxidative damage and lipid peroxidation from alcohol and acetaldehyde oxidation and altered membrane property [30,31]. Alcohol ingestion leads to production of reactive oxygen species, oxidative stress and enhanced peroxidation of lipids, protein, and DNA in a wide variety of organs, tissues and cells [30–32]. As the major metabolite of ethanol, acetaldehyde directly enhances free radical generation by its oxidation via aldehyde oxidase and/or xanthine oxidase with concurrent accumulation of superoxide anion [9,32–34]. Our earlier report indicated that cardiac-specific ADH transgene produced greater levels of lipid peroxidation and protein carbonyls in hearts of alcohol-fed mice [14], indicating a key role of free radical formation in alcohol- and acetaldehyde-induced cardiac damage. Similarly, short-term culture of rat cardiomyocytes with acetaldehyde depresses cardiomyocyte mechanical function at micromolar levels, possibly through mechanisms related to CYP oxidase, xanthine oxidase and lipid peroxidation [35]. Up-to-date, compromised cardiac insulin signaling has not received much attention as a key player in the development of alcoholic cardiomyopathy. Data from randomized controlled trials have displayed mixed results with regards to the link between chronic ethanol consumption and insulin sensitivity. Epidemiological evidence has indicated that the relationship between alcohol consumption and insulin sensitivity is either an inverted U-shape or a positive linear one. It is believed that dosage, consumption period and abstention period of alcohol may account for such discrepancy [26,27]. Interestingly, data from our current study revealed dampened insulin signaling at both receptor and post-receptor levels, including whole body glucose intolerance, reduced insulin-stimulated cardiac glucose uptake, ameliorated phosphorylation of insulin receptor, IRS-1 (tyrosine), Akt, p70s6k and GSK-3β in cardiomyocytes following chronic alcohol intake. Along with enhanced serine phosphorylation of IRS-1, a negative regulator for insulin sensitivity, following alcohol intake, these results should consolidate the existence of whole body and cardiac insulin insensitivity following chronic alcohol intake. Perhaps the most interesting finding was that alcohol-induced changes in these insulin signaling molecules were exaggerated by the ADH transgene, with the exception of phosphorylation of insulin receptor β and p70s6k. These observations were somewhat consistent with the alterations of myocardial fraction shortening observed in this study and cardiomyocyte contractile function reported previously [14], which is in line with the notion that cardiac insulin sensitivity is positively correlated with cardiac contractile function [7,23]. Our observation of comparable insulin receptor phosphorylation and p70s6k phosphorylation in cardiomyocytes between FVB and ADH alcohol-fed mice seems to favor a post-insulin receptor mechanism independent of p70s6k activation in ADH (acetaldehyde)-elicited exaggeration of
“insulin resistance” following chronic alcohol intake. The disparity in chronic alcohol ingestion-induced decrease in phosphorylation of Akt and its downstream signaling p70s6k in ADH group may suggest possible involvement of certain Akt-independent mechanism(s) for the activation of p70s6k. Insulin resistance is known to impair cardiac contractile function through sympathetic activation, renin-angiotensin system stimulation and direct alteration of cardiomyocyte glucose, fatty acid and energy metabolism as well as cell survival [7,8,23]. Our earlier study indicated that acetaldehyde diminishes myocyte shortening without any appreciable effect on intracellular Ca2+ [11]. Thus it is quite possible that alcohol (acetaldehyde) may compromise cardiac function through both dampened insulin signaling and direct cardiomyocyte toxicity of ethanol/acetaldehyde.

In this study, ADH transgene enhanced alcohol-induced cardiac hypertrophy as evidenced by heart/body weight ratio and LV mass. Acetaldehyde has been shown to trigger oxidative stress and apoptosis via activation of stress signaling such as c-Jun phosphorylation, which may in turn induce myocardial hypertrophy [9,36,37]. Our data revealed for the first time that chronic alcohol exposure-induced cardiac hypertrophy may also be related to upregulation of the hypertrophic transcriptional factor GATA4 and its phosphorylation. It is somewhat surprising that enlarged ESD and EDD as well as thinned ventricular wall following alcohol ingestion were not affected by ADH. This observation, in conjunction with the additional enlargement of LV hypertrophy in ADH mice following alcohol ingestion, favors the notion that myocardial mass rather than chamber size may be responsible for exacerbated cardiac hypertrophy in ADH mice following alcohol ingestion. In addition, our data depicted enhanced pGSK-3β/GSK-3β ratio and downregulated GSK-3β expression, despite of reduced GSK-3β phosphorylation in alcohol-fed mice with an exaggerated response in alcohol-fed ADH mice. The decrease in GSK-3β phosphorylation is likely resulted from the dampened phosphorylation of the upstream molecule Akt [38]. GSK-3β, a serine/threonine kinase, is inactivated by phosphorylation of Ser9 by oxidative stress during hypertrophic conditions and may serve as a negative regulator of cardiac hypertrophy [39]. Our finding of enhanced pGSK-3β/GSK-3β ratio is consistent with the upregulated GATA4 signaling and hypertrophic response following chronic alcohol intake. The additional change in GSK-3β phosphorylation in alcohol-fed ADH mouse hearts suggests that ADH-induced GSK-3β inactivation may underscore, at least in part, the exaggerated cardiac hypertrophic response following chronic alcohol intake. Further study is warranted to elucidate the effect of acute and chronic acetaldehyde exposure on myocardial GSK-3β phosphorylation. Inhibition (phosphorylation) of GSK-3β may result in changes in the activity of transcriptional factors in the heart and thus promotes hypertrophic responses [38]. It has been generally accepted that signal transduction from hypertrophic stimuli to GSK-3β passes primarily through Akt although recent data have otherwise suggested a far more complex scenario [16,38,40]. In conjunction with data of insulin receptor β and IRS-1 as well as their phosphorylation, our study seems to favor the dogma that reduced insulin receptor/IRS-1 phosphorylation and subsequently Akt phosphorylation may be response for changes in GSK-3β phosphorylation and GATA4 signaling. The Akt-GSK-3β cascade is known to be highly responsive to oxidative stress, insulin signaling and myocyte stretch as well as other pathophysiological condition of the hearts [41].

GATA4 signaling is governed largely through the post-translational modification triggered by hypertrophic stimuli such as pressure overload, endothelin-I and angiotensin II. These stimuli along with stress signaling cascades such as ERK1/2 and p38 MAPK are capable of inducing GATA4 phosphorylation, resulting in enhanced DNA binding and upregulation of hypertrophic genes [17,18]. Interestingly, GSK-3β-mediated phosphorylation of GATA4 negatively regulates its activity [17], consistent with our results of downregulated GSK-3β signaling in conjunction with enhanced GATA4 phosphorylation and cardiac hypertrophy following chronic alcohol intake. However, ADH transgene exaggerated alcohol-induced upregulation in total GATA4 protein expression without affecting that of GATA4 phosphorylation, indicating potential involvement of other mechanisms independent of GATA4 phosphorylation in ADH transgene-induced augmented hypertrophic response in the hearts following chronic alcohol intake.

Our result revealed for the first time presence of ER stress in myocardium following chronic alcohol intake. ER is an extensive intracellular membranous network involved in Ca2+ storage, Ca2+ signaling, glycosylation and trafficking of membrane and secretory proteins. Alcohol intake has been shown to perturb these processes in the liver thus creating a condition defined as ER stress 29. Recent evidence has indicated that ER stress contributes to several diseases such as neurodegenerative disorders, diabetes and ischemia reperfusion-induced heart damage [19]. Three different classes of ER stress transducers have been identified namely inositol-requiring protein-1 (IRE1), the protein kinase RNA (PKR)-like ER kinase (PERK)-translation initiation factor eIF-2α pathway and activating transcription factor-6 (ATF6). Each of the three ER stress transducers governs a distinct arm of ER stress-induced unfolded protein response (UPR) [42]. Data from our current study revealed upregulation of IRE1 and eIF-2α, two of the major ER-resident transmembrane proteins sensing ER stress, in the hearts following chronic alcohol ingestion. This is supported by the finding that alcohol intake significantly enhanced expression of the UPR target pro-apoptotic protein gadd153, the induction of which in the UPR is highly dependent upon the PERK/eIF-2α pathway [42,43]. It has been implicated that gadd153 may serve as a marker of PERK activity in the UPR [43]. Our data also revealed upregulation of the ER chaperone GRP78 (also known as BiP) which directly interacts with all three ER stress transducers, PERK/eIF-2α, ATF6 and IRE1, and maintains them in inactive forms [44]. It is believed that upregulation of GRP78 is pivotal for cell survival to facilitate folding and assembly of ER proteins and prevent them from aggregation during ER stress [44]. Our observation that ADH transgene exaggerated alcohol intake-induced changes in IRE1, eIF-2α, GRP78 and gadd153 suggests contribution of acetaldehyde exposure to ER stress. Although our study may not directly explain the interplay between insulin sensitivity and ER stress following alcohol intake, ER stress has been shown to trigger apoptosis in ischemia-reperfusion injury through suppression of

Akt, which may be ablated by antioxidant treatment [45]. Moreover, our preliminary evidence indicated that ER stress may directly lead to cardiomyocyte contractile dysfunction via an Akt-dependent pathway [20], consistent with the data of dampened Akt signaling observed in our current study.

In summary, the present study has provided convincing evidence that cardiac overexpression of ADH exacerbated chronic alcohol ingestion-induced myocardial dysfunction and hypertrophy associated with dampened insulin sensitivity and enhanced ER stress, supporting a role of acetaldehyde and insulin resistance in the onset of alcoholic cardiomyopathy. Further scrutiny is required to unveil the role of ER stress in the loss of insulin sensitivity and the clinical value of insulin sensitizers such as thiazolidinediones, if any, under the state of chronic alcoholism.

Acknowledgments

The authors are grateful to Drs. Paul Thomas and Qun Li for their technical assistance. ADH founder mice were kindly provided by Professor Paul N. Epstein from University of Louisville (Louisville, KY). This work was supported in part by NIH/NIAAA 1R01 AA013412 and University of Wyoming Northern Rockies Regional INBRE (5P20RR16474).

References

