WyINL Coal Gasification Project Evaluation Codes

International Advance Coal Technologies Conference

June 23, 2010
Laramie, Wyoming

Richard D. Boardman
Lead, INL Energy Security Initiative
Idaho National Laboratory
Outline

- Energy Security – The Grand Challenge
- Wyoming Coal – Energy Supply Security
- Converting Wyoming Coal to Clean Energy Products
- WyINL Coal Gasification Project Evaluation Tools
 - Process Simulations
 - Economic Assessments
 - Life Cycle Analysis
- CTL Case study results
Energy: Our Grand Challenge

• Global population marches on
 – Over 8 billion by 2030; 9 billion by 2050
 – Globalization of economies continues
 – 3 to 5 fold increase in economic activity

• Access to stable, affordable energy is key to peace and prosperity
 – 40% increase in demand by 2030 (IEA estimate)
 – 2-3 fold increase in demand by 2050 (WBCSD estimate)

• Greatest energy consumption growth in non-OECD countries
 – China, India and Middle East account for over 90% of the increase

Sources: United Nations Population Division
And United States Energy Information Agency
Attaining Energy Security

Energy Security

- Economic Stability
 - Energy cost affordability and stability
 - Least external costs
 - Domestic job creation and maintenance
 - Balance foreign trade, raise tax revenues

- Supply Security
 - Resource security (availability and accessibility)
 - Reduce foreign dependence
 - Maximize benefit of both fossil fuels and biomass energy crops
 - Conservation of energy resources

- Environmental Sustainability
 - Maximize available work from renewable wind, solar, geothermal
 - Stabilize climate
 - Reduce air and water pollutant discharges
 - Water resource conservation
World-Class Energy Resources
Wyoming Coal Deposits

Strippable Coal (million of short tons)*

Powder River Basin 570,000
Greater Green River 2,700
Hanna-Carbon 7,200

* USGS, 1999 Resource Assessment
Significance of Coal Gasification

- Cost competitive for clean coal power generation with carbon capture & sequestration

- Produce transportation fuels
 - Fischer-Tropsch Liquids (F-T)
 - Methanol to “motor” gasoline (MTG)

- Produce feedstock for chemical plants
 - hydrogen generation
 - ammonia \rightarrow ammonium nitrate \rightarrow explosives or fertilizer
 - polymers, pharmaceuticals

- Polygeneration of power, fuels, hydrogen, etc.
Notional Coal-to-Liquids Plant

- **Coal**
 - 14,600 tons/day

- **Gasifier**
 - CO + H₂O → CO₂ + H₂

- **Water-Gas Shift**

- **Fischer-Tropsch Synthesis**

- **Product Upgrade**
 - Synfuel 25,000 barrels/day

- **Gas Cleanup**
 - CO₂ (25,000 tpd)

- **Vent or Sequester**

- **Sulfur Product**
 - H₂S
Barriers to Build-up of Gasification for Synfuels

- Process integration
 - gasification, power generation, refinery, multi-energy inputs and products

- Technical risks
 - first-of-kind plant, plant complexity, limited pilot plant operations

- Economical risks
 - high capital, product market volatility

- Greenhouse gas emissions

- Water consumption

- Manufacture and construction
 - experience, shipping, work force

- Plant operating experience
 - start-up, monitoring & control, maintenance
Purpose of Project

• Develop process simulation tools
 – Project technical/business case studies
 – Conceptual design (preliminary equipment selection and sizing)
 – Product optimization

• Economics models
 – Per forma calculations
 – Financial sensitivity (capital, operating, revenue, debt/equity, IRR, LCOE, etc.)

• Life cycle analysis
 – Greenhouse gas emissions
 – Water use, cost benefit tradeoffs

• Provide project roadmap
 – Permitting
 – Construction logistics

• Operator training simulator
General Case Studies

Legend
- Orange: Subbituminous
- Purple: Bituminous
- Green: Mineable Deposits

Gillette

Green River
Reference Plant Studies

Gillette

- Mine-mouth coal mine
- Coal HHV as fed = 8,425 Btu/lbm
- Coal moisture as fed = 28.09 %
- Coal ash as fed = 8.8%
- Water from coal and well
- Liquid products pipeline to Billings, Montana
- CO$_2$ by-product for EOR (50 mile radius)
- 10 miles to electrical grid
- 5 miles to rail spur

Rock Springs

- Mine-mouth coal mine
- Coal HHV as fed = 9,500 Btu/lbm
- Coal moisture as fed = 19.95%
- Coal ash as fed = 11.2%
- Green River
- Liquid products pipeline to Salt Lake City, Utah
- CO$_2$ by-product for Sequestration (Rock Springs Uplift)
- 10 miles to electrical grid
- 5 miles to rail spur
Reference Plants

- IGCC (500 MWe)
- F-T CTL (50,000 bbl/day)
- C/MTG (60,000 bbl/day)
- SNG (150 MMSCF/day)
- Ammonia (2,750 ton/day)
Configurable Process Model with Code Modules

- Coal milling & drying
- Air separation unit
- Gasification (entrained flow)
 - Slurry or dry-fed
 - Syngas coolers
- Syngas cleanup
 - Scrubber
 - Mercury removal
 - Sulfur guard
- CO shift
- Sulfur pollutants & CO2 capture
 - ammine (MEA or MDEA)
 - selective Rectisol ™ and Selexol™
- CO₂ compression
- Sulfur recovery
 - Claus / SCOT
- PSA for hydrogen separation
- Waste water treatment
- F-T synthesis
 - Co or Fe catalyst reactors
- Product refinery
 - hydrocracking/hydrotreatment
 - Distillation
- Methanol to gas
 - Methanol, DME, Gasoline catalyst beds
- SNG methanation reactors
- H₂ Steam methane reforming
- Ammonia
 - urea
 - ammonium nitrate
- Power generation
 - tuned gas turbines
 - saturated and condensing turbines
- Heat recovery / Steam generation
- Cooling tower
- Air coolers
Total Liquids
- **49,999 bbl/day**

Diesel
- **35,244 bbl/day**

Naphtha
- **12,747 bbl/day**

LPG
- **2,008 bbl/day**
Economics Model

50,000 bbl/day CTL Plant

Project Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Year</td>
<td>2012</td>
</tr>
<tr>
<td>Initial Construction Year</td>
<td>2009</td>
</tr>
<tr>
<td>Construction Period Fossil</td>
<td>3 yr</td>
</tr>
<tr>
<td>% Capital Fossil</td>
<td>33%</td>
</tr>
<tr>
<td>Startup Time</td>
<td>1 yr</td>
</tr>
<tr>
<td>% Operating Cost</td>
<td>85%</td>
</tr>
<tr>
<td>% Revenues</td>
<td>60%</td>
</tr>
<tr>
<td>Analysis Period</td>
<td>35 yr</td>
</tr>
<tr>
<td>Plant Life</td>
<td>30 yr</td>
</tr>
<tr>
<td>Inflation Rate</td>
<td>2.5%</td>
</tr>
<tr>
<td>Debt Financing</td>
<td>55%</td>
</tr>
<tr>
<td>Equity Financing</td>
<td>45%</td>
</tr>
<tr>
<td>Interest Rate on Debt</td>
<td>8%</td>
</tr>
<tr>
<td>Repayment Term</td>
<td>15 yr</td>
</tr>
<tr>
<td>State Tax</td>
<td>6%</td>
</tr>
<tr>
<td>Federal Tax</td>
<td>35%</td>
</tr>
<tr>
<td>Total Tax Rate</td>
<td>38.9%</td>
</tr>
<tr>
<td>IRR</td>
<td>12%</td>
</tr>
<tr>
<td>CTL Availability</td>
<td>88%</td>
</tr>
<tr>
<td>CEPCI</td>
<td>512</td>
</tr>
</tbody>
</table>

CTL Commodity Prices

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Cost ($/ton)</td>
<td>10.00</td>
</tr>
<tr>
<td>Ash disposal ($/ton)</td>
<td>33.20</td>
</tr>
<tr>
<td>Slag ($/ton)</td>
<td>25.63</td>
</tr>
<tr>
<td>Sulfur ($/ton)</td>
<td>38.13</td>
</tr>
<tr>
<td>Naphtha ($/gal) low</td>
<td>1.34</td>
</tr>
<tr>
<td>Low Sulfur Diesel ($/gal) low</td>
<td>1.41</td>
</tr>
<tr>
<td>Naphtha ($/gal) high</td>
<td>3.86</td>
</tr>
<tr>
<td>Low Sulfur Diesel ($/gal) high</td>
<td>4.04</td>
</tr>
<tr>
<td>Naphtha ($/gal) avg</td>
<td>2.60</td>
</tr>
<tr>
<td>Low Sulfur Diesel ($/gal) avg</td>
<td>2.72</td>
</tr>
<tr>
<td>LPG ($/ton)</td>
<td>351.96</td>
</tr>
<tr>
<td>Oxygen ($/ton)</td>
<td>41.60</td>
</tr>
<tr>
<td>Electricity Purchase ($/kW-day)</td>
<td>1.67</td>
</tr>
<tr>
<td>Electricity Sell ($/kW-day)</td>
<td>2.39</td>
</tr>
<tr>
<td>Water Use ($/1000 gal)</td>
<td>1.67</td>
</tr>
<tr>
<td>Wastewater Treatment ($/1000 gal)</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Capital Breakdown

50,000 bbl/day CTL Plant

- Gasification: 23%
- Gas Cleaning: 20%
- ASU: 10%
- Coal Preparation: 7%
- Electrical Systems: 6%
- Buildings and Structures: 7%
- Piping: 5%
- Water Systems: 5%
- Cooling Towers: 0%
- Steam Turbines: 3%
- Gas Turbines: 2%
- FT Reactors and Refining: 9%
Economics Model

50,000 bbl/day CTL Plant

<table>
<thead>
<tr>
<th>80% Debt 20% Equity</th>
<th>TCI -30%</th>
<th>TCI</th>
<th>TCI +30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>IRR</td>
<td>$/gal</td>
<td>IRR</td>
</tr>
<tr>
<td>low fuel price</td>
<td>14.41</td>
<td>$1.41</td>
<td>8.20</td>
</tr>
<tr>
<td>average fuel price</td>
<td>31.42</td>
<td>$2.72</td>
<td>22.44</td>
</tr>
<tr>
<td>high fuel price</td>
<td>44.50</td>
<td>$4.04</td>
<td>33.34</td>
</tr>
<tr>
<td>IRR=12%</td>
<td>12.00</td>
<td>$1.01</td>
<td>12.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>55% Debt 45% Equity</th>
<th>CTL No Sequestration</th>
<th>CTL With Sequestration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>IRR $/gal</td>
<td>IRR $/gal</td>
</tr>
<tr>
<td>low fuel price</td>
<td>18.18</td>
<td>11.43</td>
</tr>
<tr>
<td>average fuel price</td>
<td>34.24</td>
<td>24.74</td>
</tr>
<tr>
<td>high fuel price</td>
<td>46.84</td>
<td>35.27</td>
</tr>
<tr>
<td>IRR=12%</td>
<td>12.00</td>
<td>$1.45</td>
</tr>
</tbody>
</table>

##CTL No Sequestration
- **80% Debt 20% Equity**
- **12% IRR**
- **$1.35/gal**

##CTL With Sequestration
- **55% Debt 45% Equity**
- **$1.60/gal**

50,000 bbl/day CTL Plant

Note: TCI refers to Total Capital Investment.
Life-Cycle GHG Emissions
PRB: F-T CTL Carbon Balance Summary

50,000 bbl/day CTL Plant

Carbon Balance Summary:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Carbon to Liquid Fuel</td>
<td>29.1%</td>
</tr>
<tr>
<td>% Carbon to Slag & Flyash</td>
<td>0.4%</td>
</tr>
<tr>
<td>% Carbon to CO2 Sequestration</td>
<td>47.3%</td>
</tr>
<tr>
<td>% Carbon to HRSG Tailgas</td>
<td>15.4%</td>
</tr>
<tr>
<td>% Carbon to Vent</td>
<td>7.6%</td>
</tr>
<tr>
<td>% Unaccounted Carbon</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

CO₂ Captured (SEQ or EOR):

- CO₂ Captured (SEQ or EOR) = 30780 TON/DY
- CO₂ Captured (SEQ or EOR) = 539 MMscf/d
- CO₂ Purity = 97.9%

CO₂ Captured / Liq Prod:

- CO₂ Captured / Liq Prod = 4.97 LB/LB
- CO₂ Captured / Liq Prod = 0.01 MMscf/BBL
- CO₂ Captured / Coal Fed = 0.85 LB/LB

CO₂ Emitted:

- CO₂ Emitted = 14983 TON/DY
- CO₂ Emitted = 262 MMscf/d
- From HRSG = 10058 TON/DY
- From Vent = 4925 TON/DY

CO₂ Emitted / Liq Prod:

- CO₂ Emitted / Liq Prod = 2.42 LB/LB
- CO₂ Emitted / Coal Fed = 0.41 LB/LB

CO₂ for EOR or Seq:

- 539 MMscf/d
- 97.9% pure
PRB: Life Cycle Carbon Analysis

50,000 bbl/day CTL Plant

- **Biomass**
- **Sequestration**

Conventional Diesel from Crude

Natural gas reforming for H₂ with sequestration
PRB: F-T CTL Water Balance Summary

50,000 bbl/day CTL Plant

WATER BALANCE:

PROCESS WATER SUMMARY:

- **CMD WATER NOT RECOVERED =** 8030.2 GPM
- **WATER CONSUMED:**
 - GASIFIER ISLAND = 1124.0 GPM
 - BOILER FEED WATER = 3440.2 GPM
 - TOTAL WATER CONSUMED = 4564.2 GPM
- **WATER GENERATED:**
 - ASU = 121.6 GPM
 - SOUR WATER = 871.9 GPM
 - GAS CLEANING WATER = 22.4 GPM
 - FISCHER TROPSCH WATER = 1631.4 GPM
 - REFINING WATER = 2.0 GPM
 - TOTAL WATER GENERATED = 2649.3 GPM
- **NET PROCESS WATER (+ GEN, - CONS) =** -1914.9 GPM
- **WATER (+ GEN, - CONS) / LIQ PROD =** -1.86 LB/LB
- **WATER (+ GEN, - CONS) / LIQ PROD =** -1.31 BBL/BBL
- **WATER (+ GEN, - CONS) / COAL FED =** -0.32 LB/LB

COOLING WATER OPTION:

- **COOLING CIRCUIT FLOW RATE =** 709805.7 GPM
- **MAKEUP WATER FLOW RATE =** 26907.2 GPM
- **EVAPORATION LOSS RATE =** 217906.6 GPM
- **BLOWDOWN RATE =** 5110.6 GPM
- **NET COOLING WATER CONSUMED =** 217906.6 GPM
- **NET WATER CONSUMED =** 23711.4 GPM
- **WATER CONSUMED / LIQ PRODUCED =** 22.98 LB/LB
- **WATER CONSUMED / LIQ PRODUCED =** 16.26 BBL/BBL
- **WATER CONSUMED / COAL FED =** 3.93 LB/LB

Process Water
1.31 bbl water/bbl Fuel

Cooling Tower
14.9 bbl water/bbl Fuel

Net Water Required
16.3 bbl water/bbl Fuel
PRB: F-T CTL Power Summary

50,000 bbl/day CTL Plant

Power Calculations:

Power Generators:
- Gas Turbine Power Output = 290.2 MW
- Condensing Turbine Power Output = 155.4 MW
- Saturated Turbine Power Output = 439.6 MW
- Total Power Generated = 885.2 MW

Power Consumers:
- Coal Processing Power Consumption = 57.0 MW
- ASU Power Consumption = 364.3 MW
- Gasifier Power Consumption = 5.9 MW
- Gas Cleaning Power Consumption = 160.1 MW
- SCOT Process Power Consumption = 3.0 MW
- Claus Power Consumption = 0.1 MW
- CO₂ Liquef. Power Consumption = 125.1 MW
- Fisher Tropsch Power Consumption = 8.3 MW
- Refinery Power Consumption = 10.4 MW
- Power Block Power Consumption = 5.8 MW
- Refrigeration Power Consumption = 24.3 MW
- Total Power Consumed = 764.3 MW

Cooling Water Option:
- Cooling Tower Power Consumption = 17.5 MW
- Net Plant Power (+ Gen, - Cons) = 103.4 MW

Air Cooling Option:
- Air Cooling Power Consumption = 57.9 MW
- Net Plant Power (+ Gen, - Cons) = 63.0 MW

Total Power Generated

885 MWₑ

Power Consumed

764.3 MWₑ

Net Power Generated

103 MWₑ Cooling Tower Option

63.0 MWₑ Air Coolers
Summary

• **WyINL Aspen™ modules and pre-configured reference plant models available for license through Wyoming Business Council**
 – Projects that use Wyoming coal

• **Plant capital and variable cost assessment models available for reference cases**

• **Code uses-**
 – Conceptual design / Optimization
 – Resource planning
 – Technology evaluation
 – Economic and LCA assessments
 – Operator training
 – Permit application support