Uranium and Nuclear Power: Past, Present and Future

Charles F. Mason

H.A. True Chair in Petroleum and Natural Gas Economics
Department of Economics & Finance
University of Wyoming
Laramie, Wyoming

2 October, 2012
Déjà vu All Over Again

- At end of WWII, US government wanted to encourage new uranium industry
- various incentives, including strong price signals
- that era ended in mid-1960s, whence nuclear power industry took root
- strong growth in uranium market followed, up to Three Mile Island incident (28 March, 1979)
 - conventional wisdom: TMI sealed Nuclear power’s fate
 - no new Nuclear plant built from that date forward*
 - “beginning of the end” for Nuclear power?
Déjà vu All Over Again

► At end of WWII, US government wanted to encourage new uranium industry
► various incentives, including strong price signals
► that era ended in mid-1960s, whence nuclear power industry took root
► strong growth in uranium market followed, up to Three Mile Island incident (28 March, 1979)
 ▶ conventional wisdom: TMI sealed Nuclear power’s fate
 ◆ no new Nuclear plant built from that date forward*
 ▶ “beginning of the end” for Nuclear power?
► fast-forward ... to 21st Century
Déjà vu All Over Again

► At end of WWII, US government wanted to encourage new uranium industry
► various incentives, including strong price signals
► that era ended in mid-1960s, whence nuclear power industry took root
► strong growth in uranium market followed, up to Three Mile Island incident (28 March, 1979)
 ▶ conventional wisdom: TMI sealed Nuclear power’s fate
 ◆ no new Nuclear plant built from that date forward*
 ▶ “beginning of the end” for Nuclear power?
► fast-forward ... to 21st Century
► solid growth in nuclear energy
► until Fukushima Daiichi reactor meltdown, 11 March 2011
► “beginning of the end” for Nuclear power?
Time path: price of uranium

- Nominal Value U_3O_8
- Real Value U_3O_8, 1979 USD
Time path: Nuclear Power

- Annual Nuclear Power
- Nuclear share
Time path: Nuclear Power, Capacity Utilization

- **Annual Nuclear Power**
- **Nuclear capacity factor**

Graph showing the time path of nuclear power capacity utilization from 1960 to 2010, with annual nuclear power production and nuclear capacity factor trends indicated.

Uranium and Nuclear Power, C. Mason, SER 2012
Time path: Nuclear Power, Summer Capacity
Time path: Electricity Production, Various Fuels
Time path: Various Fuels, Summer Power Capacity

- **Uranium and Nuclear Power, C. Mason, SER 2012**
Nuclear Power: Global Role

World nuclear electricity generating capacity by region, 1955-2011

- **North America**: 115.4 gigawatts
- **Europe**: 125.8 gigawatts
- **Former Soviet Union**: 37.1 gigawatts
- **Asia**: 63.0 gigawatts
- **Middle East**: 0.9 gigawatts
- **Africa**: 1.8 gigawatts
- **Central & South America**: 2.8 gigawatts

2011
Nuclear Power: Historical Global Expansion
Why Nuclear Expansion?
Carbon Policy and Nuclear Power

- 1.020 kg CO₂ per kWh for coal
- 0.515 kg CO₂ per kWh for natural gas
- plausible impact: pressure towards reduced use of both fuels as inputs into electricity
- then increased pressure for usage of Nuclear energy
 - In North America and Europe
 - also in FSU, BRIC countries
- induces increased demand for Uranium
Implications

- Coal is faltering
- Natural Gas is rising rapidly
- Nuclear continues steady growth, particularly if
 - oil prices continue to rise
 - meaningful carbon policy is enacted
- huge new deposits of Natural Gas apparently at hand
- what about Uranium?
 - likely push towards new exploration, new development
Optimal behavior: resource extracting firms

- privately optimal rate of extraction sets current rents equal to discounted future expected rents
- expectation depends on current beliefs
- but also manifest anticipated extraction next period
- in this way, current production is indirectly influenced by current exploration
 - if current exploration rises, this increases expected future finds, which in turn motivates larger production today
What do we know?

- privately optimal exploration balances current marginal exploration cost against future expected benefits
 - value of expected finds
 - (negative?) impact of current exploration on future find rate, which will adversely impact payoffs two periods hence
 - expected value of information
 - current exploration yields inform’n, changes future beliefs
 - this is true for other firms as well
 - possibility of public good aspect to information
 - also possibility of using information for speculative purposes

- evidence suggests speculation governed past exploration

- increases in D, associated sharp increases in production and exploration would seem to reinforce this conclusion

- similarity to first decade of 21st century striking

- likely implication: over-exploration continues
 - on a global scale?
What can we learn from the past experience?

- strong price signals lead to over-exuberant exploration
- this excess exploration likely motivated by speculation
- excess exploration spills over into extraction levels, yielding social over-production
- attendant welfare losses from over-exploration, over-production
- can we draw useful insights from the record of solid prices in 1950s, strong run-up in prices in early 1970s to guide policy going forward?
- evidence suggests a role for (international) governmental intervention
 - tax on exploration?
 - (larger) severance tax on produced ore?