The promise and challenge of CO2-EOR, Residual Oil Zone production, and CO2 storage

Dr. S. Julio Friedmann
Susan Carroll, Chen Mingjie, Walt McNab, and Abelardo Ramirez
Lawrence Livermore National Laboratory

Third Annual Clean Coal Conference

Xi’An, China
June 4th-6th, 2012
LLNL applies its expertise and capabilities to helping carbon management needs

Only group involved in R&D at all five large commercial projects (Sleipner, Snohvit, Weyburn, Cranfield, In Salah)

Other large projects in US & China

Active in 4 DOE regional partnerships

Partnered with power generators, oil & gas companies, NGOs

Advise government on regulation, legal issues, R&D investments

We focus on S&T that help enable deployment
CCUS as a bridging technology to an energy-rich, low-carbon economy

Global CO2 emissions and GHG emissions reductions

EOR as a bridging technology CCUS deployment

IEA, 2011
How wide, how long, how stable is that bridge?

- Wider than expected
- Longer than expected
- Advanced technologies help
CO2-EOR: Combines storage with production

Physics of miscible CO2-EOR
- CO2 dissolves in oil; oil dissolves in CO2
- Oil volume swells (increase volume)
- Decrease viscosity
- Reduce wettability angle

Production increases
(improves total recovery 10-15%)

EOR began in US in 1972
 Longer than expected: Large EOR volumes in US and China

- Many 10’s of billions producible (just US)
- 100’s of billions worldwide
- Chief rate limiting step (lack of CO2) likely to persist for years

Domestic Oil Resources

<table>
<thead>
<tr>
<th>Recoverable Type</th>
<th>Billion Barrels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technically Recoverable</td>
<td>88.1</td>
</tr>
<tr>
<td>Economically Recoverable*</td>
<td>47.4</td>
</tr>
<tr>
<td>Already Produced/Proven</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Market CO2 demand

<table>
<thead>
<tr>
<th>Category</th>
<th>Million Metric Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total U.S. CO2 Demand</td>
<td>12,500</td>
</tr>
<tr>
<td>New Lower-48 CO2 Demand</td>
<td>9,700</td>
</tr>
<tr>
<td>Net Lower-48 From Captured CO2 Emissions</td>
<td>7,500</td>
</tr>
</tbody>
</table>

ARI, 2008

[ARI, 2008 diagram showing original oil in-place, stranded oil in-place, future challenge, cumulative production, and proved reserves with CO2-EOR technology]
Wider than expected: Residual Oil Zone (ROZ) volumes

Zones of low oil saturation (80-20%) beneath and next to conventional oil fields

2x-3x recovery potential
- Six producing ROZ fields in US Permian Basin
- 12-18 Billion bbl in ROZ
- 6.4 Billion bbls in main pay zones

2x-5x storage potential
- Large areas; complex reservoirs
- Needs more CO2/barrel!
- Negative carbon oil?

<table>
<thead>
<tr>
<th></th>
<th>"State of the Art"</th>
<th>"Next Generation"</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Storage</td>
<td>19</td>
<td>109</td>
</tr>
<tr>
<td>Storage Capacity</td>
<td>13%</td>
<td>76%</td>
</tr>
<tr>
<td>Oil Recovery</td>
<td>64</td>
<td>180</td>
</tr>
<tr>
<td>% Carbon Neutral</td>
<td>80%</td>
<td>160%</td>
</tr>
</tbody>
</table>

Sources: MIT, 2010; ARI 2007 and 2010; NETL 2008

ARI, 2008
Two kinds of ROZ zones

• Beneath main pay zones in regular oil fields

• Ancient migration fairways: NOT conventional closures
Critical technology enables superior CO2-EOR and ROZ production

• Advanced reservoir characterization
• Advanced simulation
• Enhanced monitoring

Enabled by high-performance computing
Characterization: detailed core/lithology analysis plus advanced supercomputing techniques

Result: Better sweep efficiency
Better reservoir storage efficiency
For Weyburn: Modeled and validated rapid changes in porosity and permeability of vuggy reservoir

Advanced simulation tools
- NUFT2 (FD and FE methods; structured and unstructured meshes)
- GEMBOCHS (library – 128 mineral EOS)
- EQ3/6 (alt. to Geochemist’s Workbench)
- PHREEC-CD, etc.

Combine simulation with experiments for validation
- Batch and flow-through experiments
- “1-D” experimental designs
- Advanced light source (LBNL) and neutron-source images
- High pressure and temperature

Result: High confidence in models
Avoid production problems
At Weyburn: Successful integration of seismic and geochemical signals; direct permeability mapping

Result: High confidence in models
Avoid production problems
Cranfield ERT: Direct imaging of CO₂ saturation

Electrical Resistance Tomography = ERT

Deepest ever ERT array
- 10,000 feet (3000 m)
- Cross-well
- Daily measurements

Key successes
- Detected CO₂
- Good calibration to log tools
- Detected changes in saturation

Result: Fast, cheap, accurate tool
Will improve operations
CCUS a major opportunity for energy production and emissions reduction in China and US

Chu and Thornton, 2009

“...both countries will need not only bold leadership and a new set of national policies, but also a path-breaking cooperative agenda that can be sustained over the long run [over the next 5-10 years].”
LLNL has many direct partnerships and MOUs with leading Chinese companies, including state-owned enterprises:

US-China CERC (technical director)
Tsinghua-WRI CCUS Guidelines
Asia Society US-China CCS Roadmap

Huaneng-CERI
Shenhua
CNOOC
XinAo/ENN
Tsinghua Univ.
Chinese Univ. of Mining Technology
CO2-EOR/ROZ bridge is wide, long, and strong

• Larger oil production than first thought
• Much more CO2 storage potential (negative C oil)
• Advanced technologies help

Please visit San Francisco and visit Lawrence Livermore National Lab