Integration of Enhanced Oil Recovery with CO$_2$ Storage in Mature Oil Fields of the Ordos Basin, China: Opportunities and Challenges

1Zunsheng Jiao 1Ronald Surdam
3Lifa Zhou, 2Ruimin Gao
3Yajun Wang, 3Tingting Luo, 2Hong Wang

1Carbon Management Institute, School of Energy Research, UW
2Research Institute of Shaanxi Yanchang Petroleum (Group) CO., LTD
3The Shaanxi Provincial Institute of Energy Resources and Chemical Engineering
Outline

What we have accomplished in Wyoming
- Determined CO$_2$-EOR potential in Wyoming
- Monitored CO$_2$-EOR activities in Wyoming
- Developed an integrated approach for CO$_2$ EOR and geological storage project

Opportunities of the CO$_2$ EOR/storage in the Ordos Basin
- The CO$_2$-EOR potential of major oil fields in the Ordos Basin
- The capture-ready, cost affordable CO$_2$ sources
- Favorable environments for applying the integrated approach to CO$_2$ EOR/geological storage

Challenges of the CO$_2$ EOR/storage in the Ordos Basin
- Low reservoir pressure, low porosity, low permeability
- High reservoir heterogeneity
- Absent infrastructures
Wyoming Oil and Gas Map
Enhanced oil recovery opportunities in Powder River Basin – the Minnelusa

- Approximately 150 candidate Minnelusa oil fields. Many have gone through secondary recovery water flood stage and appear ideal for CO₂ miscible flooding

- 1.2 billion barrels of original oil in place (OOIP), CO₂ flooding adds 15% additional production, 180 million barrels @ $80/barrel = $14.4 billion

- Final CO₂ storage capacity is available in EOR projects after stranded oil recovery is complete
CO₂ flood enhanced oil recovery returns and CO₂ requirements, WY

<table>
<thead>
<tr>
<th>Recovery 15% OOIP (barrels)</th>
<th>180 million barrels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value @ $80/barrel</td>
<td>$14.4 billion</td>
</tr>
<tr>
<td>CO₂ required @ 10 mcf/barrel</td>
<td>1.8 billion mcf (1.8 TCF)</td>
</tr>
<tr>
<td>Tonnes of CO₂ needed</td>
<td>93 million tonnes</td>
</tr>
<tr>
<td>(19.3 mcf/tonne)</td>
<td></td>
</tr>
<tr>
<td>CO₂ cost @ $2/mcf</td>
<td>$3.6 billion</td>
</tr>
</tbody>
</table>
CO₂ projects and pipelines in Wyoming

Fields:
- Salt Creek
- Monell
- Los Solder
- Beaver CR
- Wertz

Pipeline:
- 33 mile, 8”
- 125 mile, 16”

CO₂ Supply:
- Moxa Arch/ Shut Creek
Salt Creek CO₂ flooding performance

Incremental oil production increase 12,000 barrels/day in 2010
Beaver Creek Madison Limestone
CO$_2$-EOR production

Pre-Flood
320 Bopd
32000 Bwpd

Initiated CO$_2$ Injection 7/3/08

Current Rate
1200 Bopd
22000 Bwpd

Oil Cut Increase from 1% to 5%
As a CO₂-EOR project proceeds:

- About two thirds of the CO₂ is recycled
- About one third of the CO₂ stays in the reservoir
<table>
<thead>
<tr>
<th>Field</th>
<th>Formation</th>
<th>CO₂ Capacity (million tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amos Draw Complex</td>
<td>Muddy</td>
<td>13.8</td>
</tr>
<tr>
<td>Kitty</td>
<td>Muddy</td>
<td>18.8</td>
</tr>
<tr>
<td>Hartzog Draw</td>
<td>Shannon</td>
<td>18.5</td>
</tr>
<tr>
<td>Buck Draw North</td>
<td>Dakota</td>
<td>15.6</td>
</tr>
<tr>
<td>Powell</td>
<td>Frontier</td>
<td>38.0</td>
</tr>
<tr>
<td>Spearhead Ranch</td>
<td>Frontier</td>
<td>6.9</td>
</tr>
<tr>
<td>Sand Dunes</td>
<td>Muddy</td>
<td>12.4</td>
</tr>
<tr>
<td>House Creek</td>
<td>Sussex</td>
<td>8.2</td>
</tr>
<tr>
<td>Scott</td>
<td>Parkman</td>
<td>5.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>137.6 million tons</td>
</tr>
</tbody>
</table>
Development of a Integrated Approach

Coal Mine → CBM H₂O → Coal > Liquids, Gases, Electrons

Electrons → Gases → CO₂

CBM H₂O → Liquids → Diesel

→ Compression and CO₂ Injection

→ CO₂ Storage in Depleted Compartmentalized Gas Fields

→ Production/Compression

→ CO₂ Injection

→ Oil

→ 120 Million Barrels of Stranded Oil

→ Enhanced Oil Recovery or CO₂ Final Storage
Resource overlap makes integrated planning possible.
Opportunities of the CO\textsubscript{2} EOR/Geological Storage in the Ordos Basin

- Lower primary and second recovery rate provide a huge potential for the tertiary CO\textsubscript{2}-EOR

- The capture-ready, cost affordable CO\textsubscript{2} sources

- Favorable environments for applying the integrated approach CO\textsubscript{2} EOR and storage strategy
The Ordos Basin Oil and Gas resources

Resource:
- Oil 8.58×10^9 tonnes
- Gas 10.7×10^{12} m3

Reserves (approximately):
- Oil 4.5×10^9 tonnes
- Gas 2.5×10^{12} m3

Average recovery (preliminary and secondary) is from 10 to 15%
Potential investment returns from CO₂ EOR Projects in the Ordos Basin

(Proven Oil Reserves 4.5 billion tonnes or 32 billion barrels)

<table>
<thead>
<tr>
<th>Recovery 10% OOIP (barrels)</th>
<th>3.2 billion barrels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value @ $80/barrel</td>
<td>$257 billion</td>
</tr>
<tr>
<td>CO₂ required @ 10 mcf/barrel</td>
<td>32 billion mcf (32 TCF)</td>
</tr>
<tr>
<td>Tonnes of CO₂ needed (19.3 mcf/tonne)</td>
<td>1665 million tonnes</td>
</tr>
<tr>
<td>CO₂ Cost @ $2/mcf</td>
<td>$64 billion</td>
</tr>
</tbody>
</table>
Captured-Ready, High-Concentration CO$_2$ from Coal Conversion Plants

An Example from a methanol Plant at Yulin, Shaanxi Province

- Methanol: 0.6 Mt/y
- Coal utilized: 1.8 Mt/y
- CO$_2$ emitted: 4.7 Mt/y
- Water used: 6.0 Mt/y
Unique Characteristics of the Triassic Oil Reservoirs in the Ordos Basin

- Low reservoir porosity (<10%)
- Low reservoir permeability (<1 md)
- Low oil saturation
- Abnormally low reservoir pressure
- Higher reservoir heterogeneity
Comparisons of the Targeted CO2-EOR Reservoirs (Miserable Flooding)

<table>
<thead>
<tr>
<th></th>
<th>Pressure</th>
<th>Porosity</th>
<th>Perm</th>
<th>Facies</th>
<th>Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>Over/normal</td>
<td>10–25</td>
<td>> 1</td>
<td>Marine</td>
<td>Medium/light</td>
</tr>
<tr>
<td>Ordos</td>
<td>Under</td>
<td><10</td>
<td><0.5</td>
<td>Fluvial</td>
<td>Light</td>
</tr>
</tbody>
</table>
Challenges for CO$_2$-EOR practices in the Ordos Oil Fields: Reservoir Heterogeneity

A typical fluvial facies distribution for the Triassic reservoirs in the Ordos Basin
Challenges for CO$_2$-EOR practices in the Ordos Oil Fields: Reservoir Heterogeneity

A typical fluvial porosity distribution for the Triassic reservoirs in the Ordos Basin

Porosity model
What for Next: to Facing the Challenges

Pre-CO2 Injection to Establish Reservoir Pressures

Graph showing the change in reservoir pressure and CO2 injection over time.
What for next: to Facing the Challenges

Design a CO₂ EOR Project in the Ordos Basin

- Reservoir and targeted pay zones screening
- 3-D Geological Modeling
- Reservoir Hydrologic modeling
- Lab CO₂ displacement experiments
- Compositional CO₂ Coreflood Simulation
- Compositional CO₂ Reservoir Simulation
- Economic analysis
- CO₂-EOR project implementation design