Math Science Partnership: QR STEM

Robert Mayes, James Myers, Mark Lyford, Alan Childs, Norm Shinkle, Tim Robinson, Pete Ellsworth, Joel Pontius
Science & Math Teaching Center
University of Wyoming

QR STEM is a funded by a Department of Education Mathematics and Science Grant (Project ID: 100150T2BA0).
QR STEM

QR STEM targets quantitative reasoning across the sciences, providing integrated biology, chemistry, earth systems, physics, and mathematics professional development.

Partners include:

- Over 90 teachers from school districts across Wyoming in Cohorts 1, 2, 3, & 4
- UW and Community College professors from biology, chemistry, earth science, physics, statistics, and mathematics
QR STEM Priorities

- Development of Professional Learning Communities (PLC) across STEM
- Understanding by Design (UbD) as framework to move QR STEM into classroom
- Integrated science content within a context of energy and environment
- Focus on components of QR: quantitative literacy, quantitative interpretation, quantitative modeling
- Place-based pedagogy for engagement
- Lesson Study as part of implementation
- Action Research to explore impact both on teaching practice and student learning
QR STEM Outcomes

- Energy and Environment Unit
 - Integrating science and QR
 - Anchored by performance task

- Implementation of Unit
 - Unit will be implemented in the teacher-participants classroom during the 2010-11 school year

- Assessment of Unit
 - Report on impact of unit on teacher practice and student learning

- Success Curriculum
 - Discussion/plan for integrating the concept of integrated STEM and Energy/Environment
QR STEM Project Symposia

- Introduction to Program
 - May 21-22, 2010 in Powell
 - Overview of program & needs assessment

- Symposium 1: Transportation
 - June 10-12, 2010 in Laramie

- Symposium 2: Electricity
 - July 15-17, 2010 in Riverton

- Symposium 3: Climate Change
 - August 5-7, 2010 in Sheridan

- Peer Performance Task Review
 - October 2010 in Laramie

- Post Performance Task Review
 - April 2011 in Laramie
QR STEM Symposia

Symposium 1: Laramie, Wyoming
- QR focus on quantitative literacy in science
- Energy and Environment STEM content with QL underpinning
- Understanding by Design Stage 1 used to determine enduring understandings and essential questions
- PLC complete Stage 1
QR STEM Symposia

- Symposium 2: Riverton Wyoming
 - QR focus on quantitative interpretation in science
 - Energy and Environment STEM content with QI underpinning
 - Understanding by Design Stage 2: 6 Facets and GRASPS used to begin creating performance task with QR focus
 - PLC complete Stage 2
QR STEM Symposia

- Symposium 3: Sheridan Wyoming
 - QR focus on quantitative modeling/reasoning in science
 - Energy and Environment STEM content with QM underpinning
 - Understanding by Design Stage 3: creation of tasks and instructional strategies
 - Setup Lesson Study for fall semester with focus on performance task implementation, review, and study
 - PLC complete Stage 3
Academic Year Activities

- Lesson Study: Peer review, implement, and reflect on UbD unit

Timeline:

- October Workshop 2010: Peer review each other’s performance tasks and develop pre-assessments
- March 2010: Implement UbD unit, observe a lesson, complete self-reflection, and collect students’ work
- April Workshop 2011: post-review by QR STEM faculty and teachers; share student work from unit
- June 2011: Final submission of UbD unit
What is QR?

Form pairs of science teachers and mathematics teachers.
- What do you believe quantitative reasoning is?
- How does doing mathematics or statistics differ from engaging in quantitative reasoning?
- Provide some examples of quantitative reasoning.
What is QR?

<table>
<thead>
<tr>
<th>Categories</th>
<th>Quantitative Literacy</th>
<th>Quantitative Interpretation</th>
<th>Quantitative Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numeracy</td>
<td>Number Sense</td>
<td>Interpreting</td>
<td>Logic</td>
</tr>
<tr>
<td></td>
<td>Small/large Numbers</td>
<td>graphs</td>
<td>Problem Solving</td>
</tr>
<tr>
<td></td>
<td>Scientific Notation</td>
<td>equations</td>
<td>Modeling</td>
</tr>
<tr>
<td>Measurement</td>
<td>Accuracy-precision</td>
<td>science models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimation</td>
<td>statistical plots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensional Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional</td>
<td>Fraction</td>
<td>Normal Distribution</td>
<td></td>
</tr>
<tr>
<td>Reasoning</td>
<td>Ratio</td>
<td>Correlation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percents</td>
<td>Causality</td>
<td></td>
</tr>
<tr>
<td>Basic Prob/Stats</td>
<td>Empirical Prob.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Counting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central Tendency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpreting</td>
<td>tables</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>science models</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>statistical plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logarithmic Scales</td>
<td>Normal Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>Correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Causality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least Squares Fit</td>
<td>Inference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference</td>
<td>Hypothesis testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is Understanding by Design?

- Authors: Jay McTighe and Grant Wiggins
- ASCD materials – Association for Supervision and Curriculum Development
- Understanding by Design Handbook served as basis for many of our activities in assessment
Backward Design Process

Three Stages of Backward Design

Stage 1: Identify desired results

Stage 2: Determine acceptable evidence

Stage 3: Plan learning experiences and instruction
Discussion and Questions

- Robert Mayes
 - Science and Math Teaching Center
 - rmayes2@uwyo.edu
 - 307-766-3776