Barger Gulch Locality B: A Folsom Site in Middle Park, Colorado

Todd A. Surovell, Nicole M. Waguespack, Marcel Kornfeld, and George C. Frison

The intermontane basin of Middle Park, Colorado, is known to contain a high density of Folsom archaeology (Kornfeld 1998; Naze 1986). Although abundant surface finds have been reported, only two Folsom sites have been identified as containing buried archaeological deposits, Crying Woman (Naze 1994) and Barger Gulch, Locality B (Kennedy et al. 1998; Kornfeld and Frison 2000; Surovell et al. 2000). This paper briefly summarizes recent fieldwork (during 1997, 1999, and 2000) at Locality B of the Barger Gulch site (5GA195). As discussed by Kornfeld et al. (this volume), Locality B is one of at least six Paleoindian sites that flank Barger Gulch, a small southern tributary of the Colorado River. The site lies adjacent to a small intermittent stream on a high ridge east of Barger Gulch proper.

To date, subsurface deposits have yielded only Folsom artifacts. The depth of cultural materials is highly variable across the site, exposed on the surface in some areas, buried by as much as 50 cm of sediment in others. Where not eroded, however, cultural material is consistently associated with a buried paleosol. The stratigraphy is somewhat obscured by bioturbation, but is generally straightforward for a shallow site. The uppermost stratum is a light brown to orange silty loam, unconsolidated in its upper portions. This is underlain by a moderately organic paleosol A-horizon. Gleying is associated with the paleosol in low-lying areas, implying high water tables at the time of soil formation and possibly the presence of a spring locally (Reider 1998). A single radiocarbon date of 9,420 ± 50 RCYBP (Beta-109464) was obtained on soil organic matter from the paleosol. This date should be considered a minimum age of soil formation, since it has likely suffered some contamination by younger humic acids. The paleosol B-horizon appears to be a modified bedrock surface and exhibits weak secondary carbonates in its lower portions. It is believed that the carbonates postdate soil formation, since the paleosol formed under rather acidic conditions. The B-horizon sits directly on Miocene bedrock (Troublesome Formation). Although some vertical dispersion of the Folsom component is evident, artifacts tend to be concentrated at the contact of the paleosol A- and B-horizons.

From 16 excavation units, 5,265 artifacts have since been recovered. Artifact densities vary dramatically, ranging from fewer than 10 to more than 600 pieces per m². The excavated assemblage is overwhelmingly represented by debitage (n = 5,206). The remainder of the assemblage is composed of 3 preforms, 1 finished projectile point, 14 channel flakes, 8 endscrapers, 5 gravers, 3 bifaces, 9 cores, and 16 miscellaneous retouched tools and tool fragments. Also recovered was a sandstone abrader, approximately 3 cm long, with red ochre preserved on one surface. Small pieces of red ochre have been recovered from a number of excavation units. One large core is an excellent example of a centripetal Levallois core similar to those described from the Hanson site (Frison and Bradley 1980). The remaining cores exhibit informal use of large tabular nodules of chert. Locally available Troublesome Formation chert constitutes more than 99 percent of the assemblage. Other raw materials represented include dendritic orange chert (possibly Trout Creek chert from South Park, Colo.), brown dendritic chert, petrified wood, and quartz. No faunal remains have been recovered, likely owing to acidic conditions associated with the paleosol that buried the archaeological materials.

In addition to excavated material, more than 2,500 surface artifacts have been collected and mapped from an area approaching 10,000 m². It is not known what percentage of the artifacts are of Folsom age, but only a single non-Folsom diagnostic has been recovered, an isolated side-notched projectile point. Numerous channel flakes and spurred endscrapers have been recovered across this area in addition to Folsom projectile point performs.

Although the site was initially thought to be primarily a quarry location, there are numerous reasons to suggest it represents a Folsom residential occupation or an occupation associated with quarrying activities (Kornfeld et al. this volume). Unlike Locality A (Kornfeld et al. this volume; White 1999), Locality B does not sit immediately adjacent to a primary outcrop of chert, although raw material is available within a kilometer. Also, unlike Locality A, the site location was not periodically reused from the late Pleistocene onward. Finally, a large diversity of tool forms suggests numerous activities occurred in addition to raw material procurement. If indeed Barger Gulch Locality B represents a large residential campsite, it may have tremendous potential for furthering studies of late-Pleistocene hunter-gatherer lifeways in the Rocky Mountain region.

We thank Frank Rupp, Jim Chase, Anthony Smith, Jim and Vicky Taussing, and numerous volunteers. This work was supported by the Bureau of Land Management, the Emil W. Haury Fund for
References Cited


Kornfeld, M., G. C. Frison, and P. White 2001 Paleoindian Occupation of Barger Gulch and the Use Of Troublesome Formation Chert. This volume.


White, P. M. 1999 Getting the High Altitude Stone: Lithic Technology at the Barger Gulch Site (3GA195), Middle Park, Colorado. Unpublished M.A. thesis, Department of Anthropology, University of Wyoming, Laramie, WY.

Site Distribution in the Zerkal’naya River Valley, Russian Far East

Andrei V. Tabarev, Alexander A. Kryp’anko, Christopher T. Hall and Peter Bleed

Archaeologists have long recognized the Primorye Territory of the Russian Far East as a region where important human migration, cultural diffusion, and regional adaptations occurred. Nearly a century of archaeological investigations (Derevianko 1998; Okladnikov 1959; Vasilevsky et al. 1997) provides the background for current research by both Russian and cooperative international research teams. In order to contribute to that research, to focus future work, and to describe the material record of this region, this paper summarizes the spatial and temporal patterning of archaeological sites in the Zerkal’naya River valley.

The Zerkal’naya is one of several rivers that flow across southeastern Primorye. It originates on the eastern slope of the Sikhote-Alin Range and flows eastward for some 70 km, where it empties into the Sea of Japan. Although a complete geomorphologic assessment of the valley has yet to be conducted, Pleistocene terrace remnants are recognizable along the length of the valley. The terraces range 10–30 m above the modern floodplain, but most occur at elevations of 12–16 m. Although there is evidence of ancient human occupation on the terraces and valley bottom, the spatial and temporal distribution is not uniform, and sites of different ages appear to have distinctive terrace associations.

Over the past 15 years, archaeologists working in the Zerkal’naya River valley have discovered some 20 archaeological sites and identified three major periods of archaeological occupation. Late-Paleolithic groups occupied the Zerkal’naya River valley by at least 15,000 yr B.P. (Tabarev et al. 1999) and left behind distinct assemblages of small bifaces, burins, percussion blades, and wedge-shaped microcores. Sites of this age constitute the bulk of known archaeological deposits in the valley and have been the major focus of research because they are very similar in content to assemblages from Siberia, north China, and Japan. The possibility of a much earlier Paleolithic occupation is very real, but not securely documented. All known Late-Paleolithic sites are located on terraces 12–16 m high, almost invariably on promontories that overlook a tributary confluence.

Early-Holocene (9500–6000 yr B.P.) Neolithic remains are known from other portions of the Primorye, where they are associated with embellished ceramics, stone projectile tips, and a mixed economy that relied on hunting, gathering, and domesticated plants and animals. Until recently, however, no Neolithic sites were known in the Zerkal’naya River valley. During the 2000 field season, limited testing at a site located on the 14-m terrace did yield Neolithic pottery from a layer above a Paleolithic deposit. This site certainly deserves more research, since it represents some of the only evidence of early-Holocene human occupation in the valley.

Bronze Age sites are the second most common category of sites in the Zerkal’naya River valley. These sites, loosely dated at 2000–3000 yr B.P., are marked by a cultural assemblage that includes unembellished cooking pots, spindle whorls, polished and chipped stone tools and—very rarely—metal artifacts. All known Bronze Age sites occur on terraces 12–16 m high and are commonly found overlying Paleolithic deposits.

Only a few Medieval sites dating from early in the second millennium A.D. have been located in the Zerkal’naya River valley. Archaeologists know little about these sites, but they include substantial farmsteads and at least one