Econ 3010. Keeping-up-assignment (KUA) 4

1. Assume that we measure US GDP and household wealth in billions of dollars. This ways, we do not have to write all the zeros. The total wealth is $W = 20,000$ and the households can distribute the wealth between illiquid bonds and liquid, but non-interest bearing money. The money demand equation is $M^d = SY(.55 - i)$, where SY is nominal GDP and i is the interest rate on bonds. Since the stock of wealth in any particular year is largely fixed, the bond demand is just the wealth minus the money demand, $B^d = W - M^d$.

(a) If nominal GDP is $SY = 10,000$ and the interest rate is $i = 0.05$, what is money demand? What is bond demand?

(b) If nominal GDP is $SY = 10,000$ but the interest rate decreases to $i = 0.03$, what happens to money and bond demand? Why does a falling interest rate increase money demand?

(c) If the interest rate is $i = 0.05$ but nominal GDP increases to $SY = 12,000$, what happens to money and bond demand? Why does increasing income increase money demand?

2. In the previous problem, we just assumed a particular interest rate. In fact, the interest rate depends on money supply and demand. In order to explore this idea, assume again that wealth $W = 20,000$, nominal GDP $SY = 10,000$, and $M^d = SY(.55 - i)$.

(a) If the Federal Reserve Bank sets the money supply at $M = 5,000$, what is the equilibrium interest rate? (hint: set $M = M^d$ and solve for i).

(b) Draw the (vertical) money supply curve and the money demand curve into a diagram with the quantity of money (M, M^d) on the horizontal axis and the interest rate (i) on the vertical axis. Mark the equilibrium interest rate you found in part (a).

(c) Next to the money diagram, draw the corresponding bond diagram. Note that the bond demand is $B^d = W - M^d = 20,000 - M^d = ...$ (plug in for M^d). It is upward sloping since a higher interest rate makes bonds more attractive. Add a vertical bond supply curve B' so you get the same interest rate as the money diagram. Since you know the bond demand and the interest rate, compute what the bond supply must be (solve $B' = B^d$ when i is the equilibrium value). Write the answer below the bond supply curve.
(d) Finally, assume that the Federal Reserve Bank spends $200 in an expansionary open market operation: it buys up $200 worth of bonds from the public in exchange for money. The private bond supply falls by $200 as the Feds take them off the market and the money supply increases from \(M = 5,000 \) to \(M' = 5,200 \). Redo parts (a)-(c) by computing the new interest rate \(i' \), shifting the graphs appropriately, and writing the new interest and money/bond supplies in the diagrams. What happened to the interest rate?

NOTE: When you think about it from the money market perspective, it is pretty intuitive that when the money supply increases, the price of borrowing a money unit falls. In order to see why the interest rate also falls from the bond market perspective, note that a bond is an IOU piece of paper with a certain “face value” \(F \) (say, $100), which the bond issuer will pay to the bond owner when the bond matures (say, in February 2017). The interest rate or return per dollar invested is \(i = \frac{(F - P_b)}{P_b} \), where \(P_b \) is the bond price. When the Feds buy up the extra $200 worth of bonds, the bond demand rises, pushing up the bond price \(P_b \) and decreasing the interest rate \(i = \frac{(F - \uparrow P_b)}{\uparrow P_b} \). This why the interest rate also falls in the bond market.