Sulfur (S) occurs in nature as free S or combined with other elements in sulfides and sulfates. The most common form in water is the sulfate (SO$_4^{2-}$) ion, although some sulfuriferous wells may contain relatively high concentrations of dissolved sulfides. The latter do not persist for long under surface conditions but may contribute to health problems while they are present. Sulfides in igneous and sedimentary rock are oxidized to sulfate (SO$_4^{2-}$) during the weathering process. The resulting sulfate salts are leached from soils by runoff and may be concentrated by evaporation in playas. Some aquifers are naturally very high in SO$_4^{2-}$. Once SO$_4^{2-}$ is dissolved in water it cannot be removed unless it is reduced to sulfide by anaerobic organisms and precipitated in sediments, released as hydrogen sulfide (H$_2$S) or incorporated into organic matter. Reverse osmosis, distillation, and ion exchange may be used to remove SO$_4^{2-}$ from water; however, none of these processes is cost-effective for livestock under normal conditions. Sulfur may also be present in organic compounds synthesized by aquatic biota; however, this form is usually a relatively minor component of the total water S content. In 1997, 11.5% of 454 forage/water pairs collected from around the United States yielded dietary S concentrations potentially hazardous for cattle. Thirty-seven % of these elevated pairs originated from the western United States, including Wyoming.

Essentiality

Sulfur is essential for health and, in fact, comprises about 0.15% of the total body in mammals, where it is a constituent of the amino acids methionine, cysteine, cystine, homocysteine, cystathionine, taurine, and cysteic acid. It is also a component of biotin, thiamin, estrogens, ergothionine, fibrinogen, heparin, chondroitin, glutathione, coenzyme A, and lipoic acid. Calves deprived of dietary S had smaller livers, spleens, and testes, and larger brains and adrenals than controls. Lactating dairy cows require between 0.17% and 0.20% total dietary S to remain in positive balance, as S constitutes an estimated 0.78% of milk proteins. The nutritional S requirement of monogastric mammals must be provided as two amino acids – methionine and cystine. Ruminants can use either preformed amino acids or synthesize S-amino acids from inorganic S; however, the efficiency of the latter process varies with other dietary conditions.

Metabolism

The first step in ruminal synthesis of S-amino acids from inorganic S is reduction of the latter to H$_2$S. Not surprisingly, SO$_4^{2-}$ is converted to H$_2$S more efficiently than pre-formed S-amino acids. Halverson et al. examined sulfide production from various S sources and found methionine produced one third the amount of sulfide as SO$_4^{2-}$. Under normal circumstances, the reactive sulfide ion is combined with carbon by rumen microflora to create methionine, homocysteine, cystathionine, cysteine, and other S-amino acids. Under conditions of excessive S intake, however, significant quantities are reduced to H$_2$S, and the very toxic gas escapes from the rumen into the systemic circulation resulting in poisoning.

Excess rumen sulfide may also interact with certain trace elements, especially Cu, decreasing bioavailability and possibly resulting in serious nutritional deficiencies. In ruminants, S combines with Mo to form thiomolybdates. These, in turn, form unabsorbable complexes with Cu, which irreversibly bind to the solid phase of the digesta, resulting in Cu deficiency. It has also been suggested that thiomolybdates interfere post-absorptively with Cu incorporation into the enzymes superoxide dismutase and cytochrome oxidase, compromising mitochondrial integrity and cell function.

Finally, it has been theorized that some of the effects of excess dietary Mo are actually due to Mo toxicity per se and not to hypocupremia. Of the three elements, Cu, Mo, and S, S provides the most variation in nutritional outcomes due to its multiple metabolic pathways from the rumen. Sulfur exits the rumen principally as sulfide, but it can also leave as undegraded protein S or be incorporated into microbial protein. Inorganic S from diet, saliva, or degraded protein is the only form of S that will interact with Mo and Cu. Several factors affect protein degradation to S, including the supply of degradable nitrogen, the rate of ingestion, the specific population of rumen microbes, and the availability of readily fermentable carbohydrates.
Dietary S may also antagonize Cu metabolism in the absence of excessive Mo. Copper deficiencies occurred in cattle fed 0.3% total dietary S, and 500 mg S/L water was hypothesized to cause secondary deficiency as it raised dietary S to 0.35%, both in the absence of excess Mo. Sulfur inhibits the uptake of Zn. The interaction between Zn and S is further magnified if animals are fed a high fiber diet. Sulfur also decreases the uptake of dietary Se. High dietary concentrations of S are thought to reduce rumen pH, favoring the conversion of Se to biologically unavailable selenide. Sulfur may also reduce incorporation of dietary Se into ruminal bacterial protein. Interestingly, S has been shown to protect against Se intoxication under some circumstances.

Monogastric animals lack the ability to produce S-amino acids from inorganic S and are thus somewhat less sensitive to the above-mentioned toxic effects of the sulfide ion. For example, the NRC “maximum tolerable” S concentration for range cattle is 0.5%, whereas 0.69% of diet is optimal in rats. Although it is possible for a monogastric to generate toxic concentrations of H₂S following ingestion of elemental S, the dosage required is much greater than in ruminants. To illustrate this, 14 horses were mistakenly fed between 0.2-0.4 kg of flowers of S (99% S) resulting in a dose between 333-666 mg/kg BW (corresponds to 11-22% dietary dry matter). The horses became ill within 12 hours, and two died after 48 hours. Post mortem examination of the two deceased animals revealed cranioventral consolidation of the lungs, hemorrhaging throughout the heart and GI, and congestion of the liver. Toxic effect(s) of inorganic S salts (e.g. SO₄²⁻) in monogastric species are usually related to abnormalities in water balance in the GI tract, explaining why clinical signs differ between monogastric and ruminant mammals. In swine, toxic effects are generally manifested as watery feces and have been shown to occur when ingesting water with concentrations as low as 600 mg SO₄²⁻/L, but they more commonly occur in water containing 1,600 mg SO₄²⁻/L or higher.

Toxicity

As with all poisons, toxicity depends on dose, route of exposure, and form of the element. In this report, we are most interested in ingestion (oral exposure) and SO₄²⁻, as that is the form of S commonly found dissolved in water. Between 0.3-0.5% of dietary dry matter is the recommended maximum tolerable limit for total daily S intake for ruminant animals. The amount of S that water contributes to the diet depends on the amount of water an animal drinks as well as the concentration of S in the water. This varies drastically with environmental temperature, type of feed, and condition of the animal. In one published example, the amount of S contributed by 1,000 mg SO₄²⁻/L in drinking water varied from 0.1-0.27% under different conditions.

Toxic S concentrations have been shown to reduce the feed intake, water intake, growth, and performance of animals. Cattle given water containing 1,219 mg SO₄²⁻/L in conjunction with a diet containing 0.16% S (0.29% total S intake), exhibited depressed dry matter intake (DMI). Adding 0.72% SO₄ (0.24% dietary S) to cattle diets reduced weight gains by 50% after the first two weeks. Concentrations of 0.35% or more dietary S resulted in diminished DMI in lactating dairy cows. Water containing 5,000 mg sodium sulfate (Na₂SO₄)/L and grass hay containing “0.75% SO₄” reduced water intake by 35% and feed intake by 30% in cattle. Decreases in average daily gain (ADG), feed efficiency, and dietary net energy were seen when heifers were fed 0.25% S as ammonium sulfate ((NH₄)₂SO₄). Supplying heifers with water containing 2,814 mg SO₄/L and hay containing “0.55% SO₄” reduced hay intake by 12.4% during the summer months. Water containing 3,087 mg SO₄/L reduced ADG by 27%, DMI by 6.2%, and water intake by 6.1 L in steers, and it increased the incidence of polioencephalomalacia (PEM). Cattle on a low plane of nutrition decreased their water intake when consuming water with 1,000 mg SO₄/L, and cattle on a high plane of nutrition had a slight decrease in feed intake when consuming 2,000 mg SO₄/L. Concentrations of S greater than 0.4%, added as elemental S or Na₂SO₄, decreased gains in feeder lambs. Approximately 0.5% S added to rations as calcium sulfate (CaSO₄) or Na₂SO₄ resulted in reduced feed intake and daily gains of 163 g/day and 191 g/day, respectively, compared to control lambs that gained 251 g/day.

On the other hand, when 0.75% S was added as CaSO₄ to the concentrate portion of the diet (0.477% total dietary S) of six Hereford cattle, no statistically significant changes in serum enzyme activity, Se concentrations, weight gains, or general health were noticed. The study, however, was designed to look at S-Se interactions and lacked statistical power to examine growth, ADG, or other measures of performance, and one of the animals died of PEM at the end of the experiment. Cattle offered water containing 2,500 mg SO₄/L showed no changes.
in feed or water consumption. The animals consumed an average of 3.9 kg of hay, 3.1 kg concentrate, and 33.1 kg water per day, suggesting this level as a safe tolerable limit.585 As with the previous study, the number of animals tested was very small. Sulfated S added to the diet of steers for 10 weeks at 0.42% did not affect feed intake but did at 0.98\%.522 Qi et al.623 added various amounts of CaSO\textsubscript{4} to the diet of goats and concluded that optimum feed performance occurred between 0.2-0.28\% S.623 Pendulum et al.624 fed up to 0.3% elemental S to steers without adverse effects.

The most dramatic manifestation of S toxicity in ruminants are sudden death, with no lesions, and/or PEM. Polioencephalomalacia is a neurological disease of cattle and sheep, resulting in seizures, ataxia, blindness, and recumbency as the main clinical signs. It is usually fatal. Seven hundred of 2,200 ewes grazing a pasture previously sprayed with elemental S began showing signs of abdominal discomfort within two hours of exposure, and 220 ewes died within five days. Lesions of PEM were found only in the sheep that had survived for five days.625 Animals ingesting water with 4,564 mg SO\textsubscript{4}/L and feed containing 0.17% S had a 47.6% incidence of PEM and a 33% mortality rate.626 Six of 110 cows drinking 7,200 mg Na\textsubscript{2}SO\textsubscript{4}/L water developed PEM.627 Eighteen of 21 steers fed supplements containing 2% inorganic SO\textsubscript{4} developed PEM. This supplement provided approximately 0.16% S beyond what was in the rest of the diet.628 Water containing 2,000 mg SO\textsubscript{4}/L produced PEM in one of nine steers.587 Three of 21 steers fed 3,780 mg SO\textsubscript{4}/L developed PEM and died. Feeding thiamin did not prevent S-toxicity.629 Four steers died of PEM on a feedlot in Alberta, Canada, after consuming water with 5,203 mg SO\textsubscript{4}/L while the temperature was 30 C.630 Four of 40 animals developed PEM after ingesting hay with 0.39% S and water containing 2,250 mg SO\textsubscript{4}/L. All 10 experimental animals offered water with 5,540 mg S/L or 7,010 mg S/L showed signs of PEM.632 The incidence of death from PEM in a beef feedlot varied dramatically with environmental temperature, from none in the winter to 0.8% per month in the summer. The increase also corresponded with a 2.4-fold increase in water intake as a result of summer weather, raising total dietary S intake to 0.67%.633 Cows in Canada were stricken with PEM when exposed to 3,400 mg SO\textsubscript{4}/L water; no new cases occurred after the water was replaced.634 Sixty-nine animals were affected with PEM after ingesting a protein supplement containing “1.5% organosulfate” and water containing 1,814 mg SO\textsubscript{4}/L.205 Experimentally feeding 0.477% total dietary S resulted in one of 12 heifers developing PEM three days after termination of the experiment.621 Polioencephalomalacia has been diagnosed in wild ruminants.635,636 Tests were not conducted to confirm SO\textsubscript{4} as the cause of these cases, but surface waters in the area where the animals were found are naturally high in SO\textsubscript{4}, and exposure to these waters was considered likely.537

Sulfate waters are quite unpalatable, and, when given a choice, animals will discriminate against them. A taste test was conducted between waters containing 1,450 mg/L and 2,150 mg/L SO\textsubscript{4} and tap water. The cattle discriminated against the water containing 1,450 mg/L and rejected the water containing 2,150 mg/L, opting for tap water instead.617 Despite the unpalatability, if no other water is available, animals will reluctantly drink water with higher SO\textsubscript{4} concentrations resulting in potential toxicity.

Summary

In ruminants, high dietary S may cause acute death, PEM, trace mineral (especially Cu) deficiencies, and/or chronic, as-yet-poorly-defined ailments that decrease production efficiency. All dietary sources of S (water, forage, concentrates, feed supplements) contribute to total S intake and thus to potential toxicity. The S contribution of water, usually as the SO\textsubscript{4}– ion, varies dramatically with environmental conditions as water consumption goes up and down.

From a strictly theoretical standpoint, the NRC maximum tolerable dose of S for cattle is 0.5% of the total diet (0.3% for feedlot animals).589 Wyoming grasses are reported to contain between 0.13%-0.48% S.638 Assuming forage S concentrations of 0.2% and water consumption typical of young, rapidly growing cattle at summer temperatures (30 C), a water SO\textsubscript{4} concentration of 1,125 mg/L will meet or exceed the NRC’s maximum tolerance limit for S in cattle. Adult bulls, which consume half as much water, could theoretically be impacted by 2,250 mg/L, and lactating cows would fall somewhere in between. In practice, water SO\textsubscript{4} concentrations as low as 2,000 mg/L have caused PEM and/or sudden death in cattle. This observation is supported by many field cases investigated by the WSVL and other regional diagnostic labs since 1988. It seems to be contradicted by some of the early studies mentioned above, notably Digesti and Weeth,585 but both probability and the morbidity of poisoning increase with progressively larger SO\textsubscript{4} concentra-
tions; thus, studies with small numbers of animals easily
overlook marginally toxic doses. Anecdotal data also in-
dicate cattle are able to adapt to elevated S concentrations
if introduced gradually to potentially toxic waters over a
period of several days to weeks. The details (i.e. how rap-
idly dietary S can change) of this process and the effect(s)
of other dietary factors such as energy and protein on the
process are still a matter of conjecture.

Waterborne SO$_4^{2-}$ is reported to decrease Cu uptake at
concentrations as low as 500 mg S/L as SO$_4^{2-}$. Whether overt Cu deficiency results depends upon the
dietary concentration of Cu, and excess dietary Cu may
compensate for some or all of the effect of SO$_4^{2-}$. Unfortunately, most Wyoming forages are marginally to
drastically deficient in Cu for cattle. Elevated dietary S
also interferes with the uptake of Zn and Se. Trace ele-
ment deficiencies are multifactorial diseases that do not
normally manifest themselves unless animals are exposed
to other stressors such as bacterial pathogens, bad weath-
er, shipping, etc. Therefore, it is difficult, if not impos-
sible, to settle upon a single number that consistently
results in deficiency or guarantees safety; however, the
NRC recommends "the sulfur content of cattle diets be
limited to the requirement of the animal, which is 0.2%
dietary sulfur for dairy and 0.15% in beef cattle and
other ruminants." Relatively low S concentrations (equivalent to 500-1,500
mg SO$_4^{2-}$/L in water) have also impacted performance
(e.g. ADG, feed efficiency) in feedlot and range cattle
via a variety of mechanisms not completely under-
stood. Loneragan et al. suggested that H$_2$S produced from SO$_4^{2-}$, eructated and then inhaled,
resulted in pulmonary damage and increased susceptibil-
ity to respiratory infections. Elevated SO$_4^{2-}$ also results
in decreased water intake under experimental conditions.
Finally, it is possible some, as yet unrecognized, interac-
tions with other dietary components result in decreased
utilization and feed efficiency. These effects have obvious
implications for animal health, but they are difficult to
quantify under field conditions.

Monogastrics, such as horses, are at less risk of S effects
that involve ruminal generation of sulfide. In these spe-
cies, the principle effect of elevated drinking water SO$_4$
seems to be diarrhea resulting from the osmotic attrac-
tion of water into the gut. The relative contributions of
the SO$_4^{2-}$ ion and its associated cation are unclear, but
the literature indicates the effect 1) is transient and not
life-threatening and 2) probably only occurs at concentra-
tions considerably in excess of those toxic in ruminants.
Therefore, concentrations that are safe in ruminants
should provide adequate protection for horses.

Assuming normal feedstuff S concentrations, keeping
water SO$_4^{2-}$ concentrations less than 1,800 mg/L should
minimize the possibility of acute death in cattle. Con-
centrations less than 1,000 mg/L should not result in
any easily measured loss in performance.