History of Plant Ecology

Plato and Aristotle From Raphael's fresco "The School of Athens", ca. 350 BC

8/26/09

Early Philosophers

- Plato recognized erosion during his time. "Our land, compared with what it was, is like a skeleton of a body wasted by disease. The plump soft parts have vanished, and all that remains is the bare carcass."
- Aristotle believed that nature was provident; extinction could not occur
- Theophrastus, considered the father of Botany, determined that some plants were found in certain regions and not others (plant geography)
- In 70 BC, Lucretius wrote about succession in his book "On the Nature of Things."

8/26/09

Age of Exploration

2

- Plant geographers played an important role in the 18th and 19th centuries
- They observed PATTERNS of plant species distributions over elevation and climatic gradients
- Alexander von Humboldt was one of the most famous; born in the late 1700s in Prussia (which became Germany)
- In South America, he explored the Orinoco and Amazon Rivers, climbed Mount Chimborazo in Ecuador (21,000'), and brought back 60,000 plant specimens
- He had inherited a fortune, and spent it on travel and publishing his books.
 - Plant Geography, published in 1807
 - Five-volume encyclopedia "Kosmos" was his last

8/26/09

Baron von Humboldt

- Attributed vegetation zonation in the tropics to:
 - TemperatureHumidity

 - Atmospheric Pressure (!)
 Electrical Charge (!)
- Visited President Thomas Jefferson in 1804; he encouraged support of the Lewis and Clark Expedition (later, Jefferson explored the Alps and described vegetation zones there)
- von Humboldt's work was an inspiration for Charles Darwin, but ironically Humboldt died in 1859, the year the Origin of Species was published
- One of von Humboldt's famous ideas:
 - "In the great chain of causes and effects, no thing and no activity should be regarded in isolation."

8/26/09

More important dead white men

- Charles Darwin: wasn't just a zoologist; he studied orchids too
 - Corresponded with a famous American botanist, Asa Gray, about the adaptations of alpine plants
 - Wrote about adaptation and natural selection, both fundamental concepts in ecology
- Henry David Thoreau was a contemporary of Darwin's
 - Wrote about "succession" and "phenology"
 - He may have been the first to use both words, which are fundamental concepts in ecology

8/26/09

5

Phytogeography becomes Plant Ecology

- Eugenius Warming wrote the first book on ecology, The Oecology of Plants, widely translated from Danish
 - May have taught the world's first ecology course at the University of Copenhagen, in Denmark - in the mid-1890s.
 - Emphasized importance of soils, moisture, and temperature
 - Introduced terms like halophytes, hydrophytes, xerophytes, and mesophytes

8/26/09

- Henry Cowles taught the first ecology course at the University of Chicago in 1897; used Warming's book
 - Worked on succession on the nearby sand dunes of Lake Michigan; recognized dynamic nature of vegetation
 - Many students of Cowles helped in the development of the Chicago school of ecology
- Arthur Tansley taught first ecology course in England in 1899, also used Warming's book
 - Later, in 1935, Tansley coined the word "ecosystem."

8/26/09

7

The History of a Controversy: Clements vs. Gleason

- Frederick Clements (1874-1945)
 - Prominent American ecologist, U. of Nebraska, influenced by Cowles
 - Co-authored the first textbook of plant ecology in North America, "Plant Ecology," with Weaver
 - Concluded that plant communities acted as discrete entities; and that there were sharp transitions from one super-organism to another

8/26/09

8

- Henry Gleason (1882-1975)
 challenged Clements' views and proposed the individualistic concept of the plant community
 - Each species has its own distribution pattern according to <u>dispersal</u>, environmental conditions present at <u>establishment</u>, and <u>tolerance</u> range of mature plant
 - Eventual acceptance of his work led to wide application of gradient analysis to ecology

8/26/09

9

Robert H. Whittaker (1920-1980)

- Helped develop ordination techniques, which quantitatively showed gradual changes in species distributions
- With John Curtis, provided support for Gleason's ideas of individualistic responses of species to environment

8/26/09

Raymond Lindeman

- · Studied aquatic ecosystems while a graduate student at the University of Minnesota
- · Developed the trophic-dynamic concept, by which organisms are classified according to how they obtain, use, and pass on energy to the next trophic level
- Had trouble getting the paper published, but finally it was published in 1942 (after his death) and it became very influential

8/26/09

Eugene P. Odum, 1913-2002

- · Called "the father of modern ecology," popularized the word ecosystem by making it the organizing concept in his 1953 Fundamentals of Ecology (translated into 12 languages)
- · Chapters on energy flow, nutrient cycling, population dynamics, and ecosystem development
- With his brother, the ecologist Howard T. Odum, powerfully influenced the development of ecosystem ecology
 - symbiosis and biological diversity promotes stability.

8/26/09

05-0		

10

11

Modern Trends in Ecology

- Interactions among environmental factors and ecosystem components is emphasized
 - Plant/animal interactions
 - Biosphere-atmosphere gas exchange
- Increasing use of quantitative analyses
 - data, statistics, computer models
- · More experimental and analytical
 - · Hypothesis testing
- · Increasingly multidisciplinary
- Long-term research
 - permanent plots, grazing exclosures

8/26/09

13

- · Broader spatial scales
 - Models, remote sensing to scale up observations
- · Sustainable land management
 - Conservation biology
 - Protection of rare species
 - Maintenance of species diversity
- Importance of human effects is recognized
 - Climate and global change
 - Urban ecology
 - Invasion & restoration ecology

8/26/09

14

Great ideas in ecology (Odum, 1992)

- 1. Ecosystems are thermodynamically open, and far from equilibrium.
- Stability in ecosystems increases with increasing scale; parts are less stable than wholes
- Smaller ecosystem components are less stable than larger components (corollary to #3)
- 6. Natural selection may occur at more than one level (another corollary to #3).

8/26/09

15

_
5
_

7. Two kinds of natural selection: one driven by biota, which leads to competition; one driven by environment, which leads to mutualism.	
Competition may lead to diversity rather than to extinction.	
Evolution of mutualism increases as resources become scarce.	
 Organisms have modified the environment, making Earth more habitable. 	
8/26/09 16	
	1
13.Biodiversity studies should range over	
genetic to landscape scales. 14.Ecosystem development (autogenic	
succession) occurs in two phases:	
pioneer stages are stochastic; later stages are more organized.	
8/26/09 17	
	1
17.Energy is required to maintain energy flow and mass (nutrient) cycles.	
18.Sustainable ecosystem management is	
urgent. 19.Transitions from one state to another	
require energy expenditure.	
20.If humans are parasitic on our Earth host, we must reduce our virulence.	
8/26/09 18	