Tropical rainforest formations

- American formation about 50% of total tropical land area (neotropics)
 - Amazon and Central America
- Equatorial Africa (20%)
 - Congo Basin
 - Lower biodiversity than American or Asian
- Southeast Asia (30%) are also important (paleotropics)
Biogeographic legacies

- Indo-Malaysian formation is spread across many islands now, but 10,000 yrs ago when sea level was lower (water was frozen in ice caps), continental shelves connected many of the islands.

Biogeography and Evolution
Alfred Russel Wallace (1823-1913)

Recognized that patterns of species distributions were a legacy of inheritance, recording evolution.
Tropical climate (1)

- Tropical rainforest climate is warm and wet; mean monthly temperature >18°C and minimum monthly precipitation is 60 mm. High P/E ratio.
- Diurnal temperature range (~10°) may exceed seasonal range (<5°)
- Precipitation seasonality, due to migration of ITCZ, affects large-scale vegetation patterns
 - Monsoonal areas have lower species diversity and more deciduous species
 - Teak has datable tree rings

12/2/09

Tropical climate (2)

- In general, precipitation regime determines dominant life forms

Vegetation

- Evergreen forest
- Evergreen seasonal forest
- Rainforest
- Drought deciduous forest
- Xeromorphic shrubland
- Tropical shrub half-desert
- Tropical desert

Life forms

- Trees
- Soft-leaved evergreen
- Hard-leaved evergreen
- Epiphytes
- Vines
- Shrubs
- Evergreen
- Perennial herbs
- Annuals and bulbs
Tropical climate (3)

- Mountainous areas have distinct elevation zonation
- Pleistocene climate fluctuations probably contributed to evolution of diverse flora in American tropics; many relict species in topographic refugia
- Ice age conditions promoted more species interchange in SE Asia as islands became connected, and drier conditions in Africa; these formations are somewhat less diverse

Tropical evergreen forest types

- Lowland forests
- Alluvial forests
- Montane forests
- Cloud forests
- Drought-deciduous forests
Lowland forests: multilayered structure; emergent canopy trees over 30 m tall, sparse undergrowth, lianas & epiphytes are rare

Sumatra
12/2/09

Alluvial forest: multilayered, closed forest with many gaps; flooding frequency makes buttresses and stilt roots common

12/2/09
http://www.marencolodge.com/corcovado_national_park.htm
Montane forest: few trees >30 m tall; more light penetrates so palms, epiphytes and ground cover are more common

Cloud forest: closed forest structure with many gaps, numerous lianas & epiphytes; extensive ground cover of mosses & ferns

Alakai Swamp, Hawaii

http://starbulletin.com/97/01/02/news/story4.html

http://www.brazadv.com/brazil_tours/montane_rain_forest.asp
Seasonal or semi-deciduous forests have evergreen and drought-deciduous trees; evergreen shrubs and saplings in understory; epiphytes are drought resistant (CAM photosynthesis in many Bromeliads, especially where seasonal drought is common)

Teak forest, Thailand, dry season wet season

http://www.bfafh.de/inst4/42/tropen1.htm

Tropical forest structure and adaptations

- Canopies are multi-layered with emergent trees reaching 50 m tall (also see Figure)
- Most biomass is above ground

12/2/09
What is missing from this figure?

Tropical forest structure and adaptations

- Climbing lianas are common, especially in gaps; rattan is a genus of climbing palm which can reach 165 m
Tropical forest structure and adaptations

• Epiphytes may comprise 50% of tree leaf biomass in moist, montane forests. Myrmecophilous epiphytes get nutrients from ants housed in specialized structures provided by the plants.

12/2/09

• Buttresses and stilt roots are common partly because roots are shallow (nutrients mainly in litter).
• Measuring DBH is challenging; leads to large uncertainties in biomass estimates.

12/2/09
Tropical soils

- Tropical soils are highly weathered: they are generally old; and warm, wet conditions promote rapid chemical weathering and loss of nutrients.

- Oxisols are deep and clay-rich, but lacking in base cations. Well drained despite fine texture.

- Ultisols occur where seasonality is more distinct; are less strongly leached but more poorly drained.

Tropical soils (2)

- Typical reddish-brown Ultisol with very thin leaf litter (it decomposes rapidly).

- Basalt cobbles are still present, nutrient status is moderate.
Disturbance in Tropical Rainforests

- **Gap dynamics** result from **autogenic** factors
- **Gap microclimates** are diverse; temperature, radiation and soil moisture fluctuate widely
 - Small gaps: release saplings already present in understory
 - Large gaps: invasive pioneers establish from seed rain
- **Seed banks** are small and seeds short-lived
- Pioneer species (many legumes) grow rapidly (17 m in 5 yrs!) and then die
 - In Costa Rica, 75% of canopy species are gap-dependent (require release from shading to grow into canopy), 1% of cover is in pioneers

Human disturbance

- Increasing exponentially over the last 50 years
- **Population** pressure has increased land cleared for shifting subsistence agriculture; scales are comparable to natural gap dynamics
- **Large-scale clearing** for agriculture, cattle ranching, timber harvest
 - In Brazilian Amazon, selective logging removed 2% of trees, but 26% of tree cover was destroyed; in Malaya 10% of trees were removed but 55% of cover was damaged
- **Biodiversity** of plant and animal species is obviously affected but ecosystem consequences may be less apparent
Human disturbance

- Biomass burning (mainly in tropics) releases nearly as much carbon dioxide to atmosphere as does fossil fuel burning

12/2/09

Fire in Brazilian cerrado vegetation

Human disturbance

- Methane production from cattle and rice paddies has increased exponentially

12/2/09
What is forest fragmentation and why is it important?
Experiment in the Amazon

Fragmentation and diversity

Leaf-litter beetles

Insectivorous birds

Laurance et al. 2002 Cons Bio
Forest fragmentation and “biomass collapse”

- Above-ground tree biomass not offset by recruitment of new trees.
- Losses largest within <100 meters of fragment edges, where tree mortality increased.

Forest fragments and biomass loss

- Above-ground tree biomass not offset by recruitment of new trees.
- Losses largest within <100 meters of fragment edges, where tree mortality increased.
Summary

• Effects of fragmentation extend beyond the patch that is removed
• Boundary complexity and fragment connectivity have important effects on biodiversity
• Look for conservation biologist seminars early next semester