Acute irreversible cellular injury

Cell death

DONAL O’TOOLE
DEPT VET SCI
PATR 4130/5130

Necrosis in rapidly growing tissue – SCC in lung
Two major forms of cell death

APOTOPSIS
- Morphologically distinct
- Energy dependent
- Requires protein synthesis
- Does not trigger inflammation
- “Programmed cell death”
- Extrinsic and intrinsic pathways
 - Important for:
 1. Homeostasis
 2. Development
 3. Unnecessary cellular stress
 4. Neoplasia
 5. Control of viral (and other) infections

ONCOSIS
- Morphologically distinct
- Energy independent
- No protein synthesis
- Triggers inflammation
- Also:
 - Cellular swelling
 - Breakdown in mechanisms supplying energy
 - Ruptured cell membranes

Important for:
1. Homeostasis
2. Development
3. Unnecessary cellular stress
4. Neoplasia
5. Control of viral (and other) infections

Breakdown in mechanisms supplying energy
Ruptured cell membranes
After cells die - NECROSIS

Most commonly:
- Oncotic necrosis
- Also: apoptotic necrosis

Typically: inflammatory reaction and fever
Events:
- Calcium salts
- Cholesterol deposits
- Membrane phospholipids form myelin figures

Types:
- Coagulative necrosis
- Liquefactive necrosis
- Caseous
- Fat necrosis
- Gangrene:
 - Wet – modified by bacteria; includes gas gangrene
 - Dry – modified by air

Coagulative necrosis – example: renal infarct

Liquefactive necrosis – example: Russian knapweed intoxication
Hemorrhagic necrosis in ovine brain - dehorning injury

Caseous necrosis – example: TB in lung

Fat necrosis – example: mesenteric tissue
Cell death and necrosis in special tissues

- Central nervous tissue
 - Excitotoxicity (esp. L-glutamate)
 - Esp. prone to free radical damage (iron)
 - Liquefaction
 - High fat content and scant connective tissue
- Adipose tissue:
 - Steatonecrosis
 - Local irritant
 - Calcification (“taches de bougie” – candle wax)
- Bone tissue:
 - “Sequestrum” when infected
- Luminal organs like gut:
 - Bacterial complications
Mitochondrial events in cellular injury leading to necrosis or apoptosis.
Intracellular sources of free radicals

- Normal redox reactions generate free radicals
- Nitric oxide (NO) acts free radical
- Ionizing radiation (UV, X-rays) hydrolyzes water to hydroxyl (OH·) and hydrogen (H·) free radicals
- Metabolism of some exogenous chemicals (e.g., CCl₄) generates free radicals
- Free radical generation during physiological antimicrobial reaction
Dealing with free radicals

- Spontaneous decay
- Superoxide dismutase (SOD):
 - \(2\text{O}_2^- + 2\text{H} \rightarrow \text{O}_2 + \text{H}_2\text{O}_2 \)
- Glutathione (GSH):
 - \(\text{OH}^+ + 2\text{GSH} \rightarrow 2\text{H}_2\text{O} + \text{GSSG} \)
- Catalase:
 - \(2\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + \text{H}_2\text{O} \)
- Endogenous and exogenous antioxidants (vitamins E, A, C and \(\beta \)-carotene)

Free radicals that are not neutralized

Cellular damage due to
- Lipid peroxidation of membranes:
 - Double bonds in polyunsaturated membrane lipids vulnerable to attack by oxygen free radicals
- DNA fragmentation:
 - Free radicals react with thymine in nuclear and mitochondrial DNA and produce single strand breaks
- Protein cross-linking:
 - Free radicals promote sulphydryl-mediated protein cross-linking, resulting in increased degradation or loss of activity

Reperfusion injury

- If cells are reversibly injured due to ischemia, restoration of blood flow paradoxically results in accelerated injury
- Clinically important
 - Esp. myocardial and cerebral infarctions (human)
 - Esp. intestinal injury (horses)
- Exact mechanisms are unclear, but
 - Restoration of flow exposes compromised cells to high concentrations of calcium,
 - Reperfusion results in increased free radicals production from compromised mitochondria and circulating inflammatory cells
Apoptosis
Viable cell
Apoptosis
Viable cell
Necrosis
Membrane damage
- Reactive oxygen species
- Lipid peroxidation
- Phospholipid synthesis
- Phospholipid degradation
- Cytoskeletal damage
- Cytochrome C activation
- Protease activation
- Lipid breakdown products
Autolysis

- Self-digestion of tissues after death
- Necrosis and post-mortem autolysis are different processes
- Two major components for degradation of carcass:
 - Autolytic enzymes
 - Clostridial overgrowth
- Retarded by cooling of carcass (or tissue(s))
- Hierarchy of rate of autolysis:
 - Fast: kidney/gallbladder/pancreas/mucosa/retina/liver
 - Moderate: brain and muscle
 - Slow: skin and testes