Molecules, organelles, cells, tissues, organs, and body as a whole in disease

DONAL D’TOOLE
PATH 4130/5130

Virchow’s concept*

\textit{Omnis cellula e celula =}
All living cells arise from pre-existing cells

This revised previous notions of spontaneous creation of cells from non-living matter

Corollary: all disease is result of cellular damage, even when initial target of injury is stromal framework

* Virchow appears to have plagiarized this concept from Schwann and Remak. The epigram was coined by Raspail. Virchow popularized it
The patient of pathologists is the cell

- Epidemiologist
- Physician/nurse practitioner/veterinarian
- Physiologist/anatomist
- Histologist/physiologist/endocrinologist
- Pathologist
- Molecular biologist
- Chemist/molecular biologist
- Molecular geneticist

The cellular basis of disease

- Please see Dr. Montgomery’s lecture from Friday
 - Some diseases target particular organelles:
 - Genetic disease: nuclear (DNA) and mitochondrial (DNA)
 - Cancer: nuclear DNA
 - Storage diseases: lysosomes
 - Membrane receptors: multiple, including autoimmune disease
 - Others
 - Many infectious diseases are cell-type specific:
 - ‘Neuronotropic’ infections: rabies
 - ‘Epitheliotropic’ infections: many herpesviruses

Determining consequences of cellular injury -1

- Critical nature of affect tissue/organ
 - How vital the organ
 - Spare capacity
 - Capacity for repair:
 - Labile
 - Stable ("quiescent")
 - Permanent
- Extent – diffuse vs. focal vs. multifocal
- Intensity – severe vs. moderate vs. mild
- Duration – acute vs. subacute vs. chronic
Death due to damage of vital organ

Major organ damage:
- Brain
- Heart

Massive blood loss:
- Internal
- External

Post-traumatic injury, bovine brain

Determining consequences of cellular injury - 2

- Location in body
- Host factors:
 - Nutrition
 - Age
 - Stress
 - Species
 - Sex
 - Genetic susceptibility
 - Blood supply
 - Secondary complications (esp. infection)
- Integrity following injury:
 - Effects on parenchyma, vessels, connective tissue framework

Gas gangrene (blackleg) in an ox
1/19/2011

Blackleg

Clostridial myositis pathogenesis
- step by step development of disease

Clostridium chauvoei enters body (ingestion)
- Latent bacterial spores in muscle (carried by macrophages?)
- Low oxygen tension in tissue (e.g., injection or trauma)
 - C. chauvoei proliferate
 - Cellulitis + edema + hemorrhage
 - Gas gangrene
 - Death in 12 – 36 hours

Clostridial organisms in muscle

- C. chauvoei
- Enzymes produced:
 - Alpha toxin = hemolysin
 - Beta toxin = DNase
 - Gamma toxin = hyaluronidase
 - Delta toxin = hemolysin
 - Neuraminidase = neuraminic acid
- Targets cellular components and extracellular components
- Death due to combination of tissue damage and shock
Homeostasis

- Normal cell (homeostasis)
- Stress, increased demand
- Injurious stimulus
- Adaptation
- Cellular injury
 - Cell death
- Inability to adapt

Lesions

- Injury
- Structural change ("lesion")
- Molecular change
 - Cell
 - Tissue
 - Organ
- Inborn error
- Functional change
- Symptoms/Signs
- Effect on other tissues, organs and systems

Morphological changes generally linked to functional changes (= disease) but:

- Functional disturbance **without** lesions:
 - Metabolic disturbances:
 - Milk fever
 - Hypomagnesemia
 - Fatal arrhythmias
 - Some intoxications:
 - Lead
 - 1080
 - Strychnine
 - Botulism
 - Tetanus
 - Tetrodotoxin

- Lesions **without** functional abnormality:
 - Benign tumors
 - Low grade bleeding
 - Age-related degenerations
 - Some, not all
 - Incidental lesions
When a tissue, organ or system begins to fail, it results in predictable, medically relevant complications in other organs, tissues and/or systems.

Pathology is "physiology under stress" ↓ "pathophysiology"

Understanding syndromes of complications is basis for detection in live patient, based on good clinical examination, supplemented by laboratory tests or biopsy.

When a major organ fails, the body fails

- Removing wastes
- Electrolyte balance
- Blood pressure
- Stimulating RBC

Doberman Pinscher juvenile nephropathy

- One of multiple familial nephropathies
 - Genetics undefined
 - Similarities to some human nephropathies
- Renal disease:
 - Targets renal glomeruli
 - Concurrent disease of tubules and interstitium
- "End-stage renal disease"
Consequences of renal failure - 1

- Fluid/electrolytes
 - Dehydration
 - Edema
 - Hyperkalemia
 - Metabolic acidosis
 - Ca / Phosphate
 - Secondary hyperparathyroidism
 - Renal osteodystrophy

- Blood pressure
 - Hypertension
 - Congestive heart failure
 - Cardiomyopathy
 - Pulmonary edema
 - Uremic pericarditis

- Hematologic
 - Anemia
 - Bleeding tendency

Maxillae/mandibles - dog
Thyroids/parathyroids - dog
Consequences of renal failure - 2

- **Gastrointestinal**
 - Nausea
 - Vomiting
 - Bleeding
 - Eosinophilitis
 - Gastritis
 - Colitis
- **Dermatological**
 - Sallow color (people)
 - Pruritis
 - Dermatitis
- **Neuromuscular**
 - Myopathy
 - Peripheral neuropathy
 - Encephalopathy

Serosal aspect, ribcage of two dogs

Gastrointestinal
- Nausea
- Vomiting
- Bleeding
- Esophagitis
- Gastritis
- Colitis

Dermatological
- Sallow color (people)
- Pruritis
- Dermatitis

Neuromuscular
- Myopathy
- Peripheral neuropathy
- Encephalopathy

Stomach (surface) – dog
Close up of gastric mucosa - dog
Acute gastritis - human Fibrinous pericarditis - human

Tongue - dog Colonic mucosa - dog

Events in renal failure - 1

- ↑ nitrogenous wastes
- ↑ intracellular Na⁺ and water
- ↓ intracellular K⁺
- ↑ substances normally cleared by kidney (hormones)
- ↓ hormones and other mediators produced by the kidney
- ↓ basal body temperature
- ↓ lipoprotein lipase activity
Manifestations of renal disease

- Azotemia = ↑ blood urea nitrogen + creatinine
 - Function of glomerular damage
 - Uremia = azotemia + biochemical/clinical signs
- Hypoproteinemia:
 - Function of daily protein loss
 - Hypoalbuminemia → edema
 - Hyperlipidemia
- Oliguria:
 - More common in acute/peracute renal failure

Events in renal failure - 2

- Sodium and water retention
- Hyperkalemia
- Metabolic acidosis
- Changes in mineral metabolism → disorders of bone
- Cardiovascular and pulmonary disorders
- Hematologic abnormalities
- Neuromuscular abnormalities
- Gastrointestinal abnormalities
- Endocrine abnormalities
- Dermatologic abnormalities

Renal failure consequences: Na⁺ and water

- Sodium/water retention:
 - CHF, hypertension, ascites, edema
- Sensitivity to extra-renal sodium and water loss
 - Vomiting, diarrhea, fever, sweating
 - Symptoms: dry mouth, dizziness, tachycardia.
- Clinical control
 - Avoid excess salt and water intake
 - Diuretics
 - Dialysis
Renal failure consequences: potassium

- Hyperkalemia (GFR below 5 mL/min)
 - GFRs >5 mL/min: compensatory aldosterone-mediated K transport in DCT
 - Exacerbation of hyperkalemia:
 - Exogenous: K-rich diet
 - Endogenous: infection and trauma

Renal failure consequences: acidosis

Decreased acid excretion and ability to maintain physiologic buffering:
- GFR > 20 mL/min: moderate acidosis

Renal failure consequences:

- Fluid and salt overload
 - CHF and pulmonary edema
 - Hypertension
- Hyper-reninemia: hypertension
- Pericarditis
- Accelerated atherosclerosis: linked to factors above and metabolic abnormalities (Ca alterations, hyperlipidemia)
Renal failure consequences: RBC

- Anemia due to lack of erythropoietin
- Bone marrow suppression:
 - Uremic poisons: leukocyte suppression → infection
 - Bone marrow fibrosis
- Increased bruising, blood loss (surgery) and hemorrhage

Renal failure consequences: neuromuscular

- Peripheral neuropathies
- CNS abnormalities:
 - Renal encephalopathy
 - Mild or moderate: sleep disorders, impaired concentration and memory, irritability
 - Severe: myoclonus, stupor, seizure, coma

Renal failure consequences: GIT

- Uremic gastroenteritis: mucosal alterations
- Gastric ulceration: secondary to hyperparathyroidism?
- Uremic fetor: bad breath due to ammonia
- Non-specific abnormalities:
 - Anorexia, nausea, vomiting, diverticulosis, hiccoughs
Renal failure consequences: reproductive

- Insulin: prolonged half-life due to reduced clearance (metabolism)
- Female: low estrogen levels
- Male: impotence, oligospermia and germinal cell dysplasia:
 - Low testosterone levels

Renal failure consequences: skin

- Pallor due to anemia
- Skin color changes: accumulation of pigments
- Ecchymoses and hematomas: clotting abnormalities
- Pruritis and excoriations: Ca deposits from secondary hyperparathyroidism

Renal failure consequences: bone disease

- Decreased Ca++ from the gut
- Over-production of PTH
- Altered vitamin D metabolism
- Chronic metabolic acidosis
Recap: from cell to body

- **Cellular injury** is focus of pathologist
 - Other approaches just as valid: genome; molecular; proteome; organ or system; patient; population
 - Basis for:
 - Reliance on systematic examination of carcass
 - Histological and ultrastructural examination
- **Example of cellular injury causing organ injury and systemic illness:**
 - End stage renal disease leading to "uremia"
 - These are protean effects – chronic renal failure can present in various ways