Pathology of external parasites

‘External’ parasites for the purposes of lecture

- External on skin surface:
 - Temporary and permanent parasites
- External on mucosal surfaces, esp. GIT
 - Parasites
 - Limited or no penetration of mucosa
- Importance of surface immunity, including mucosal and innate
- External parasites becoming internal parasites as they explore new niches

The challenge of being an external parasite

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited exposure to acquired immune system</td>
<td>Exposure to innate immunity:</td>
</tr>
<tr>
<td>Access to surface nutrients</td>
<td>Many external parasites</td>
</tr>
<tr>
<td>Consistent environment</td>
<td>species-specific</td>
</tr>
<tr>
<td>Ease of transmission to new hosts</td>
<td>Importance of attachment</td>
</tr>
<tr>
<td></td>
<td>Nutrition sources short-lived or limited</td>
</tr>
</tbody>
</table>
Important surface parasites (skin)

<table>
<thead>
<tr>
<th>Permanent</th>
<th>Transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lice</td>
<td>- Diptera (flies)</td>
</tr>
<tr>
<td>- Mites</td>
<td>- Mosquitoes</td>
</tr>
<tr>
<td></td>
<td>- Black flies</td>
</tr>
<tr>
<td></td>
<td>- Midge</td>
</tr>
<tr>
<td></td>
<td>- Blowflies and flesh flies</td>
</tr>
<tr>
<td></td>
<td>- Horseflies/deer flies</td>
</tr>
<tr>
<td></td>
<td>- Arachnids</td>
</tr>
<tr>
<td></td>
<td>- Ticks</td>
</tr>
<tr>
<td></td>
<td>- Fleas</td>
</tr>
</tbody>
</table>

Important surface parasites (mucosal)

- Coccidia:
 - Eimeria
 - Isospora
- Giardia
- Cryptosporidium
- Trichomonas
- Multiple economically important nematodes
 - Haemonchus
 - Ostertagia
 - Trichostrongylus

Feeding insects

- Direct injury and allergic reactions
- Transmission of other pathogens
Fleas and pathology

- Intermittent feeding
- Most common allergic dermatitis in companion animals
- Type I and IV hypersensitivity reaction to saliva
 - Histamine-like compounds, enzymes, polypeptide, amino acids
 - Eep. neck (cats); lumbar sacral area (dogs)
 - IgE and IgG antibodies within 2–12 weeks of exposure
- Secondary self-trauma

Demodicosis

- Demodectic mange
- Common
 - Well adapted in many species
- Inhabit:
 - Hair follicles
 - Sebaceous glands
- Often asymptomatic
- Breed-related infections
 - ?Defective T-cell immunity
 - Altered self-antigens (keratinocytes)
- Secondary bacterial infections
Scabies

- Sarcoptes scabei
- Species specific
- Typical scabies:
 - Controlled infection
 - Th1 cell-mediated protective response
- Crusted scabies:
 - Exuberant infection
 - Nonprotective Th2 allergic response
 - Hypersensitivity
 - Eosinophilia

Ticks, feeding and disease

- Two major tick families
 - Hard ticks – Ixodidae
 - Soft ticks – Argasidae
- Feeding periods:
 - Hours (soft ticks)
 - Days (hard ticks)
- Barbed feeding tube
- Cement-like substance
- Anesthetic saliva inserted
- Introduction or acquisition of pathogens

- Tick-borne illnesses:
 - Viral:
 - Many flaviviruses (louping ill)
 - ASF
 - Bacterial:
 - Tularemia
 - Lyme disease
 - Parasitic:
 - Anaplasmosis
 - Babesiosis
 - Ehrlichiosis
Tick salivary components

- Alternation of blood ingestion and salivation
- Salivary components:
 - ~500 proteins (hard ticks); 150 – 200 proteins (soft ticks)
 - Secreted at different times during feeding
- Interference with hemostasis
 - Vasoconstriction (= vasodilators)
 - Platelet aggregation
 - Fibrin cascade (= fibrin binding to platelets)
- Minimize inflammation:
 - Binding histamine, serotonin, Ig and complement
 - ‘Anesthesia’
 - Neutralization of ATP, serotonin, histamine, bradykinin

Ghost moose syndrome

- *Dermacentor albipictus*
 - Winter tick
- Affected:
 - Moose – grooming behavior
 - Also: caribou, elk
- Causes:
 - Blood loss
 - Disturbed eating
 - 40 – 80 % hair loss
- Tick burden:
 - >30,000 ticks (moose)
 - 2 ml/female tick
 - Remove liters of blood
Botflies

- Example: *Oestrus ovis*
- Similar parasites in cattle (*Hypoderma* spp.), horses (*Gasterophilus* spp.), rodents/lagomorphs (*Cuterebra* spp.)
- Deposition of larvae in nasal cavities
- Maturation in nasal sinuses

Coccidiosis

- Direct life cycle
 - *Eimeria* and *Isospora*
 - Highly species-specific
 - Asexual and sexual stages
 - Differences in location in gut
 - Different location along villi
 - Multiple species:
 - Sheep: 11 with 2 pathogenic
 - Importance of merogony:
 - Lysis of host cell
 - Extra-intestinal stages (limited)

Cryptosporidiosis

- Highly successful parasite
 - Multiple species affected
 - Birds; fish; amphibians; mammals
 - Autoinfection cycle
 - Apical organelle discharge
 - Sporozoite-specific lectin adherence factor
 - Microvillous surfaces
 - Parasitophorous vacuole
 - Villous atrophy
 - Malabsorption diarrhea
Trichomonas

Coccidia – exploring new niches:

Non-enteric coccidia
- In some:
 - Intra-nuclear
 - Endothelial cells
 - Local lymph nodes
 - Bile ducts/liver
 - Stomach
 - Placenta
 - Other

Extra-intestinal coccidia
- Sarcocystis spp.
 - Use prey-predator cycle
- Toxoplasma:
 - Infect everyone
- Neospora:
 - Try vertical transmission

Prey-predator cycle: sarcocystosis

Predator:
- Typical coccidial life cycle
- Sexual stage
- Minimal extra-intestinal invasion
- No clinical disease

Prey species:
- Extra intestinal cycle
- Intravascular:
 - Merogony
 - Acute vascular disease
- Intramuscular:
 - Cyst stage
 - Acute myositis
Toxoplasmosis

- **Definitive host:**
 - Cat
 - Recurrent infections

- **Intermediate host**
 - Asymptomatic → symptomatic
 - All warm blooded animals
 - Generally, minimal disease
 - Cyst formation:
 - Brain; muscle; liver
 - Disease when:
 - High challenge doses
 - Susceptible species
 - Immunosuppression
 - Fetus infection

- Cyst formation:
 - Brain; muscle; liver

- Disease when:
 - High challenge doses
 - Susceptible species
 - Immunosuppression
 - Fetus infection
Pathogenesis of toxoplasmosis

<table>
<thead>
<tr>
<th>Intermediate host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct cell lysis</td>
</tr>
<tr>
<td>No toxins produced</td>
</tr>
<tr>
<td>Tachyzoites:</td>
</tr>
<tr>
<td>Rapidly proliferating</td>
</tr>
<tr>
<td>Most pathogenic</td>
</tr>
<tr>
<td>Short-lived; extracellular</td>
</tr>
<tr>
<td>Bradyzoites:</td>
</tr>
<tr>
<td>Cyst stage</td>
</tr>
<tr>
<td>Quiescent</td>
</tr>
<tr>
<td>Long-lived; intracellular</td>
</tr>
<tr>
<td>Domestic animals:</td>
</tr>
<tr>
<td>Sheep: abortion</td>
</tr>
<tr>
<td>People: abortion, encephalitis, chorioretinitis</td>
</tr>
</tbody>
</table>

Definitive host
- Cat: no signs
- Rarely disease

Strategies used by *T. gondii*
- Large number of susceptible host species
- Ease of transmission
 - Vertical and horizontal
 - Water-borne
 - Food-borne
- Infection of multiple organs
- Preferential infection of monocyte/macrophage cells
- Parasitophorous vacuole
 - Recruitment of host mitochondria and RER
- Arrest of cell at G2/M stage of cell cycle
- Antigen differences between tachyzoite and bradyzoite
- Use of cell stress (IFN) signals to encyst
- Antigenically silent cystic stage
- Encysting in long-lived cells (myocytes; neurons)
Neosporosis

- **Definitive host:**
 - No lesions
- **Intermediate hosts:**
 - Abortion
- **Vertical transmission**
- **Abortion:**
 - Myocarditis
 - Encephalitis
 - Placentitis

Immunity and mucosal nematodes

- **Th2 or Th1/Th2**
 - Mast cells + eosinophils + IgE antibodies
 - Histamine leukotrienes, bradykinin
 - Direct cell killing by eosinophils
 - Parasite-specific IgA
- **Degranulation + inflammatory mediators ‘flush’ larvae from gut**
 - Peristalsis
 - Mucus secretion
- **Diversity of nematode antigens**
 - Acquired immunity slow to develop
 - Rarely complete

Antagonist

- IgG, IgE
- IL-4, IL-5, IL-13

Antebody production

Parasite-directed away from mucosal growth

Expulsion of nematode challenge
Important surface nematodes (internal)

- Hematophagus vs. mucosal browsing
- Essentially 100% of sheep and cattle infected
- Effects due to:
 - Inappetence
 - Diarrhea
 - Re-partitioning essential amino acids

Pathogenesis of parasitic gastroenteritis

- Major impacts:
 - Subclinical weight loss, reduced weight gain, reproductive inefficiency
- Age-related susceptibility:
 - Early, young stock and stressed older animals
- Phenotypic resistance:
 - Poorly defined
 - Familial
- Immunity:
 - Typically Th2 response
 - Limited practicality based on vaccine studies
- Immune exclusion:
 - Established population makes less host susceptible to infection
- Self cure:
 - Expulsion of adults after heavy larval exposure
 - IgE-induced

Haemonchus contortus

- Abomasal parasite
 - L2
 - L3
 - Adult
- Different antigenic profile for each
- L3 in abomasal glands
- Two forms of disease:
 - Type 1
 - Type 2