Pathology and internal parasites

Most parasites extraordinarily well adapted to natural host species

Trypanosomes – Wyoming cervids
Non-pathogenic

Trypanosomes – human sleeping sickness
Chronic disease
Disease mechanism #1: Dose makes the poison

- Heavy infestations
- Overwhelming tolerance and/or immunity of natural host species
- Compounding:
 - + Stress
 - + Malnutrition
 - + Crowding
- Example: heartworm (*Dirofilaria immitis*)
- <25 adults: no clinical signs
- Higher infestations:
 - Pulmonary hypertension + right sided heart failure
 - Pulmonary embolism

Parasite gastroenteritis

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Normal host</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large strongyles</td>
<td>Horses</td>
<td>Enteritis</td>
</tr>
<tr>
<td>Small strongyles</td>
<td>Horses</td>
<td>Enteritis</td>
</tr>
<tr>
<td>Coccidiosis</td>
<td>Ruminants/pigs</td>
<td>Enteroaditis</td>
</tr>
<tr>
<td>Necrocytoplasia</td>
<td>Nematodes</td>
<td>Vasculitis; abortion</td>
</tr>
<tr>
<td>Large roundworms</td>
<td>Horses; pigs</td>
<td>Enteritis (obstruction)</td>
</tr>
<tr>
<td>Lungworms</td>
<td>Multiple dom. and wild ruminants</td>
<td>Pneumonia</td>
</tr>
</tbody>
</table>

Heartworm – *Dirofilaria immitis*
Ostertagia-induced abomasitis

Coccidiosis - goat

D. viviparus - lungworm
Disease mechanism #2
Lesions induced by migration in normal host

- Many parasites migrate extensively in host tissue
- Most:
 - Minimal tissue damage
- Some:
 - Local or generalized tissue injury
 - Going to wrong site

Ascaris suum – "milk spots"
Mechanism #3: susceptible age range

<table>
<thead>
<tr>
<th>Young more susceptible</th>
<th>Older more susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcine coccidiosis</td>
<td>Bovine babesiosis</td>
</tr>
<tr>
<td>Isospora suis</td>
<td>B. bovi and B. bigemi</td>
</tr>
<tr>
<td><2 days – highly susceptible</td>
<td><9 months – no disease</td>
</tr>
<tr>
<td>>2 weeks: little or no disease</td>
<td>>9 months – hemolysis</td>
</tr>
</tbody>
</table>

Factor:
- Maturation of villi and villous enterocytes
- Better cell and antibody mediated immunity

Pathogenesis:
- Direct RBC destruction
- Osmotic lysis
- Basis for age-related susceptibility undefined

Mechanism #4: wrong host species infected

- Parasites vary in specificity of definitive host, intermediate host
 - Most: highly specific and adapted
 - Some: poorly adapted:
 - Effective host response and elimination
 - A few:
 - Induce disease – often dependant on immunity or dose of ingested parasite
Parasitic disease in aberrant species

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Normal host</th>
<th>Abnormal host</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paradiplogastrostrongylus tenuis</td>
<td>WTD</td>
<td>Other cervid species</td>
<td>CNS</td>
</tr>
<tr>
<td>Elaeophora schneideri</td>
<td>Mule deer</td>
<td>Elk and moose</td>
<td>CNS/extremities</td>
</tr>
<tr>
<td>Ascaris suum</td>
<td>Domestic pig</td>
<td>Humans</td>
<td></td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>Dog</td>
<td>Humans</td>
<td>CNS/ocular</td>
</tr>
<tr>
<td>Echinococcus multilocularis</td>
<td>Aortic for/dog (D)</td>
<td>Rodents (I)</td>
<td>Lung</td>
</tr>
<tr>
<td>Echinococcus granulosus</td>
<td>Dog (D)</td>
<td>Sheep (I)</td>
<td>Brain; lung; liver</td>
</tr>
<tr>
<td>Angiostrongylus spp.</td>
<td>Dog</td>
<td>Humans</td>
<td>Skin</td>
</tr>
<tr>
<td>Baylisascaris procyonidis</td>
<td>Raccoon (D)</td>
<td>Rodents</td>
<td>CNS</td>
</tr>
<tr>
<td>Trichinella spp.</td>
<td>Pigs; Bears</td>
<td>Humans</td>
<td>GIT/muscle</td>
</tr>
<tr>
<td>Dirofilaria canis</td>
<td>Dog</td>
<td>Foxes, cat</td>
<td>Heart</td>
</tr>
</tbody>
</table>

Elaeophorosis (carotid worm)

Normal host species:
- Mule deer
- Black-tailed deer
- Sub-adults and adults:
 1. Meningeal vessels
 2. Carotid arteries
- Microfilaria: skin of head
 ○ Unusually large

Abnormal host species:
- Elk
- Moose
- White-tailed deer
- Domestic sheep

Pathology:
- Vascular occlusion
- Infarction
- Primarily:
 - Brain
 - Eyes
 - Skin of head (esp. sheep)
Echinococcosis

4/8/2011

Cutaneous larva migrans

4/8/2011

Female and male Baylisascaris procyonis

MRI – brain, 11 month old boy

4/8/2011
Dirofilaria in ferret

Meningeal worm - Parelaphostrongylus tenuis

Right host species but wrong strain

- African animal trypanosomiasis
- T. congolense, T. vivax and T. brucei subsp. brucei
- Natural resistance (‘trypanotolerance’)
 - Native African cattle breeds and wildlife
- Susceptibility:
 - European cattle breeds and wildlife
- Disease due to anemia, lymphadenopathy and weight loss
Mechanism #5: hemolysis

- Important class of parasites:
 - Human:
 - Malaria – *Plasmodium* spp.
 - Domestic/companion animal:
 - Piroplasmosis – *Babesia* spp.
 - East Coast fever - *Theileria* spp.

Malaria

- Highly successful:
 - Human: 500 million infected; 1 million death/year
 - Avian and mammals:
 - Most important blood parasite worldwide
 - >40 species in birds
 - Poorly studied except as laboratory models of human infection
- Alternate mosquito and vertebrate hosts
- Major clinical consequence: anemia (hemolysis)
 - CNS disease
 - Effects on spleen and liver
- Highly endemic areas: risk mostly to infants, young children, pregnant women and visitors

Malaria in humans

- Four species routinely infect humans
 - Most important: *P. falciparum*
- Multiple life stages
- Multiple strains within each *Plasmodium* sp.
- Basis for successful parasitism:
 - Partial host resistance = widespread endemic infection
 - Exp. hemoglobinopathies (SC trait; α- and β-thalassemia)
 - Absence of sterilizing immunity
 - Multiple infections (≥5/year) over 10 – 15 years needed to develop clinical immunity
 - Hypnozoites in liver
- Variant surface antigens after infection:
 - PfEMP1
Mechanism #5: manipulating immune response

- Example: lymphatic filariasis
- Direct effect on T regulatory cells
 - ↓ Th1 and Th2 responses (most individuals)
 - High microfilarial loads
 - Little or no lesions
- Immune effects disappear following treatment – actively induced
- Induction of ineffective immunoglobulin class (IgG4)
- ↓ antigen handling by macrophages
- Clinical disease associated with death of nematodes:
 - Immuneological ‘over-responders’
 - Medication
Major life stages of filarial worms

- Infectious larvae
 - Transmitted by mosquito
- Adult worm
 - Develop from larvae
 - Lymphatic vessels vs. circulation vs. subcutaneous tissue
 - Long-lived (4 – 40 years)
- Microfilaria
 - Produced by mated adults
 - Nocturnally active – O2 tension vs. circadian rhythm (host vs. parasite)
 - In lungs during day
 - Survive host bloodstream for up to 1 year
 - Acquired by mosquito develop into infectious larvae

Disease syndromes associated with lymphatic filaria in humans

- Lymphatic filariasis/lymphangitis:
 - Major syndrome
 - In those individuals over-reacting to adults in lymphatics
 - End result: lymphangitis
 - Risks of using medication
- Tropical pulmonary eosinophilia:
 - Minor syndrome
 - Individuals over-reacting to microfilaria in lungs
 - Genetic host factors
Variations on a theme

- Excessive reaction to microfilaria in eyes:
 - River blindness (*Onchocerca volvulus*)

Mechanism #6: inappropriately vigorous inflammation

- Example: schistosomiasis
 - Severe inflammatory reaction to schistosome eggs
 - T_{H1} response helpful to host early in infection
 - T_{H2} response after 5 – 6 weeks of egg laying
 - Soluble egg antigens invoke T_{H2} response
 - Outcome: periportal fibrosis, hepatosplenomegaly and ascites
Immune responses to schistosomes

- Adult fluke:
 - Lives largely undetected in blood vessels for 8 – 10 years

- Fluke eggs:
 - 50% excreted
 - 50% carried to portal circulation
 - Induce vigorous inflammatory reaction
 - \(T_2 \) type eosinophilic granulomas